Magic Blue Light: A Versatile Mediator of Plant Elongation
Abstract
:1. Introduction
2. A Scientific Consensus Has Been Revised by Discoveries from LED Lighting Studies
2.1. Blue Light Causes Plant Compactness: A Scientific Consensus
2.2. Blue LEDs Alone Can Promote Plant Elongation
3. The Purity of Blue Light may Affect Plants’ Elongation Responses to This Light Wavelength
3.1. Adding Low-Level Red Light to Pure Blue Light Can Inhibit Plant Elongation, but This Can Be Reversed by Further Adding FR Light
3.2. Adding Low-Level Wavelengths Other Than Red Light to Pure Blue Light Has Little Effect on Plant Elongation
4. Factors Affecting Plants’ Elongation Response to Pure Blue Light Relative to Red Light
4.1. Lighting Features
4.2. Plant Factors
4.3. Cultivation Conditions
5. Mechanisms Underlying Blue-LED-Promoted Plant Elongation
5.1. Shade-Avoidance Response
5.2. Hormone Changes
5.3. Involved Photoreceptors
6. Application of Blue LEDs in Mediating Plant Elongation for Controlled-Environment Production
6.1. Plant Propagation
6.1.1. Promoting Explant Elongation for Micropropagation
6.1.2. Promoting Hypocotyl Elongation of Rootstock Plants for Grafting
6.1.3. Mediating Shoot Elongation of Mother Plants for Cuttings
6.2. Transplant Production
6.2.1. Sole-Source Lighting with a Combination of Blue and Red LEDs Can Produce Compact Transplants under Indoor Conditions
6.2.2. Supplemental Lighting with Blue LEDs Only or Their Combination with Red LEDs Can Produce Compact Transplants in Greenhouse Conditions
6.3. Floral Plant Production
6.3.1. Promoting Plant Compactness in Potted Floral Plant Production
6.3.2. Promoting Plant Elongation in Cut Flower Production
6.4. Microgreen Production
6.4.1. Application of Blue LEDs in Daytime Lighting to Promote Hypocotyl Elongation
6.4.2. Application of Blue LEDs in Nighttime Lighting to Promote Hypocotyl Elongation
7. Future Research Directions
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Demotes-Mainard, S.; Peron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huche-Thelier, L.; Boumaza, R. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Mah, J.J. Exploring Light for Growth Control in Ornamental Plant Production Using LEDs in Controlled Environments. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2019. [Google Scholar]
- Park, Y.; Runkle, E.S. Blue radiation attenuates the effects of the red to far-red ratio on extension growth but not on flowering. Environ. Exp. Bot. 2019, 168, 103871. [Google Scholar] [CrossRef]
- Huche-Thelier, L.; Crespel, L.; Le Gourrierec, J.; Morel, P.; Sakr, S.; Leduc, N. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Runkle, E. Effects of Blue Light on Plants. Michigan State University, Extension Floriculture Team. 2017. Available online: https://gpnmag.com/wp-content/uploads/2017/03/GPNFebruary_TechSpeak.pdf (accessed on 1 August 2023).
- Runkle, E. Light Wavebands & Their Effects on Plants. Michigan State University, Extension Floriculture Team. 2015. Available online: https://www.canr.msu.edu/uploads/resources/pdfs/light-wavebands.pdf (accessed on 3 August 2023).
- Runkle, E.S.; Heins, R.D. Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J. Am. Soc. Hortic. Sci. 2001, 126, 275–282. [Google Scholar] [CrossRef]
- Kubota, C.; Chun, C. Transplant Production in the 21st Century; Springer Science & Business Media: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Maas, F.M.; Bakx, E.J.; Morris, D.A. Photocontrol of stem elongation and dry weight partitioning in Phaseolus vulgaris L. by the blue-light content of photosynthetic photon flux. J. Plant Physiol. 1995, 146, 665–671. [Google Scholar] [CrossRef]
- Wheeler, R.M.; Mackowiak, C.L.; Sager, J.C. Soybean stem growth under high-pressure sodium with supplemental blue lighting. Agron. J. 1991, 83, 903–906. [Google Scholar] [CrossRef]
- Appelgren, M. Effects of light quality on stem elongation of Pelargonium in vitro. Sci. Hortic. 1991, 45, 345–351. [Google Scholar] [CrossRef]
- Brown, C.S.; Schuerger, A.C.; Sager, J.C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hortic. Sci. 1995, 120, 808–813. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Photomodulation of growth. In Photomorphogenesis in Plants; Kendrick, R.E., Kronenberg, G.H.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 631–658. [Google Scholar]
- Hoenecke, M.E.; Bula, R.J.; Tibbitts, T.W. Importance of ‘blue’ photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 1992, 27, 427–430. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, S.; Chen, J.; Chen, Q.; Yao, Y. Effect of supplemental lighting with red and blue light on the characters of container-growing seedlings of muskmelon. Acta Hortic. 2012, 944, 141–146. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Asp, H.; Schüssler, H.K. Development and acclimatisation of horticultural plants subjected to narrow-band lighting. Eur. J. Hortic. Sci. 2014, 79, 45–51. [Google Scholar]
- Fukuda, N.; Ajima, C.; Yukawa, T.; Olsen, J.E. Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environ. Exp. Bot. 2016, 121, 102–111. [Google Scholar] [CrossRef]
- Heo, J.; Lee, C.; Chakrabarty, D.; Paek, K. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul. 2002, 38, 225–230. [Google Scholar] [CrossRef]
- Olschowski, S.; Geiger, E.M.; Herrmann, J.V.; Sander, G.; Gruneberg, H. Effects of red, blue, and white LED irradiation on root and shoot development of Calibrachoa cuttings in comparison to high pressure sodium lamps. Acta Hortic. 2016, 1134, 245–250. [Google Scholar] [CrossRef]
- Davis, P.A.; Beynon-Davies, R.; McPherson, G.M.; Banfield-Zanin, J.; George, D.; Ottosen, C.O. Understanding Crop and Pest Responses to LED Lighting to Maximise Horticultural Crop Quality and Reduce the Use of PGRs. 2015. Available online: https://horticulture.ahdb.org.uk/sites/default/files/research_papers/CP125_Annual_Report_2015.pdf (accessed on 3 September 2018).
- Akbarian, B.; Matloobi, M.; Mahna, N. Effects of LED light on seed emergence and seedling quality of four bedding flowers. J. Ornam. Hortic. Plants 2016, 6, 115–123. [Google Scholar]
- Fukuda, N.; Ishii, Y.; Ezura, H.; Olsen, J.E. Effects of light quality under red and blue light emitting diodes on growth and expression of FBP28 in Petunia. Acta Hortic. 2011, 907, 361–366. [Google Scholar] [CrossRef]
- Di, Q.; Li, J.; Du, Y.; Wei, M.; Shi, Q.; Li, Y.; Yang, F. Combination of red and blue lights improved the growth and development of eggplant (Solanum melongena L.) seedlings by regulating photosynthesis. J. Plant Growth Regul. 2021, 40, 1477–1492. [Google Scholar] [CrossRef]
- Hirai, T.; Amaki, W.; Watanabe, H. Action of blue or red monochromatic light on stem internodal growth depends on plant species. Acta Hortic. 2006, 711, 345–350. [Google Scholar] [CrossRef]
- Kim, E.Y.; Park, S.A.; Park, B.J.; Lee, Y.; Oh, M.M. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Hortic. Environ. Biotechnol. 2014, 55, 506–513. [Google Scholar] [CrossRef]
- Liang, Y.; Kang, C.; Kaiser, E.; Kuang, Y.; Yang, Q.; Li, T. Red/blue light ratios induce morphology and physiology alterations differently in cucumber and tomato. Sci. Hortic. 2021, 281, 109995. [Google Scholar] [CrossRef]
- Hernandez, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 121, 66–74. [Google Scholar] [CrossRef]
- Moosavi-Nezhad, M.; Salehi, R.; Aliniaeifard, S.; Tsaniklidis, G.; Woltering, E.J.; Fanourakis, D.; Żuk-Gołaszewska, K.; Kalaji, H.M. Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings. Int. J. Mol. Sci. 2021, 22, 8043. [Google Scholar] [CrossRef]
- Hata, N.; Hayashi, Y.; Ono, E.; Satake, H.; Kobayashi, A.; Muranaka, T.; Okazawa, A. Differences in plant growth and leaf sesamin content of the lignan-rich sesame variety ‘Gomazou’ under continuous light of different wavelengths. Plant Biotechnol. 2013, 30, 1–8. [Google Scholar] [CrossRef]
- Kong, Y.; Kamath, D.; Zheng, Y. Blue versus red light can promote elongation growth independent of photoperiod: A study in four Brassica microgreens species. HortScience 2019, 54, 1955–1961. [Google Scholar] [CrossRef]
- Kong, Y.; Masabni, J.; Niu, G. Effect of temperature variation and blue and red LEDs on the elongation of arugula and mustard microgreens. Horticulturae 2023, 9, 608. [Google Scholar] [CrossRef]
- Kong, Y.; Schiestel, K.; Zheng, Y. Pure blue light effects on growth and morphology are slightly changed by adding low-level UVA or far-red light: A comparison with red light in four microgreen species. Environ. Exp. Bot. 2019, 157, 58–68. [Google Scholar] [CrossRef]
- Kong, Y.; Schiestel, K.; Zheng, Y. Maximum elongation growth promoted as a shade-avoidance response by blue light is related to deactivated phytochrome: A comparison with red light in four microgreen species. Can. J. Plant Sci. 2019, 100, 314–326. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Growth and morphology responses to narrow-band blue light and its co-action with low-level UVB or green light: A comparison with red light in four microgreen species. Environ. Exp. Bot. 2020, 178, 104189. [Google Scholar] [CrossRef]
- Johnson, R.E.; Kong, Y.; Zheng, Y. Elongation growth mediated by blue light varies with light intensities and plant species: A comparison with red light in arugula and mustard seedlings. Environ. Exp. Bot. 2020, 169, 103898. [Google Scholar] [CrossRef]
- Li, Q.; Llewellyn, D.; Kong, Y.; Zheng, Y. Narrowband blue LEDs with different peak wavelengths similarly promote shade avoidance responses and have greater promotion effects than ultraviolet A and far red in two species of microgreens. Preprints 2023. [CrossRef]
- Mizuno, T.; Amaki, W.; Watanabe, H. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic. 2011, 907, 179–184. [Google Scholar] [CrossRef]
- Schwend, T.; Prucker, D.; Mempel, H. Red light promotes compact growth of sunflowers. Eur. J. Hortic. Sci. 2015, 80, 56–61. [Google Scholar] [CrossRef]
- Awasthi, K. Effect of different light on the growth and development of pea plant. Int. J. Res. Eng. Sci. 2023, 11, 94–98. [Google Scholar]
- Kong, Y.; Kamath, D.; Zheng, Y. Blue-light-promoted elongation and flowering are not artifacts from 24-h lighting: A comparison with red light in four bedding plant species. Acta Hortic. 2020, 1296, 659–666. [Google Scholar] [CrossRef]
- Kong, Y.; Schiestel, K.; Zheng, Y. Does “blue” light invariably cause plant compactness? Not really: A comparison with red light in four bedding plant species during the transplant stage. Acta Hortic. 2020, 1296, 621–628. [Google Scholar] [CrossRef]
- Kong, Y.; Schiestel, K.; Zheng, Y. Blue light associated with low phytochrome activity can promote flowering: A comparison with red light in four bedding plant species. Acta Hortic. 2020, 1296, 433–440. [Google Scholar] [CrossRef]
- Kong, Y.; Stasiak, M.; Dixon, M.A.; Zheng, Y. Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environ. Exp. Bot. 2018, 155, 345–359. [Google Scholar] [CrossRef]
- Mizuta, D.; Yoshida, H.; Olsen, J.E.; Fukuda, N.; Oba, H. Timing of blue and red light exposure and CPPU application during the raising of seedlings can control flowering timing of petunia. Acta Hortic. 2016, 1134, 171–178. [Google Scholar]
- Roh, Y.S.; Yoo, Y.K. Light quality of light emitting diodes affects growth, chlorophyll fluorescence and phytohormones of Tulip ‘Lasergame’. Hortic. Environ. Biotechnol. 2023, 64, 245–255. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Phototropin is partly involved in blue-light-mediated stem elongation, flower initiation, and leaf expansion: A comparison of phenotypic responses between wild Arabidopsis and its phototropin mutants. Environ. Exp. Bot. 2020, 171, 103967. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Phytochrome contributes to blue-light-mediated stem elongation and flower initiation in mature Arabidopsis thaliana plants. Can. J. Plant Sci. 2021, 102, 449–458. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Low-activity cryptochrome 1 plays a role in promoting stem elongation and flower initiation of mature Arabidopsis under blue light associated with low phytochrome activity. Can. J. Plant Sci. 2022, 102, 755–759. [Google Scholar] [CrossRef]
- Chen, X.; Guo, W.; Xue, X.; Wang, L.; Qiao, X. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. 2014, 172, 168–175. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Yanagi, T.; Okamoto, K.; Takita, S. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hortic. 1996, 440, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Snowden, M.C. Effects of Blue and Green Light on Plant Growth and Development at Low and High Photosynthetic Photon Flux. Master’s Thesis, Utah State University, Logan, UT, USA, 2015. [Google Scholar]
- Snowden, M.C.; Cope, K.R.; Bugbee, B. Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLoS ONE 2016, 11, e0163121. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Chang, T.T.; Guo, S.R.; Xu, Z.G.; Li, J. Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. Acta Hortic 2011, 907, 325–330. [Google Scholar] [CrossRef]
- Izzo, L.G.; Mele, B.H.; Vitale, L.; Vitale, E.; Arena, C. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environ. Exp. Bot. 2020, 179, 104195. [Google Scholar] [CrossRef]
- Nanya, K.; Ishigami, Y.; Hikosaka, S.; Goto, E. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic. 2012, 956, 261–266. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth of impatiens, petunia, salvia, and tomato seedlings under blue, green, and red light-emitting diodes. HortScience 2014, 49, 734–740. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 2015, 50, 522–529. [Google Scholar] [CrossRef]
- Hernandez, R.; Eguchi, T.; Kubota, C. Growth and morphology of vegetable seedlings under different blue and red photon flux ratios using light-emitting diodes as sole-source lighting. Acta Hortic. 2016, 1134, 195–200. [Google Scholar] [CrossRef]
- Li, Y.; Xin, G.; Shi, Q.; Yang, F.; Wei, M. Response of photomorphogenesis and photosynthetic properties of sweet pepper seedlings exposed to mixed red and blue light. Front. Plant Sci. 2023, 13, 984051. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Li, Y.; Chen, Y.; Zhou, Y.; Yu, T.; Zhou, Y.; Yang, Y. Spectral light quality regulates the morphogenesis, architecture, and flowering in pepper (Capsicum annuum L.). J. Photochem. Photobiol. B Biol. 2023, 241, 112673. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Y.; Fan, H.; Huang, P. Effects of light-emitting diode (LED) red and blue light on the growth and photosynthetic characteristics of Momordica charantia L. J. Agric. Chem. Environ. 2020, 10, 105798. [Google Scholar]
- Wojciechowska, R.; Dąbrowa, A.; Kołton, A. How monochromatic and composed light affect the kale ‘Scarlet’in its initial growth stage. Acta Sci. Pol. Hortorum Cultus 2023, 22, 93–100. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Schüssler, H.K. Recent progresses on the application of LEDs in the horticultural production. Acta Hortic. 2012, 927, 529–534. [Google Scholar] [CrossRef]
- Ouyang, F.; Mao, J.; Wang, J.; Zhang, S.; Li, Y. Transcriptome analysis reveals that red and blue light regulate growth and phytohormone metabolism in Norway spruce [Picea abies (L.) Karst.]. PLoS ONE 2015, 10, e0127896. [Google Scholar] [CrossRef]
- Ren, M.; Liu, S.; Tang, C.; Mao, G.; Gai, P.; Guo, X.; Zheng, H.; Tang, Q. Photomorphogenesis and photosynthetic traits changes in rice seedlings responding to red and blue light. Int. J. Mol. Sci. 2023, 24, 11333. [Google Scholar] [CrossRef]
- Chen, C.; Huang, M.; Lin, K.; Wong, S.; Huang, W.; Yang, C. Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Res. J. Biotechnol. 2014, 9, 15–24. [Google Scholar]
- Guo, Y.S.; Gu, A.S.; Cui, J. Effects of light quality on rice seedlings growth and physiological characteristics. J. Appl. Ecol. 2011, 22, 1485–1492. [Google Scholar]
- Rabara, R.C.; Behrman, G.; Timbol, T.; Rushton, P.J. Effect of spectral quality of monochromatic LED lights on the growth of artichoke seedlings. Front. Plant Sci. 2017, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Juwei, H.U.; Xin, D.A.I.; Guangyu, S.U.N. Morphological and physiological responses of Morus alba seedlings under different light qualities. Not. Bot. Horti Agrobot. 2016, 44, 382–392. [Google Scholar]
- Correia, C.; Magnani, F.; Pastore, C.; Cellini, A.; Donati, I.; Pennisi, G.; Paucek, I.; Orsini, F.; Vandelle, E.; Santos, C. Red and blue light differently influence Actinidia chinensis performance and its interaction with Pseudomonas syringae pv. Actinidiae. Int. J. Mol. Sci. 2022, 23, 13145. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liao, Q.; Li, Q.; Yang, Q.; Wang, F.; Li, J. Effects of LED red and blue light component on growth and photosynthetic characteristics of coriander in plant factory. Horticulturae 2022, 8, 1165. [Google Scholar] [CrossRef]
- Li, K.; Ji, L.; Xing, Y.; Zuo, Z.; Zhang, L. Data-independent acquisition proteomics reveals the effects of red and blue light on the growth and development of Moso bamboo (Phyllostachys edulis) seedlings. Int. J. Mol. Sci. 2023, 24, 5103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Niu, Y.; Hossain, Z.; Zhao, B.; Bai, X.; Mao, T. New insights into light spectral quality inhibits the plasticity elongation of maize mesocotyl and coleoptile during seed germination. Front. Plant Sci. 2023, 14, 1152399. [Google Scholar] [CrossRef]
- Kochetova, G.V.; Avercheva, O.V.; Bassarskaya, E.M.; Kushunina, M.A.; Zhigalova, T.V. Effects of red and blue LED light on the growth and photosynthesis of barley (Hordeum vulgare L.) seedlings. J. Plant Growth Regul. 2023, 42, 1804–1820. [Google Scholar] [CrossRef]
- Morello, V.; Brousseau, V.D.; Wu, N.; Wu, B.S.; MacPherson, S.; Lefsrud, M. Light quality impacts vertical growth rate, phytochemical yield and cannabinoid production efficiency in Cannabis sativa. Plants 2022, 11, 2982. [Google Scholar] [CrossRef]
- Spaninks, K.; Lamers, G.; van Lieshout, J.; Offringa, R. Light quality regulates apical and primary radial growth of Arabidopsis thaliana and Solanum lycopersicum. Sci. Hortic. 2023, 317, 112082. [Google Scholar] [CrossRef]
- Kook, H.S.; Park, S.H.; Jang, Y.J.; Lee, G.W.; Kim, J.S.; Kim, H.M.; Oh, B.T.; Chae, J.C.; Lee, K.J. Blue LED (light-emitting diodes)-mediated growth promotion and control of Botrytis disease in lettuce. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2013, 63, 271–277. [Google Scholar]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red led light on brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Shi, Q.; Yang, F.; Wei, M. Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy, photosynthesis, CO2 assimilation and endogenous hormones. Sci. Hortic. 2021, 290, 110500. [Google Scholar] [CrossRef]
- Zhang, X.; Bisbis, M.; Heuvelink, E.; Jiang, W.; Marcelis, L.F. Green light reduces elongation when partially replacing sole blue light independently from cryptochrome 1a. Physiol. Plant. 2021, 173, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Nhut, D.T.; Hong, L.T.A.; Watanabe, H.; Goi, M.; Tanaka, M. Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. Acta Hortic 2002, 575, 117–124. [Google Scholar] [CrossRef]
- Xiaoying, L.; Shirong, G.; Taotao, C.; Zhigang, X.; Tezuka, T. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 2012, 11, 6169–6177. [Google Scholar] [CrossRef]
- Kim, S.J.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Tanaka, M.; Takamura, T.; Watanabe, H.; Endo, M.; Yanagi, T.; Okamoto, K. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J. Hortic. Sci. Biotechnol. 1998, 73, 39–44. [Google Scholar] [CrossRef]
- Shin, K.S.; Murthy, H.N.; Heo, J.W.; Hahn, E.J.; Paek, K.Y. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plant. 2008, 30, 339–343. [Google Scholar] [CrossRef]
- Poudel, P.R.; Kataoka, I.; Mochioka, R. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult. 2008, 92, 147–153. [Google Scholar] [CrossRef]
- Li, C.X.; Xu, Z.G.; Dong, R.Q.; Chang, S.X.; Wang, L.Z.; Khalil-Ur-Rehman, M.; Tao, J.M. An RNA-seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red LED light, and white fluorescent light. Front. Plant Sci. 2017, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Runkle, E.S. Growth responses of red-leaf lettuce to temporal spectral changes. Front. Plant Sci. 2020, 11, 571788. [Google Scholar] [CrossRef] [PubMed]
- Costa, É.L.G.; Farnese, F.d.S.; de Oliveira, T.C.; Rosa, M.; Rodrigues, A.A.; Resende, E.C.; Januario, A.H.; Silva, F.G. Combinations of blue and red LEDs increase the morphophysiological performance and furanocoumarin production of Brosimum gaudichaudii Trécul in vitro. Front. Plant Sci. 2021, 12, 680545. [Google Scholar] [CrossRef] [PubMed]
- Sabzalian, M.R.; Heydarizadeh, P.; Zahedi, M.; Boroomand, A.; Agharokh, M.; Sahba, M.R.; Schoefs, B. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agron. Sustain. Dev. 2014, 34, 879–886. [Google Scholar] [CrossRef]
- Hahn, E.J.; Kozai, T.; Paek, K.Y. Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro Growth of Rehmannia glutinosa plantlets. J. Plant Biol. 2000, 43, 247–250. [Google Scholar] [CrossRef]
- Lim, Y.J.; Kwon, S.-J.; Eom, S.H. Red and blue light-specific metabolic changes in soybean seedlings. Front. Plant Sci. 2023, 14, 1128001. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Chen, Y.C.; Wu, Q.E.; Lin, H.H. Effects of red and blue light ratio on the morphological traits and flower sex expression in Cucurbita moschata Duch. Not. Bot. Horti Agrobot. 2023, 51, 13123. [Google Scholar] [CrossRef]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ Cult. 2003, 73, 43–52. [Google Scholar] [CrossRef]
- Kigel, J.; Cosgrove, D.J. Photoinhibition of stem elongation by blue and red light. Plant Physiol. 1991, 95, 1049–1056. [Google Scholar] [CrossRef]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Trans. ASAE 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
- Stutte, G.W. Light-emitting diodes for manipulating the phytochrome apparatus. HortScience 2009, 44, 231–234. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Brown, C.S.; Stryjewski, E.C. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot. 1997, 79, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Ae, C.; Lee, Y.; Kim, H.; Song, J.Y. Shorter wavelength blue light promotes growth of green perilla (Perilla frutescens). Int. J. Agric. Biol. 2014, 16, 1177–1182. [Google Scholar]
- Li, Y.; Zheng, Y.; Zheng, D.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Effects of supplementary blue and UV-A LED lights on morphology and phytochemicals of Brassicaceae baby-leaves. Molecules 2020, 25, 5678. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Variation of phenotypic responses to lighting using a combination of red and blue light-emitting diodes versus darkness in seedlings of 18 vegetable genotypes. Can. J. Plant Sci. 2018, 99, 159–172. [Google Scholar] [CrossRef]
- Strasser, B.; Sanchez-Lamas, M.; Yanovsky, M.J.; Casal, J.J.; Cerdan, P.D. Arabidopsis thaliana life without phytochromes. Proc. Natl. Acad. Sci. USA 2010, 107, 4776–4781. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Z.; Gomez, A.; Liu, B.; Lin, C.; Oka, Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J. Plant Res. 2016, 129, 137–148. [Google Scholar] [CrossRef]
- Yu, X.; Liu, H.; Klejnot, J.; Lin, C. The cryptochrome blue light receptors. Arab. Book 2010, 8, e0135. [Google Scholar] [CrossRef]
- Johansson, H.; Jones, H.J.; Foreman, J.; Hemsted, J.R.; Stewart, K.; Grima, R.; Halliday, K.J. Arabidopsis cell expansion is controlled by a photothermal switch. Nat. Commun. 2014, 5, 4848. [Google Scholar] [CrossRef]
- Ma, D.; Li, X.; Guo, Y.; Chu, J.; Fang, S.; Yan, C.; Noel, J.P.; Liu, H. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. USA 2016, 113, 224–229. [Google Scholar] [CrossRef]
- Liu, X.; Xue, C.; Kong, L.; Li, R.; Xu, Z.; Hua, J. Interactive effects of light quality and temperature on Arabidopsis growth and immunity. Plant Cell Physiol. 2020, 61, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Innes, S.N.; Jakobsen, S.B.; Niday, A.; Ali, H.; Arve, L.E.; Torre, S. The aerial environment modulates plant responses to blue light. Acta Hortic. 2018, 1227, 525–532. [Google Scholar] [CrossRef]
- Izzo, L.G.; Mickens, M.A.; Aronne, G.; Gómez, C. Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiol. Plant. 2021, 172, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Fujita, M.; Ohta, Y.; Sase, S.; Nishimura, S.; Ezura, H. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hortic. 2008, 115, 176–182. [Google Scholar] [CrossRef]
- Yavari, N.; Gazestani, V.H.; Wu, B.-S.; MacPherson, S.; Kushalappa, A.; Lefsrud, M.G. Comparative proteomics analysis of Arabidopsis thaliana response to light-emitting diode of narrow wavelength 450 nm, 595 nm, and 650 nm. J. Proteom. 2022, 265, 104635. [Google Scholar] [CrossRef] [PubMed]
- Keuskamp, D.H.; Sasidharan, R.; Vos, I.; Peeters, A.J.; Voesenek, L.A.; Pierik, R. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J. 2011, 67, 208–217. [Google Scholar] [CrossRef]
- Keuskamp, D.H.; Keller, M.M.; Ballaré, C.L.; Pierik, R. Blue light regulated shade avoidance. Plant Signal. Behav. 2012, 7, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.; Whitelam, G.C. The shade avoidance syndrome: Multiple responses mediated by multiple phytochromes. Plant Cell Environ. 1997, 20, 840–844. [Google Scholar] [CrossRef]
- Fukuda, N.; Yoshida, T.; Olsen, J.; Senaha, C.; Jikumaru, Y.; Kamiya, Y. Short main shoot length and inhibition of floral bud development under red light can be recovered by application of gibberellin and cytokinin. Acta Hortic. 2012, 956, 215–222. [Google Scholar] [CrossRef]
- Fukuda, N. Advanced light control technologies in protected horticulture: A review of morphological and physiological responses in plants to light quality and its application. J. Dev. Sustain. Agric. 2013, 8, 32–40. [Google Scholar]
- Matsuo, S.; Nanya, K.; Imanishi, S.; Honda, I.; Goto, E. Effects of blue and red lights on gibberellin metabolism in tomato seedlings. Hortic. J. 2019, 88, 76–82. [Google Scholar] [CrossRef]
- Keuskamp, D.H.; Pollmann, S.; Voesenek, L.A.; Peeters, A.J.; Pierik, R. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl. Acad. Sci. USA 2010, 107, 22740–22744. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.M.; Jaillais, Y.; Pedmale, U.V.; Moreno, J.E.; Chory, J.; Ballaré, C.L. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 2011, 67, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, G.; Wang, H.; Deng, X.W. Phytochrome signaling mechanisms. Arab. Book/Am. Soc. Plant Biol. 2011, 9, e0148. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Cashmore, A.R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 1997, 11, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Jarillo, J.A.; Smirnova, O.; Cashmore, A.R. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1998, 1, 939–948. [Google Scholar] [CrossRef]
- Más, P.; Devlin, P.F.; Panda, S.; Kay, S.A. Functional interaction of phytochrome B and cryptochrome 2. Nature 2000, 408, 207–211. [Google Scholar] [CrossRef]
- Hughes, R.M.; Vrana, J.D.; Song, J.; Tucker, C.L. Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins. J. Biol. Chem. 2012, 287, 22165–22172. [Google Scholar] [CrossRef]
- Su, J.; Liu, B.; Liao, J.; Yang, Z.; Lin, C.; Oka, Y. Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. Agronomy 2017, 7, 25. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Wang, X.; Zuo, Z.; Oka, Y.; Lin, C. New insights into the mechanisms of phytochrome–cryptochrome coaction. New Phytol. 2018, 217, 547–551. [Google Scholar] [CrossRef]
- Tung, H.T.; Luan, V.Q.; Van Anh, L.T.; Nhut, D.T. Stem elongation for plant micropropagation. In Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region; Springer: Singapore, 2022; pp. 105–128. [Google Scholar]
- Luan, V.Q.; Huy, N.P.; Nam, N.B.; Huong, T.T.; Hien, V.T.; Hien, N.T.T.; Hai, N.T.; Thinh, D.K.; Nhut, D.T. Ex vitro and in vitro Paphiopedilum delenatii Guillaumin stem elongation under light-emitting diodes and shoot regeneration via stem node culture. Acta Physiol. Plant. 2015, 37, 136. [Google Scholar] [CrossRef]
- Chia, P.; Kubota, C. End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. HortScience 2010, 45, 1501–1506. [Google Scholar] [CrossRef]
- Yang, Z.C.; Kubota, C.; Chia, P.L.; Kacira, M. Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Sci. Hortic. 2012, 136, 81–86. [Google Scholar] [CrossRef]
- Kubota, C.; Chia, P.; Yang, Z.; Li, Q. Applications of far-red light emitting diodes in plant production under controlled environments. Acta Hortic. 2012, 952, 59–66. [Google Scholar] [CrossRef]
- Vu, N.T.; Kim, Y.S.; Kang, H.M.; Kim, I.S. Influence of short-term irradiation during pre-and post-grafting period on the graft-take ratio and quality of tomato seedlings. Hortic. Environ. Biotechnol. 2014, 55, 27–35. [Google Scholar] [CrossRef]
- Kamath, D.; Kong, Y.; Dayboll, C.; Zheng, Y. Dynamic versus concurrent lighting with red and blue light-emitting diodes as the sole light source can potentially improve campanula stock plant morphology for cutting production. HortScience 2021, 56, 1439–1445. [Google Scholar] [CrossRef]
- Randall, W.C.; Lopez, R.G. Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience 2014, 49, 589–595. [Google Scholar] [CrossRef]
- Trivellini, A.; Toscano, S.; Romano, D.; Ferrante, A. LED lighting to produce high-quality ornamental plants. Plants 2023, 12, 1667. [Google Scholar] [CrossRef]
- Kamath, D.; Kong, Y.; Dayboll, C.; Blom, T.; Zheng, Y. Growth and morphological responses of gerbera seedlings to narrow-band lights with different light spectral combinations as sole-source lighting in a controlled environment. Can. J. Plant Sci. 2021, 101, 943–953. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Sci. Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S. Light-Emitting Diodes in Horticulture. In Horticultural Reviews; Wiley-Blackwell: Hoboken, NJ, USA, 2015; Volume 43, pp. 1–88. [Google Scholar]
- Novičkovas, A.; Brazaitytė, A.; Duchovskis, P.; Jankauskienė, J.; Samuolienė, G.; Virsilė, A.; Sirtautas, R.; Bliznikas, Z.; Zukauskas, A. Solid-state lamps (LEDs) for the short-wavelength supplementary lighting in greenhouses: Experimental results with cucumber. Acta Hortic. 2010, 927, 723–730. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, Y.; Cheng, R.; Kaiser, E.; Yang, Q.; Li, T. Acclimating cucumber plants to blue supplemental light promotes growth in full sunlight. Front. Plant Sci. 2021, 12, 782465. [Google Scholar] [CrossRef] [PubMed]
- Hernández, R.; Kubota, C. Tomato seedling growth and morphological responses to supplemental LED lighting red: Blue ratios under varied daily solar light integrals. Acta Hortic. 2012, 956, 187–194. [Google Scholar] [CrossRef]
- Hernández, R.; Kubota, C. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci. Hortic. 2014, 173, 92–99. [Google Scholar] [CrossRef]
- Gómez, C.; Mitchell, C.A. Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience 2015, 50, 112–118. [Google Scholar] [CrossRef]
- Terfa, M.T.; Solhaug, K.A.; Gislerød, H.R.; Olsen, J.E.; Torre, S. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa× hybrida but does not affect time to flower opening. Physiol. Plant. 2013, 148, 146–159. [Google Scholar] [CrossRef]
- Gautam, P.; Terfa, M.T.; Olsen, J.E.; Torre, S. Red and blue light effects on morphology and flowering of Petunia× hybrida. Sci. Hortic. 2015, 184, 171–178. [Google Scholar] [CrossRef]
- Islam, M.A.; Kuwar, G.; Clarke, J.L.; Blystad, D.-R.; Gislerød, H.R.; Olsen, J.E.; Torre, S. Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Sci. Hortic. 2012, 147, 136–143. [Google Scholar] [CrossRef]
- Poel, B.R.; Runkle, E.S. Spectral effects of supplemental greenhouse radiation on growth and flowering of annual bedding plants and vegetable transplants. HortScience 2017, 52, 1221–1228. [Google Scholar] [CrossRef]
- Ouzounis, T.; Fretté, X.; Rosenqvist, E.; Ottosen, C.-O. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. J. Plant Physiol. 2014, 171, 1491–1499. [Google Scholar] [CrossRef]
- Park, Y.G.; Jeong, B.R. How supplementary or night-interrupting low-intensity blue light affects the flower induction in chrysanthemum, a qualitative short-day plant. Plants 2020, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.W.; Park, S.; Jin, J.S.; Seo, O.N.; Kim, G.S.; Kim, Y.H.; Bae, H.; Lee, G.; Kim, S.T.; Lee, W.S. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium). J. Agric. Food Chem. 2012, 60, 9793–9800. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.W.; Hogewoning, S.W.; van Ieperen, W. Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Sci. Hortic. 2014, 165, 69–74. [Google Scholar] [CrossRef]
- Singh, M.C.; van Ieperen, W.; Heuvelink, E.P. Effect of LEDs on flower bud induction in Chrysanthemum morifolium cv. Zembla. HortFlora Res. Spectr. 2013, 2, 185–188. [Google Scholar]
- SharathKumar, M.; Heuvelink, E.; Marcelis, L.F.; Van Ieperen, W. Floral induction in the short-day plant chrysanthemum under blue and red extended long-days. Front. Plant Sci. 2021, 11, 610041. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Ma, Z.; Tazawa, S.; Douzono, M.; Runkle, E.; Heins, R. Blue light inhibits stem elongation of chrysanthemum. Acta Hortic. 2006, 711, 363–368. [Google Scholar] [CrossRef]
- Ganesh, S.; Jawaharlal, M.; Rajamani, K.; Thamaraiselvi, S. Responses of mixed light-emitting diode ratios on vegetative, flower regulation, and stalk elongation of cut chrysanthemum (Dendranthema grandiflora Tzvelev). J. Appl. Nat. Sci. 2021, 13, 496–503. [Google Scholar]
- Park, Y.G.; Muneer, S.; Jeong, B.R. Morphogenesis, flowering, and gene expression of Dendranthema grandiflorum in response to shift in light quality of night interruption. Int. J. Mol. Sci. 2015, 16, 16497–16513. [Google Scholar] [CrossRef]
- Amiri, A.; Kafi, M.; Kalate-Jari, S.; Matinizadeh, M.; Karaj, I. Tulip response to different light sources. J. Anim. Plant Sci. 2018, 28, 539–545. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Jones-Baumgardt, C.; Zheng, Y. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Sci. Hortic. 2020, 259, 108857. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Early-stage dark treatment promotes hypocotyl elongation associated with varying effects on yield and quality in sunflower and arugula microgreens. Can. J. Plant Sci. 2021, 101, 954–961. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Folta, K.M. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Hortic. Res. 2014, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Kong, Y.; Zheng, Y. Applying blue light alone, or in combination with far-red light, during nighttime increases elongation without compromising yield and quality of indoor-grown microgreens. HortScience 2020, 55, 876–881. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Zheng, Y. Overnight supplemental blue, rather than far-red, light improves microgreen yield and appearance quality without compromising nutritional quality during winter greenhouse production. HortScience 2020, 1, 1468–1474. [Google Scholar] [CrossRef]
- Vänninen, I.; Pinto, D.; Nissinen, A.; Johansen, N.; Shipp, L. In the light of newgreenhouse technologies: 1.Plant-mediated effects ofartificial lighting onarthropods and tritrophic interactions. Ann. Appl. Biol. 2010, 157, 393–414. [Google Scholar] [CrossRef]
- Abidi, F.; Girault, T.; Douillet, O.; Guillemain, G.; Sintès, G.; Laffaire, M.; Ahmed, H.B.; Smiti, S.; Huché-Thélier, L.; Leduc, N. Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biol. 2013, 15, 67–74. [Google Scholar] [CrossRef] [PubMed]
Plant Name | Genotype/Variety/Cultivar/Strain | Growth Stage | Elongation Growth Biometrics | Blue/Red LED Peak Wavelength (nm) | PPFD (µmol m−2 s−1) | Photoperiod (h d−1) | Air Temperature (℃) | RH (%) | Treatment Days | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Arabidopsis (Arabidopsis thaliana) | Col-0, phot1, phot2 | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 20 | [46] |
Col-0, cry1, cry2, cry1cry2, CRY2-OX | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 18 | [48] | |
cry1, cry1cry2 | Mature plants | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 18 | [48] | |
col-0 | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 18 | [47] | |
Arugula (Brassica eruca) | ‘Rocket’ | Seedlings | Hypocotyl length | 450/660 | 50 or 100 | 24 | 23 | 50–55 | 13 | [32] |
‘Rocket’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 8 | [33] | |
‘Rocket’ | Seedlings | Hypocotyl length | 440/665 | 100 | 24 or 16 | 22 | 70 | 8 | [30] | |
‘Rocket’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 22 | 70 | 8 | [34] | |
‘Rocket’ | Seedlings | Hypocotyl length | 440/665 | 20–650 | 24 | 22 | 68 | 7 | [35] | |
‘Rocket’ | Seedlings | Plant height; hypocotyl length | 450/670 | 110 | 12 | 18 or 28 | 76–87 or 56–64 | 6 | [31] | |
‘Rocket’ | Seedlings | Hypocotyl length | (404, 440, or 455)/660 | 50 | 24 | 23 | 65 | 7 | [36] | |
Cabbage (Brassica oleracea var. Capitata) | Unknown | Seedlings | Hypocotyl length | 450/660 | 50 or 100 | 24 | 23 | 50–55 | 14 | [32] |
Unknown | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 8 | [33] | |
Unknown | Seedlings | Hypocotyl length | 440/665 | 100 | 24 or 16 | 22 | 70 | 8 | [30] | |
Unknown | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 22 | 70 | 8 | [34] | |
‘Kinshun’ | Seedlings | Stem length | 470/660 | 50 | 16 | 24 | - | 30 | [37] | |
Calibrachoa (Calibrachoa × hybrida) | ‘Minifamous Neo Royal Blue’ | Cuttings | Shoot length | 440/660 | 40 or 80 | 16 | 24 | 95 | 21 | [19] |
‘Kabloom Deep Blue’ | Mature plants | Canopy height; stem length | 450/660 | 50 or 100 | 24 | 23 | 60 | 15 | [43] | |
‘Kabloom Deep Blue’ | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 72 | [42] | |
‘Kabloom Deep Blue’ | Seedlings and mature plants | Stem length | 440/665 | 100 | 24 or 16 | 22 | 70 | 25 or 102 | [40] | |
‘Kabloom Deep Blue’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 34 | [41] | |
Cherry tomato (Solanum lycopersicum var. cerasiforme) | ‘Cuty’ | Seedlings | Plant height | 456/665 | 205 | 12 | 27/18 (day/night) | - | 27 | [25] |
Cucumber (Cucumis sativus) | ‘Cumlaude’ | Seedlings | Hypocotyl length | 455/661 | 100 | 18 | 25 | 65 | 17 | [59] |
‘Cumlaude’ | Seedlings | Plant height; hypocotyl length; epicotyl length | 455/661 | 100 | 18 | 25 | 55 | 17 | [27] | |
‘Xiamei No.2’ | Seedlings | Stem length | 454/663 | 100 | 16 | 24/22 (day/night) | 60–70 | 17 | [26] | |
Eggplant (Solanummelongena) | ‘Kokuyo’ | Seedling | Stem height | 470/660 | 20–150 | 16 | 24 | - | 25 | [24] |
‘Jingqiejingang’ | Seedlings | Plant height | 458/661 | 300 | 12 | 28/20 (day/night) | 70 | 35 | [23] | |
Geranium (Pelargonium × hortorum) | ‘Pinto Premium Salmon’ | Mature plants | Canopy height; stem length | 450/660 | 50 or 100 | 24 | 23 | 60 | 19 | [43] |
‘Pinto Premium Salmon’ | Mature plants | Canopy height | 455/660 | 100 | 24 | 23 | 65 | 79 | [42] | |
‘Pinto Premium Salmon’ | Seedlings and mature plants | Stem length | 440/665 | 100 | 24 or 16 | 22 | 70 | 18 or 101 | [40] | |
Kale (Brassica napus) | ‘Red Russian’ | Seedlings | Hypocotyl length | 450/660 | 50 or100 | 24 | 23 | 50–55 | 12 | [32] |
‘Red Russian’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 7 | [33] | |
‘Red Russian’ | Seedlings | Hypocotyl length | 440/665 | 100 | 24 or 16 | 22 | 70 | 7 | [30] | |
‘Red Russian’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 22 | 70 | 7 | [34] | |
Marigold (Tagetes erecta) | ‘Orange Boy’ | Mature plants | Plant height | 440/650 | 90 | 16 | 25 | 60 | 70 | [18] |
‘Antigua Orange’ | Mature plants | Canopy height | 450/660 | 50 or 100 | 24 | 23 | 60 | 19 | [43] | |
‘Antigua Orange’ | Mature plants | Stem length | 450/660 | 100 | 24 | 23 | 60 | 19 | [43] | |
‘Antigua Orange’ | Mature plants | Canopy height | 455/660 | 100 | 24 | 23 | 65 | 78 | [42] | |
‘Antigua Orange’ | Seedlings and mature plants | Stem length | 440/665 | 100 | 24 | 22 | 70 | 18 or 74 | [40] | |
Mustard (Brassica juncea) | ‘Ruby Streaks’ | Seedlings | Hypocotyl length | 440/665 | 100 | 24 | 22 | 70 | 7 | [30] |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | 440/665 | 250–650 | 24 | 22 | 68 | 8 | [35] | |
Pea (Pisum sativum) | - | Seedlings | Plant height | - | - | 8 | - | - | 60 | [39] |
Petunia (Petunia × hybrid) | ‘Baccarat Blue’ | Mature plants | Stem length | 470/660 | 70 or 150 | 12 | 25 | 59 | [17] | |
Dwarf varieties mix | Seedlings | Stem height | - | - | 12 | 25 | 60–70 | 79 | [21] | |
‘Duvet Red’ | Mature plants | Canopy height; stem length | 450/660 | 50 or 100 | 24 | 23 | 60 | 14 | [43] | |
‘Duvet Red’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 35 | [41] | |
‘Duvet Red’ | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 51 | [42] | |
‘Duvet Red’ | Seedlings and mature plants | Stem length | 440/665 | 100 | 24 or 16 | 22 | 70 | 25 or 102 | [40] | |
‘Baccarat blue’ and ‘Merlin blue Moon | Mature plants | Plant height | 470/660 | 100 | 14 | 25 | - | 28 | [44] | |
‘Baccarat blue’ | Mature plants | Plant height | 450/650 | 100 or 150 | 14 | 25 | - | 53 | [22] | |
Salvia (Salvia Splendens) | ‘Red Vista’ | Mature plants | Plant height | 440/650 | 90 | 16 | 25 | 60 | 70 | [18] |
Sesame (Sesamum indicum) | ‘Gomazou’ | Seedlings | Stem length | 470/660 | 80 | 24 | 28 | - | 14 | [29] |
Sunflower (Helianthus annuus) | ‘Pacino Gold’ and ‘Pacino Cola’ | Mature plants | Stem length | 450/650 | 60 | 22 | 18 | - | 56 or 86 | [38] |
‘Teddy Bear’ | Mature plants | Stem length; internode length | 460/660 | 60 | 18 | 21.5 | - | 70 | [16] | |
Tomato (Solanum lycopersicum) | cry1 | Seedlings | Stem length | 447/667 | 150 | 18 | 22/18 (day/night) | 70 | 21 | [81] |
Tulip (Tulipa × gesneriana) | ‘lasergame’ | Mature plants | Cut flower length; internode length | 447/659 | 200 | 12 | 20/10 (day/night) | <60 | - | [45] |
Watermelon/rootstock (Citrullus lanatus/Cucurbita maxima) | ‘Crimson’/‘Marvel’ | Grafted transplants | Scion length | 460/660 | 20–50 | 16 | 25/20 (day/night) | 98–60 | 14 | [28] |
Plant Name | Genotype/Variety/Cultivar/Strain | Growth Stage | Elongation Growth Biometrics | Blue/Red LED Peak Wavelength (nm) | PPFD (µmol m−2 s−1) | Photoperiod (h d−1) | Air Temperature (℃) | RH (%) | Treatment Days | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Arabidopsis (Arabidopsis thaliana) | col-0, cry2, CRY2-OX | Mature plants | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 18 | [48] |
CRY1-OX | Mature plants | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 18 | [48] | |
col-0, ler | Seedlings | Hypocotyl length; plant height | - | 120 | 16 | 21 | 70 | 7 or 30 | [77] | |
col-0 | Mature plants | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 18 | [47] | |
phyAphyBphyCphyDphyE | Mature plants | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 18 | [47] | |
Artichokes (Cynara cardunculus var. scolymus) | ‘Green Globe’, ‘Cardoon’, and ‘Violetto’ | Seedlings | Plant height | 448/666 | 41 (B)/ 237 (R) | 16 | 22 | - | 30 | [69] |
Bamboo (Phyllostachys edulis) | ‘Moso Bamboo’ | Seedlings | Stem length; internode length | 450/650 | 30 | - | 25 | 70 | 14 | [73] |
Banana (Musa spp.) | - | in vitro plantlets | Plant height | - | 45 | 16 | 25 | - | 30 | [82] |
Barley (Hordeum vulgare) | ‘Luch’ | Seedlings | Shoot length | 451/655 | 70 | 16 | 22–23 | - | 9 | [75] |
Bitter Gourd (Momordica charantia) | ‘QX001’ | Seedlings | Plant height | 465/650 | 50 | 12 | 25 | 60–80 | - | [62] |
Cannabis (Cannabis sativa) | ‘Babbas Erkle Cookies’ | Mature plants | Plant height | 430/630 | 250–270/400 (vegetative/flowering stage) | 18/12 (vegetative/flowering stage) | 28/(19–27) (day/night) | (40–55)/(50–65) (day/night) | 70 | [76] |
Cherry tomato (Solanum lycopersicum var. cerasiforme) | - | Seedlings | Plant height | 450/650 | 320 | 12 | 28/18 (day/night) | 60–80 | 30 | [54] |
- | Seedlings | Plant height | - | 320 | 12 | 28/18 (day/night) | 60–80 | 30 | [83] | |
Chrysanthemum (Dendranthema grandiflorum) | ‘Cheonsu’ | in vitro plantlets | Stem length | 440/650 | 50 | 16 | 25 | 70 | 35 | [84] |
‘Token’ | Mature plants | Shoot length | 469/620 | 25 | - | 19 | - | 119 | [64] | |
Coriander (Coriandrum sativum) | ‘Sumai’ | Seedlings | Plant height | 450/660 | 200 | 16 | 24 | 48 | 20 | [72] |
Cucumber (Cucumis sativus) | ‘Sweet Slice’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 16 | [52,53] |
Cymbidium orchid (Cymbidium madidum) | ‘Golden Bird’ | in vitro plantlets | Leaf length | 450/660 | 40 | 16 | 25 | - | 90 | [85] |
Doritaenopsis orchid (Orchidaceae) | - | in vitro plantlets | Leaf length | 450/660 | 70 | 16 | 25 | 70 | 35 | [86] |
Grape (Vitis) | ‘Hybrid Franc’, ‘Ryuukyuuganebu’, ‘Kadainou R-1’ | in vitro plantlets | Plant height; internode length | 480/660 | 50 | 16 | 25 | 30 | [87] | |
‘Manicurefinger’ | in vitro plantlets | Stem length | 440/630 | 50 | 12 | 25 | 80 | 40 | [88] | |
Impatiens (Impatiens walleriana) | ‘SuperElfin XP Red’ | Seedlings | Plant height | 446/(634 and 664) | 160 | 18 | 20 | - | 32 or 33 | [57] |
‘SuperElfin XP Red’ | Seedlings | Plant height | 446/(634 and 664) | 160 | 18 | 20 | - | 33 or 34 | [58] | |
Impatiens Balsamina (Impatiens balsamina) | - | Seedlings | Stem height; hypocotyl length | - | - | 12 | 25 | 60–70 | 79 | [21] |
Kale (Brassica napus) | ‘Scarlet’ | Seedlings | Hypocotyl length | 430/660 | 100 | 16 | 24 | - | 7 | [63] |
Kiwi (Actinidia chinensis) | ‘Hayward’ | Seedlings | Stem length | 470/665 | 200 | 16 | 21 | 80 | 21 | [71] |
Lettuce (Lactuca sativa) | ‘Okayama-saradana’ | Seedlings | Stem height | 470/660 | 20–150 | 16 | 24 | - | 25 | [24] |
‘Okayama-saradana’ | Seedlings | Stem length | 450/660 | 85 or 170 | 16 | 20–22 | - | 20 | [51] | |
‘Waldmann’s Green’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 21 | [52,53] | |
‘Green Oak Leaf’ | Mature plants | Stem length | 460/630 | 133 | 14 | 24/20 (day/night) | 60 | 50 | [49] | |
‘Rouxai’ | Seedlings | Leaf length | 449/664 | 180 | 20 | 22.5 | 44 | 11 | [89] | |
Maize (Zea mays) | ‘Zheng58’ | Seedlings | Mesocotyl length; coleoptile length | 450/660 | 22 for R; 13 for B | 12 | 22 | 70 | 5 | [74] |
Mamacadela (Brosimum gaudichaudii) | - | in vitro plantlets | Stem length | - | 100 | 16 | 25 | 40 | 50 | [90] |
Mint (Mentha) | ‘Spear mint’, ‘Pepper mint’, and ‘Horse mint’ | Mature plants | Plant height | (460–475)/(650–665) | 500 | 16 | 25 | 60 | 60 | [91] |
Mulberry (Morus alba) | ‘Longsang No. 1’ | Seedlings | Stem length | 465/660 | 100 | 14 | 28/23 (day/night) | 60–65 | 20 | [70] |
Mustard (Brassica juncea) | ‘Ruby Streaks’ | Seedlings | Hypocotyl length | 450/660 | 50 | 24 | 23 | 50–55 | 11 | [32] |
‘Ruby Streaks’ | Seedlings | Plant height | 450/670 | 110 | 12 | 18 or 28 | 76–87 or 56–64 | 8 | [31] | |
Pepper (Capsicum annuum) | ‘Hangjiao No.12’ | Seedlings | Plant height; first internode length | 460/660 | 180 | 12 | 24/18 (day/night) | 70 | 30 | [61] |
‘HA-2502’ | Seedlings | Hypocotyl length; plant height | 457/657 | 300 | 12 | 26/18 (day/night) | 70 | 15 or 30 | [60] | |
Radish (Raphanus sativus) | ‘Cherry Belle’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 21 | [52,53] |
Rehmannia (Rehmannia glutinosa) | - | in vitro plantlets | Stem length | 466/665 | 100 | 16 | 25 | 40 | 50 | [92] |
Rice (Oryza sativa) | ‘IR1552’ and ‘TS10’ | Seedlings | Plant height | 460/630 | 160 | 12 | 30/25 (day/night) | 70 | 14 | [67] |
‘XZX24’ and ‘HZY261’ | Seedlings | Plant height | 450/665 | 100 | 12 | 25/15 (day/night) | - | 28 | [66] | |
Salvia (Salvia Splendens) | ‘Vista Red’ | Seedlings | Plant height | 446/(634 and 664) | 160 | 18 | 20 | - | 34 or 37 | [58] |
‘Vista Red’ | Seedlings | Plant height | 446/(634 and 664) | 160 | 18 | 20 | - | 36 | [57] | |
Soybean (Glycine max) | ‘Hoyt’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 21 | [52,53] |
‘Pungwon’ | Seedlings | Plant height | 447/650 | 50 | 24 | 23 | - | 5 | [93] | |
Squash (Cucurbita moschata Duch.) | ‘Strong Man’ | Seedlings | Plant height | 453/660 | 150 | 12 | 25/20 (day/night) | 70 | 43 | [94] |
Strawberry (Fragaria × ananassa) | ‘Akihime’ | in vitro plantlets | Plant height | 450/660 | 45 | 16 | 25 | - | 30 | [95] |
Tomato (Solanum lycopersicum) | ‘Early Girl’ | Seedlings | Plant height | 446/ (634 and 664) | 160 | 18 | 20 | - | 31 or 33 | [58] |
‘Komeett’ | Seedlings | Hypocotyl length | 455/661 | 100 | 18 | 25 | 64.6 | 21 | [59] | |
‘Early Girl’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 21 | [52,53] | |
‘Early Girl’ | Seedlings | Plant height | 446/(634 and 664) | 160 | 18 | 20 | - | 31 or 32 | [57] | |
‘Piennolo’ | Seedlings | Plant height; internode length | 446/664 | 190 | 12 | 24/18 (day/night) | 60–80 | 16 | [55] | |
‘Moneymaker’ | Seedlings | Stem length | 454/663 | 100 | 16 | 24/22 (day/night) | 60–70 | 17 | [26] | |
‘Moneymaker’ | Seedlings | Hypocotyl length; plant height | - | 120 | 16 | 21 | 70 | 7 or 30 | [77] | |
Zinnia (Zinnia elegans) | ‘Art Deco’ | Seedlings | Hypocotyl length; stem height | - | - | 12 | 25 | 60–70 | 79 | [21] |
Plant Name | Genotype/Variety/Cultivar/Strain | Growth Stage | Elongation Growth Biometrics | Blue/Red LED Peak Wavelength (nm) | PPFD (µmol m−2 s−1) | Photoperiod (h d−1) | Air Temperature (℃) | RH (%) | Treatment Days | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Arabidopsis (Arabidopsis thaliana) | phot1phot2 | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 20 | [46] |
CRY1-OX | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 18 | [48] | |
phyAphyBphyCphyDphyE | Mature plants | Stem length | 455/660 | 100 | 24 | 23 | 65 | 18 | [47] | |
Cabbage (Brassica oleracea var. Capitata) | ‘Red Rookie’ | Seedlings | Stem length | 470/660 | 50 | 16 | 24 | - | 30 | [37] |
Geranium (Pelargonium × hortorum) | ‘Americana Light Pink Splash’ | Mature plants | Stem length; internode length | 460/660 | 60 | 18 | 20.7 | - | 49 | [16] |
‘Pinto Premium Salmon’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 22 | [41] | |
Kalanchoe (Kalanchoe blossfeldiana) | ‘Simone’ | Mature plants | Shoot length | 469/620 | 25 | - | 19 | - | 119 | [64] |
Kale (Brassica napus) | ‘Red Russian’ | Seedlings | Hypocotyl length | 447/660 | 220 | 18 | 21/17 (day/night) | 60 | - | [79] |
Lettuce (Lactuca sativa) | ‘Cheong Chi Ma’ | Seedlings | Shoot length | 460/635 | 200 | 18 | 20 | 60–65 | 28 | [78] |
‘Rouxai’ | Seedlings | Leaf length | 449/664 | 180 | 20 | 22.5 | 44 | 25 | [89] | |
Marigold (Tagetes erecta) | ‘Antigua Orange’ | Mature plants | Stem length | 450/660 | 50 | 24 | 23 | 60 | 19 | [43] |
‘Antigua Orange’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 24 | [41] | |
‘Antigua Orange’ | Seedlings | Stem length | 440/665 | 100 | 16 | 22 | 70 | 18 | [40] | |
Mustard (Brassica juncea) | ‘Ruby Streaks’ | Seedlings | Hypocotyl length | 450/660 | 100 | 24 | 23 | 50–55 | 11 | [32] |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 23 | 65 | 7 | [33] | |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | 440/665 | 100 | 16 | 22 | 70 | 7 | [30] | |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | 455/660 | 100 | 24 | 22 | 70 | 7 | [34] | |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | 440/665 | 20–120 | 24 | 22 | 68 | 8 | [35] | |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | 450/670 | 110 | 12 | 18 or 28 | 76–87 or 56–64 | 8 | [31] | |
‘Ruby Streaks’ | Seedlings | Hypocotyl length | (404,440, or 455)/660 | 50 | 24 | 23 | 65 | 8 | [36] | |
‘Red Lace’ | Seedlings | Hypocotyl length | 447/660 | 220 | 18 | 21/17 (day/night) | 60 | - | [79] | |
Pepper (Capsicum annuum) | ‘California Wonder’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 21 | [52,53] |
Petunia (Petunia × hybrid) | Dwarf varieties mix | Seedlings | Hypocotyl length | - | - | 12 | 25 | 60–70 | 79 | [21] |
Poinsettia (Euphorbia pulcherrima) | ‘Novia’ | Mature plants | Shoot length | 469/620 | 25 | - | 19 | - | 119 | [64] |
Soybean (Glycine max) | ‘Pungwon’ | Seedlings | Plant height | 447/650 | 50 | 24 | 23 | 0.5–1.5 | [93] | |
Squash (Cucurbita moschata Duch.) | ‘Strong Man’ | Seedlings | Plant height | 453/660 | 150 | 12 | 25/20 (day/night) | 70 | 21–30 | [94] |
Tomato (Solanum lycopersicum) | ‘SV0313TG’ | Seedlings | Plant height | 457/657 | 300 | 12 | 28/19 (day/night) | 70 | 30 | [80] |
‘Moneymaker’, CRY2-OX3, andCRY2-OX8 | Seedlings | Stem length | 447/667 | 150 | 18 | 22/18 (day/night) | 70 | 21 | [81] | |
Verbena (Verbena aubletia) | - | Seedlings | Stem length; hypocotyl length | - | - | 12 | 25 | 60–70 | 79 | [21] |
Wheat (Triticum aestivium) | ‘USU-Apogee’ | Seedlings | Stem length | - | 200 or 500 | 16 | 25/20 (day/night) | 40 | 21 | [52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Zheng, Y. Magic Blue Light: A Versatile Mediator of Plant Elongation. Plants 2024, 13, 115. https://doi.org/10.3390/plants13010115
Kong Y, Zheng Y. Magic Blue Light: A Versatile Mediator of Plant Elongation. Plants. 2024; 13(1):115. https://doi.org/10.3390/plants13010115
Chicago/Turabian StyleKong, Yun, and Youbin Zheng. 2024. "Magic Blue Light: A Versatile Mediator of Plant Elongation" Plants 13, no. 1: 115. https://doi.org/10.3390/plants13010115
APA StyleKong, Y., & Zheng, Y. (2024). Magic Blue Light: A Versatile Mediator of Plant Elongation. Plants, 13(1), 115. https://doi.org/10.3390/plants13010115