Irrigation and Fertilization Scheduling for Peanut Cultivation under Mulched Drip Irrigation in a Desert–Oasis Area
Abstract
:1. Introduction
2. Results
2.1. Effects of Water and Nitrogen Regulation on Water Consumption Characteristics of Peanuts under Mulched Drip Irrigation
2.2. Effects of Water and Nitrogen Regulation on Yield and Water Use of Peanuts under Mulched Drip Irrigation
2.3. Effects of Water and Nitrogen Regulation on Nitrogen Utilization of Peanuts under Mulched Drip Irrigation
2.4. Regression Analysis of Peanut Yield, Water Consumption, and Water- and Nitrogen-Use Efficiencies under Mulched Drip Irrigation
2.5. Effects of Water and Nitrogen Regulation on Peanut Quality under Mulched Drip Irrigation
2.6. Comprehensive Evaluation Model for Peanut Growth under Mulched Drip Irrigation
3. Discussion
3.1. Effects of Water and Nitrogen Regulation on Water Consumption Characteristics of Peanuts under Mulched Drip Irrigation
3.2. Effects of Water and Nitrogen Regulation on Yield and Water-Use Efficiency of Peanuts under Mulched Drip Irrigation
3.3. Effects of Water and Nitrogen Regulation on Nitrogen Utilization of Peanuts under Mulched Drip Irrigation
3.4. Regression Analysis of Peanut Yield, Water Consumption, and Water- and Nitrogen-Use Efficiencies under Mulched Drip Irrigation
3.5. Effects of Water and Nitrogen Regulation on Peanut Quality under Mulched Drip Irrigation
3.6. Comprehensive Evaluation Model for Peanut Growth under Mulched Drip Irrigation
4. Materials and Methods
4.1. Overview of the Test Area
4.2. Experimental Design
4.3. Observation Items and Methods
4.3.1. Soil Moisture Content
4.3.2. Calculation of Field Yield and Water Consumption
4.3.3. Determination of Plant Nutrient Content
4.3.4. Water-Use Efficiency
4.3.5. Nitrogen-Use Efficiency
4.3.6. Determination of Peanut Kernel Quality
4.3.7. Multiple Linear Regression (MLR)
4.3.8. Multi-Objective Decision and Evaluation Based on the EWM-TOPSIS Method
4.3.9. Meteorological Indicators
4.3.10. Statistical Analyses
5. Conclusions
- (1)
- The flowering–pegging stage and pod-setting stage are the key stages of peanut water requirement.
- (2)
- When water consumption during the whole growth period of peanut is about 402.57 mm, a high yield can be achieved.
- (3)
- The results of the multivariate linear regression analysis showed that the contribution rates of water-related factors to total water consumption, water-use efficiency, nitrogen-use efficiency, and pod yield were 98.5%, 83.7%, 45.6%, and 92.7%, respectively. The contribution rates of nitrogen-related factors were 16.9%, 34.4%, 50.5%, and 22.6%, respectively.
- (4)
- A TOPSIS multi-objective comprehensive evaluation model was established by combining 13 indicators, and the final weight of each index was substituted to calculate the closeness degree, which was the largest for the W3N2 treatment at 0.7424. Under this treatment, the comprehensive index evaluation of the peanuts was the best, followed by the W3N1 treatment, while the W1N1 treatment showed the worst at only 0.2112.
- (5)
- With the synergistic regulation of water and nitrogen, an irrigation quota of 37.5 mm, a nitrogen application rate of 110 kg·ha−1, and an irrigation period of 10~15 d constituted the best combination of water and nitrogen for peanut production under mulched drip irrigation in Xinjiang.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Xue, Z.; Shen, X.; Yi, R.; Chen, J.; Li, Q.; Hou, X.; Miao, H. Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang. Plants 2023, 12, 3368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Wu, Q.; Qiu, Y.; Chi, D.; Xia, G.; Arthur, E. Mulched drip irrigation and maize straw biochar increase peanut yield by regulating soil nitrogen, photosynthesis and root in arid regions. Agric. Water Manag. 2023, 289, 108565. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Li, Q.; Xue, Z.; Dong, J.; Yi, R. Effects of climate change on the suitable sowing dates for peanut under mulched drip irrigation in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2023, 39, 107–115. [Google Scholar]
- Wang, Y.; He, X.; Li, F.; Deng, H.; Wang, Z.; Huang, C.; Han, Y.; Ba, Y.; Lei, L.; Zhang, C. Effects of water and nitrogen coupling on the photosynthetic characteristics, yield, and quality of Isatis indigotica. Sci. Rep. 2021, 11, 17356. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Kang, Y.; Ru, Z.; Liu, M.; Yang, W.; Li, G. Effects of sprinkler irrigation on the plant nitrogen accumulation and translocation and kernel protein content of winter wheat. Chin. J. Appl. Ecol. 2013, 24, 2205–2210. [Google Scholar] [CrossRef]
- Ma, X.; Wang, D.; Yu, Z.; Wang, X.; Xu, Z. Effect of irrigation regimes on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications. Acta Ecol. Sin. 2010, 30, 1955–1965. [Google Scholar]
- Akkamis, M.; Caliskan, S. Responses of yield, quality and water use efficiency of potato grown under different drip irrigation and nitrogen levels. Sci. Rep. 2023, 13, 9911. [Google Scholar] [CrossRef]
- Han, Y.; Jia, S. An Assessment of the Water Resources Carrying Capacity in Xinjiang. Water 2022, 14, 1510. [Google Scholar] [CrossRef]
- Lv, L.; Dong, Z.; Zhang, J.; Zhang, L.; Liang, S.; Jia, X.; Yao, H. Effect of Water and Nitrogen on Yield and Nitrogen Utilization of Winter Wheat and Summer Maize. Sci. Agric. Sin. 2014, 47, 3839–3849. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Liu, H.; Yang, J.; Wang, F.; Xian, F.; Su, H. Coupling effect of water and nitrogen on mechanically harvested cotton with drip irrigation under plastic film in arid area of western Inner Mongolia, China. Chin. J. Appl. Ecol. 2016, 27, 845–854. [Google Scholar]
- Hu, J.; Xia, G.; Zhang, B.; Zhang, Y.; Chi, D. Effects of regulated deficit irrigation and nitrogen application on growth, yield and water-nitrogen use of peanut. Agric. Res. Arid. Areas 2018, 36, 187–193, 199. [Google Scholar]
- Xia, G.; Luo, X.; Nie, X.; Zheng, J.; Chi, D. Effects of water deficit in different growth stages coupling with nitrogen application rates on photosynthetic traits and quality of peanuts. Trans. Chin. Soc. Agric. Eng. 2022, 38, 67–75. [Google Scholar] [CrossRef]
- Sandhu, S.S.; Mahal, S.S.; Vashist, K.K.; Buttar, G.S.; Brar, A.S.; Singh, M. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agric. Water Manag. 2012, 104, 32–39. [Google Scholar] [CrossRef]
- Cao, R.; Jia, X.; Huang, L.; Zhu, Y.; Wu, L.; Shao, M.A. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Sun, P. Variations of deep soil moisture under different vegetation restoration types in a watershed of the Loess Plateau, China. Sci. Rep. 2023, 13, 4957. [Google Scholar] [CrossRef] [PubMed]
- Uliarte, E.M.; Schultz, H.R.; Frings, C.; Pfister, M.; Parera, C.A.; del Monte, R.F. Seasonal dynamics of CO2 balance and water consumption of C3 and C4-type cover crops compared to bare soil in a suitability study for their use in vineyards in Germany and Argentina. Agric. For. Meteorol. 2013, 181, 1–16. [Google Scholar] [CrossRef]
- Cai, H.; Shao, G.; Zhang, Z. Water demand and irrigation scheduling of drip irrigation for cotton under plastic mulch. J. Hydraul. Eng. 2002, 33, 119–123. [Google Scholar]
- Masia, S.; Trabucco, A.; Spano, D.; Snyder, R.L.; Susnik, J.; Marras, S. A modelling platform for climate change impact on local and regional crop water requirements. Agric. Water Manag. 2021, 255, 107005. [Google Scholar] [CrossRef]
- Carotti, L.; Pistillo, A.; Zauli, I.; Meneghello, D.; Martin, M.; Pennisi, G.; Gianquinto, G.; Orsini, F. Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation. Agric. Water Manag. 2023, 285, 108365. [Google Scholar] [CrossRef]
- Folberth, C.; Khabarov, N.; Balkovic, J.; Skalsky, R.; Visconti, P.; Ciais, P.; Janssens, I.A.; Penuelas, J.; Obersteiner, M. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Wang, Y.; Zhang, W.; Gao, J.; Ba, Y. Responses of Water Consumption Characteristics, Yield, and Quality of Isatis tinctoria to Mulched Drip Irrigation Under Water Deficit. J. Soil Water Conserv. 2020, 34, 318–325. [Google Scholar]
- Liu, J.; Si, Z.; Wu, L.; Li, S.; Sun, Y.; Wang, N.; Gao, Y.; Duan, A. Effects of water and nitrogen coupling on winter wheat yield and water or nitrogen use efficiency under high-low seedbed cultivation pattern. Trans. Chin. Soc. Agric. Eng. 2023, 39, 144–154. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Ba, Y.; Li, F.; Zhou, C.; Wang, Z.; Zhang, D. Effects of Drip Irrigation Deficit Adjustment Under Mulch on Water Consumption, Photosynthetic Characteristics, and Quality of Edible Sunflower in Hexi Oasis. J. Soil Water Conserv. 2020, 34, 209–216. [Google Scholar]
- Shen, X.; Zhang, J.; Sun, J.; Gao, Y.; Li, M.; Liu, H.; Yang, G. Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level. Chin. J. Appl. Ecol. 2013, 24, 3153–3161. [Google Scholar] [CrossRef]
- Li, J.; Pan, T.; Wang, L.; Du, Q.; Chang, Y.; Zhang, D.; Liu, Y. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans. Chin. Soc. Agric. Eng. 2014, 30, 82–90. [Google Scholar] [CrossRef]
- Du, Y.-D.; Zhang, Q.; Cui, B.-J.; Sun, J.; Wang, Z.; Ma, L.-H.; Niu, W.-Q. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate. Agric. Water Manag. 2020, 235, 106152. [Google Scholar] [CrossRef]
- Li, X.; Xin, M.; Shi, H.; Yan, J.; Zhao, C.; Hao, Y. Coupling Effect and System Optimization of Controlled-release Fertilizer and Water in Arid Salinized Areas. Trans. Chin. Soc. Agric. Mach. 2022, 53, 397–406. [Google Scholar]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Zhao, W.; Zheng, J.; Guo, J.; Xiang, Y.; Wu, L. Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato. Agric. Water Manag. 2022, 262, 107401. [Google Scholar] [CrossRef]
- Mahajan, G.; Singh, K.G. Response of Greenhouse tomato to irrigation and fertigation. Agric. Water Manag. 2006, 84, 202–206. [Google Scholar] [CrossRef]
- Hu, J.; Xia, G.; Zhang, Y.; Zhang, B.; Chi, D. Effect of nitrogen application on soil nitrogen absorption and transformation under supplementary irrigation of peanut. Chin. J. Eco-Agric. 2018, 26, 96–105. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z. Effect of Irrigation Rate on Absorption and Translocation of Nitrogen Under Different Nitrogen Fertilizer Rate in Wheat. Sci. Agric. Sin. 2008, 41, 3015–3024. [Google Scholar] [CrossRef]
- Jiang, L.; Cao, W.; Gan, X.; Chen, N.; Wei, S.; Lu, F.; Xu, J.; Qin, H. Nitrogen Uptake and Utilization Under Different Nitrogen Management and Influence on Grain Yield and Quality in Rice. Sci. Agric. Sin. 2004, 27, 490–496. [Google Scholar]
- Wang, S.; Xia, G.; Li, Y.; Wang, W.; Chi, D.; Chen, T. Effect of Biochar-based Fertilizer and Water Stress on Peanut Yield, Water Consumption and Nutrition Absorption. J. Soil Water Conserv. 2017, 31, 285–290, 301. [Google Scholar]
- Ye, Y.; Li, L. Effects of nitrogen fertilizer application and irrigation level on soil nitrate nitrogen accumulation and water and nitrogen use efficiency for wheat/maize intercropping. Trans. Chin. Soc. Agric. Eng. 2009, 25, 33–39. [Google Scholar]
- Shao, Y.; Zhou, Q.; Liu, F.; Lin, J.; Wang, H. Effects of nitrogen application on oat biomass, seed yield and nitrogen use efficiency. Jiangsu Agric. Sci. 2023, 51, 77–84. [Google Scholar]
- Zhang, P.; Li, L.; Fu, Q.; Zhang, Z.; Li, H.; Zhao, L.; Liu, W.; Wang, Y.; Li, M.; Yang, A. Sustainable management of water, nitrogen and biochar resources for soybean growth considering economic, environmental and resource use efficiency aspects: An integrated modeling approach. J. Clean. Prod. 2023, 428, 139236. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Toomer, O.T. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 2018, 58, 3042–3053. [Google Scholar] [CrossRef]
- Wu, Y.; Han, G.; Chen, N. Effects of Regulated Deficit Irrigation on Yield, Quality and Water Use Efficiency of Processing Tomato. J. Irrig. Drain. 2016, 35, 104–107. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, Z.; Wang, D.; Zhang, Y. Effect of Irrigation Conditions on Protein Composition Accumulation of Grain and Its Quality in Winter Wheat. Acta Agron. Sin. 2003, 29, 682–687. [Google Scholar]
- Han, Z.; Zhong, R.; He, L.; Gao, Z.; Xiong, F.; Tang, X.; Jiang, J.; Huang, Z.; Wu, H.; Luo, S.; et al. Breeding of Guihua 37, a peanut variety with high oleic acid content. J. South. Agric. 2017, 48, 1161–1166. [Google Scholar] [CrossRef]
- Shen, X.; Sun, J.; Zhang, J.; Song, N.; Liu, X.; Yang, L. Research on the calculation of average soil water content under drip irrigation conditions. J. Soil Water Conserv. 2011, 25, 241–244, 253. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
Treatment | Total Water Consumption (mm) | Source of Water Consumption | |||
---|---|---|---|---|---|
Irrigation Capacity (mm) | Proportion (%) | Soil Water Consumption (mm) | Proportion (%) | ||
W1N2 | 321.33 | 258.61 | 80.48 | 62.72 | 19.52 |
W2N2 | 360.38 | 326.67 | 90.65 | 33.71 | 9.35 |
W3N2 | 402.57 | 376.70 | 93.57 | 25.87 | 6.43 |
W1N1 | 329.81 | 260.35 | 78.94 | 69.46 | 21.06 |
W2N1 | 366.91 | 331.23 | 90.28 | 35.68 | 9.72 |
W3N1 | 407.60 | 378.73 | 92.92 | 28.87 | 7.08 |
CK | 372.51 | 313.89 | 84.26 | 58.62 | 15.74 |
Treatment | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Consumption (mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption (mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption (mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption (mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | |
W1N2 | 48.26 | 1.72 | 15.02 | 102.43 | 3.53 | 31.88 | 131.70 | 3.56 | 40.99 | 38.95 | 0.87 | 12.12 |
W2N2 | 51.66 | 1.85 | 14.33 | 114.98 | 3.96 | 31.91 | 151.61 | 4.10 | 42.07 | 42.13 | 0.94 | 11.69 |
W3N2 | 50.34 | 1.80 | 12.50 | 121.56 | 4.19 | 30.20 | 176.37 | 4.77 | 43.81 | 54.30 | 1.21 | 13.49 |
W1N1 | 47.09 | 1.68 | 14.28 | 104.86 | 3.62 | 31.79 | 137.81 | 3.72 | 41.78 | 40.05 | 0.89 | 12.14 |
W2N1 | 50.43 | 1.80 | 13.74 | 120.08 | 4.14 | 32.73 | 153.47 | 4.15 | 41.83 | 42.93 | 0.95 | 11.70 |
W3N1 | 48.44 | 1.73 | 11.88 | 126.70 | 4.37 | 31.08 | 178.16 | 4.82 | 43.71 | 54.30 | 1.21 | 13.32 |
CK | 49.52 | 1.77 | 13.29 | 122.90 | 4.24 | 32.99 | 155.60 | 4.21 | 41.77 | 44.49 | 0.99 | 11.94 |
Treatment | Pod Nitrogen Accumulation (kg·ha−1) | Plant Nitrogen Accumulation (kg·ha−1) | Nitrogen Uptake Efficiency (kg·kg−1) | Nitrogen Harvest Index | Nitrogen-Use Efficiency (kg·kg−1) | Nitrogen Partial Factor Productivity (kg·kg−1) |
---|---|---|---|---|---|---|
W1N2 | 389.78 ± 72.32 cd | 113.82 ± 23.51 c | 1.03 ± 0.21 c | 3.54 ± 0.83 b | 24.15 ± 2.49 c | 24.99 ± 2.58 d |
W2N2 | 615.15 ± 69.85 b | 241.85 ± 6.19 a | 2.20 ± 0.06 a | 2.54 ± 0.06 c | 18.70 ± 0.36 c | 41.12 ± 0.79 c |
W3N2 | 734.89 ± 63.60 a | 139.02 ± 1.47 b | 1.26 ± 0.13 b | 5.29 ± 0.06 a | 38.10 ± 2.71 b | 48.16 ± 3.43 b |
W1N1 | 201.96 ± 4.87 e | 57.02 ± 4.44 e | 0.74 ± 0.06 d | 3.56 ± 0.29 b | 39.44 ± 0.17 b | 29.02 ± 0.27 d |
W2N1 | 440.63 ± 37.01 c | 102.42 ± 8.44 cd | 1.32 ± 0.11 b | 4.32 ± 0.34 b | 36.11 ± 4.16 b | 47.72 ± 5.50 b |
W3N1 | 396.96 ± 17.76 cd | 93.83 ± 8.15 cd | 1.21 ± 0.11 bc | 4.25 ± 0.39 b | 50.07 ± 1.66 a | 60.61 ± 2.01 a |
CK | 330.81 ± 72.03 d | 84.38 ± 11.17 d | - | 3.97 ± 0.56 b | 40.28 ± 6.67 b | - |
Index | Item | Intercept | Irrigation Water | Nitrogen Fertilizer | Coefficient of Determination | F |
---|---|---|---|---|---|---|
Water consumption | Regression coefficient | 164.187 | 0.664 | −0.142 | 0.976 ** | 122.74 |
Standard error | 14.302 | 0.043 | 0.053 | - | - | |
Partial correlation coefficient | - | 0.985 | −0.169 | - | - | |
WUE | Regression coefficient | −0.397 | 0.004 | 0.002 | 0.767 * | 10.882 |
Standard error | 0.310 | 0.001 | 0.001 | - | - | |
Partial correlation coefficient | - | 0.837 | 0.344 | - | - | |
NUE | Regression coefficient | 14.533 | 0.099 | −0.137 | 0.442 | 1.582 |
Standard error | 27.171 | 0.081 | 0.101 | - | - | |
Partial correlation coefficient | - | 0.456 | −0.505 | - | - | |
Pod yield | Regression coefficient | −3436.64 | 20.96 | 6.381 | 0.895 ** | 26.575 |
Standard error | 1002.239 | 2.993 | 3.735 | - | - | |
Partial correlation coefficient | - | 0.927 | 0.226 | - | - |
Treatment | Protein (%) | Oil Content (%) |
---|---|---|
W1N2 | 27.12 ± 0.12 b | 40.18 ± 0.10 b |
W2N2 | 27.37 ± 0.33 b | 43.78 ± 1.20 a |
W3N2 | 24.88 ± 0.88 c | 45.42 ± 0.93 a |
W1N1 | 26.65 ± 0.29 b | 36.29 ± 0.71 c |
W2N1 | 28.40 ± 0.73 a | 38.30 ± 0.47 b |
W3N1 | 25.12 ± 0.20 c | 45.74 ± 2.24 a |
CK | 26.85 ± 0.58 b | 43.86 ± 0.40 a |
Index | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
Entropy | 0.8722 | 0.8809 | 0.8748 | 0.8882 | 0.8571 | 0.8164 | 0.8725 |
Weight | 0.0710 | 0.0662 | 0.0696 | 0.0622 | 0.0795 | 0.1021 | 0.0709 |
Index | x8 | x9 | x10 | x11 | x12 | x13 | |
Entropy | 0.8548 | 0.8387 | 0.8764 | 0.8548 | 0.8449 | 0.8695 | |
Weight | 0.0807 | 0.0897 | 0.0687 | 0.0808 | 0.0862 | 0.0725 |
Treatment | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 |
W1N2 | 0.0195 | 0.0243 | 0.0121 | 0.0225 | 0.0130 | 0.0060 | 0.0161 | 0.0001 | 0.0112 |
W2N2 | 0.0642 | 0.0636 | 0.0001 | 0.0001 | 0.0593 | 0.0608 | 0.0503 | 0.0581 | 0.0458 |
W3N2 | 0.0710 | 0.0662 | 0.0431 | 0.0622 | 0.0795 | 0.1021 | 0.0709 | 0.0807 | 0.0897 |
W1N1 | 0.0001 | 0.0001 | 0.0460 | 0.0229 | 0.0001 | 0.0001 | 0.0001 | 0.0104 | 0.0001 |
W2N1 | 0.0365 | 0.0308 | 0.0386 | 0.0403 | 0.0378 | 0.0407 | 0.0440 | 0.0419 | 0.0347 |
W3N1 | 0.0527 | 0.0460 | 0.0696 | 0.0387 | 0.0638 | 0.0627 | 0.0595 | 0.0656 | 0.0650 |
CK | 0.0258 | 0.0267 | 0.0479 | 0.0323 | 0.0300 | 0.0282 | 0.0271 | 0.0342 | 0.0285 |
Treatment | x10 | x11 | x12 | x13 | D+ | D− | Closeness Degree | Ranking | |
W1N2 | 0.0167 | 0.0145 | 0.0548 | 0.0298 | 0.2203 | 0.0812 | 0.2693 | 6 | |
W2N2 | 0.0375 | 0.0397 | 0.0610 | 0.0575 | 0.1313 | 0.1827 | 0.5818 | 3 | |
W3N2 | 0.0687 | 0.0808 | 0.0001 | 0.0701 | 0.0902 | 0.2600 | 0.7424 | 1 | |
W1N1 | 0.0001 | 0.0001 | 0.0434 | 0.0001 | 0.2542 | 0.0681 | 0.2112 | 7 | |
W2N1 | 0.0312 | 0.0311 | 0.0862 | 0.0154 | 0.1475 | 0.1516 | 0.5068 | 4 | |
W3N1 | 0.0417 | 0.0537 | 0.0058 | 0.0725 | 0.1095 | 0.2030 | 0.6497 | 2 | |
CK | 0.0292 | 0.0278 | 0.0483 | 0.0581 | 0.1634 | 0.1283 | 0.4397 | 5 |
Soil Layer (cm) | Available P (mg·kg−1) | Available K (mg·kg−1) | Alkaline Hydrolysis N (mg·kg−1) | Organic Matter (g·kg−1) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|
0–20 | 23.77 | 199.06 | 42.98 | 14.86 | 1.35 |
20–40 | 22.17 | 169.33 | 32.04 | 14.28 | 1.43 |
40–60 | 22.86 | 114.46 | 43.41 | 9.73 | 1.44 |
Treatment | Irrigation Quota (mm) | Irrigation Cycle (d) | N Fertilizer Application Rate (kg·ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sowing-Emergence Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | ||
W1N2 | 45 | - | 22.5 | 22.5 | 22.5 | - | 10 | 10 | 15 | 110 |
W2N2 | 45 | - | 30 | 30 | 30 | - | 10 | 10 | 15 | 110 |
W3N2 | 45 | - | 37.5 | 37.5 | 37.5 | - | 10 | 10 | 15 | 110 |
W1N1 | 45 | - | 22.5 | 22.5 | 22.5 | - | 10 | 10 | 15 | 77.5 |
W2N1 | 45 | - | 30 | 30 | 30 | - | 10 | 10 | 15 | 77.5 |
W3N1 | 45 | - | 37.5 | 37.5 | 37.5 | - | 10 | 10 | 15 | 77.5 |
CK | 45 | - | 30 | 30 | 30 | - | 10 | 10 | 15 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Shen, X.; Li, Q.; Xue, Z.; Hou, X.; Miao, H.; Ning, H. Irrigation and Fertilization Scheduling for Peanut Cultivation under Mulched Drip Irrigation in a Desert–Oasis Area. Plants 2024, 13, 144. https://doi.org/10.3390/plants13010144
Dong J, Shen X, Li Q, Xue Z, Hou X, Miao H, Ning H. Irrigation and Fertilization Scheduling for Peanut Cultivation under Mulched Drip Irrigation in a Desert–Oasis Area. Plants. 2024; 13(1):144. https://doi.org/10.3390/plants13010144
Chicago/Turabian StyleDong, Jianshu, Xiaojun Shen, Qiang Li, Zhu Xue, Xianfei Hou, Haocui Miao, and Huifeng Ning. 2024. "Irrigation and Fertilization Scheduling for Peanut Cultivation under Mulched Drip Irrigation in a Desert–Oasis Area" Plants 13, no. 1: 144. https://doi.org/10.3390/plants13010144
APA StyleDong, J., Shen, X., Li, Q., Xue, Z., Hou, X., Miao, H., & Ning, H. (2024). Irrigation and Fertilization Scheduling for Peanut Cultivation under Mulched Drip Irrigation in a Desert–Oasis Area. Plants, 13(1), 144. https://doi.org/10.3390/plants13010144