Comparative Study of Bioactive Compounds and Biological Activities of Five Rose Hip Species Grown in Sicily
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characteristics of Rose Leaves, Flowers, and Hips
2.2. Vitamin C Content
2.3. Phenolic Compound Content
2.4. Carotenoids Content
2.5. Evaluation of Biological Activity of Rosa Hip Extracts Containing Phenolic Compounds
3. Materials and Methods
3.1. Plant Material and Sampling
3.2. Morphological Characteristics
3.3. Determination of Vitamin C and Ascorbic Acid Content and Moisture Content
3.4. Determination of Phenolic Compounds Content
3.5. Determination of Carotenoid Content
3.6. Indicator Microorganism Strains and Agar Spot Test
3.7. Intestinal Caco-2 Cell Culture
3.8. Cell Monolayer Permeability Assessments
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anačkov, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative Study of Biological Activities and Phytochemical Composition of Two Rose Hips and Their Preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Bernhoft, A. Bioactive Compounds in Plants: Benefits and Risks for Man and Animals: Proceedings from a Symposium Held in Norwegian Academy of Science and Letters, Oslo, Norway, 13–14 November 2008; Novus Forlag: Oslo, Norway, 2010; ISBN 978-82-7099-583-7. [Google Scholar]
- Bhave, A.; Schulzova, V.; Chmelarova, H.; Mrnka, L.; Hajslova, J. Assessment of Rosehips Based on the Content of Their Biologically Active Compounds. J. Food Drug Anal. 2017, 25, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Murathan, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sev, E. Characterization of bioactive compounds in rosehip species from east Anatolia region of Turkey. Ital. J. Food Sci. 2016, 28, 314–325. [Google Scholar]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of Volatiles, Phenolic Compounds and Antioxidant Activities of Rose Hip (Rosa L.) Fruits in Turkey. LWT—Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical Composition of Fruits in Some Rose (Rosa Spp.) Species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Park, Y.-S.; Namiesnik, J.; Vearasilp, K.; Leontowicz, H.; Leontowicz, M.; Barasch, D.; Nemirovski, A.; Trakhtenberg, S.; Gorinstein, S. Bioactive Compounds and the Antioxidant Capacity in New Kiwi Fruit Cultivars. Food Chem. 2014, 165, 354–361. [Google Scholar] [CrossRef]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive Compounds and Antioxidant Activity of Four Rose Hip Species from Spontaneous Sicilian Flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D.; Nguyen Ba, G.; Mathé, G. Polyphenols: Do They Play a Role in the Prevention of Human Pathologies? Biomed. Pharmacother. 2002, 56, 200–207. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Studies on Chemical Constituents and Bioactivity of Rosa Micrantha: An Alternative Antioxidants Source for Food, Pharmaceutical, or Cosmetic Applications. J. Agric. Food Chem. 2010, 58, 6277–6284. [Google Scholar] [CrossRef]
- Bruneau, A.; Starr, J.R.; Joly, S. Phylogenetic Relationships in the Genus Rosa: New Evidence from Chloroplast DNA Sequences and an Appraisal of Current Knowledge. Syst. Bot. 2007, 32, 366–378. [Google Scholar] [CrossRef]
- Chrubasik, C.; Roufogalis, B.D.; Müller-Ladner, U.; Chrubasik, S. A Systematic Review on the Rosa canina Effect and Efficacy Profiles. Phytother. Res. 2008, 22, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Ghazghazi, H.; Miguel, M.G.; Hasnaoui, B.; Sebei, H.; Ksontini, M.; Figueiredo, A.C.; Barroso, J.G. Phenols, Essential Oils and Carotenoids of Rosa canina from Tunisia and Their Antioxidant Activities. Afr. J. Biotechnol. 2010, 9, 2709–2716. [Google Scholar]
- Médail, F.; Quézel, P. 1999 Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Fascella, G.; Mammano, M.M.; D’Angiolillo, F. Leaf Methanolic Extracts from Four Sicilian Rose Species: Bioactive Compounds Content and Antioxidant Activity. Acta Hortic. 2019, 1232, 81–88. [Google Scholar] [CrossRef]
- D’Angiolillo, F.; Mammano, M.M.; Fascella, G. Pigments, Polyphenols and Antioxidant Activity of Leaf Extracts from Four Wild Rose Species Grown in Sicily. Not. Bot. Horti Agrobot. 2018, 46, 402–409. [Google Scholar] [CrossRef]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Granata, G.; Napoli, E. Effect of Petal Color, Water Status, and Extraction Method on Qualitative Characteristics of Rosa rugosa Liqueur. Plants 2022, 11, 1859. [Google Scholar] [CrossRef]
- Fedi, A.; Vitale, C.; Ponschin, G.; Ayehunie, S.; Fato, M.; Scaglione, S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J. Control Release 2021, 335, 247–268. [Google Scholar] [CrossRef]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid Content and Composition in Rose Hips (Rosa Spp.) during Ripening, Determination of Suitable Maturity Marker and Implications for Health Promoting Food Products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Mrkonjić, Z.O.; Majkić, T.M.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Phytochemical Composition and in Vitro Functional Properties of Three Wild Rose Hips and Their Traditional Preserves. Food Chem. 2018, 241, 290–300. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Zieliński, J.; Mielcarek, S. Flavonoid and Organic Acid Content in Rose Hips (Rosa L., Sect. Caninae Dc. Em. Christ.). Acta Biol. Cracoviensia Ser. Bot. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Ercişli, S.; Eşitken, A. Fruit Characteristics of Native Rose Hip (Rosa Spp.) Selections from the Erzurum Province of Turkey. N. Z. J. Crop Hortic. Sci. 2004, 32, 51–53. [Google Scholar] [CrossRef]
- Roman, I.; Stănilă, A.; Stănilă, S. Bioactive Compounds and Antioxidant Activity of Rosa canina L.Biotypes from Spontaneous Flora of Transylvania. Chem. Cent. J. 2013, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Elmastaş, M.; Demir, A.; Genç, N.; Dölek, Ü.; Güneş, M. Changes in Flavonoid and Phenolic Acid Contents in Some Rosa Species during Ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafeai, A.; Malarski, A.; Böhm, V. Characterization of Carotenoids and Vitamin E in R. rugosa and R. canina: Comparative Analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Del Bo’, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andrés-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; González-Dominguez, R.; Kroon, P.; et al. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J. Agric. Food Chem. 2020, 68, 1816–1829. [Google Scholar] [CrossRef]
- Montazeri, N.; Baher, E.; Mirzajani, F.; Barami, Z.; Yousefian, S. Phytochemical Contents and Biological Activities of Rosa canina Fruit from Iran. J. Med. Plants Res. 2011, 5, 4584–4589. [Google Scholar]
- Nowak, R. Comparative study of phenolic acids in pseudofruits of some species of roses. Acta Pol. Pharm. 2006, 63, 281–288. [Google Scholar]
- Medveckienė, B.; Kulaitienė, J.; Levickienė, D.; Hallmann, E. The Effect of Ripening Stages on the Accumulation of Carotenoids, Polyphenols and Vitamin C in Rosehip Species/Cultivars. Appl. Sci. 2021, 11, 6761. [Google Scholar] [CrossRef]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa Damascena from Morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Yi, O.; Jovel, E.M.; Towers, G.H.N.; Wahbe, T.R.; Cho, D. Antioxidant and Antimicrobial Activities of Native Rosa Sp. from British Columbia, Canada. Int. J. Food Sci. Nutr. 2007, 58, 178–189. [Google Scholar] [CrossRef]
- Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and Antioxidant Activity of Extracts from Rose Fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Guantario, B.; Lombardi, G.; Ranaldi, G.; Finamore, A.; Allegra, S.; Mammano, M.M.; Fascella, G.; Raffo, A.; Roselli, M. Chemical Composition and Biological Activities of Essential Oils from Origanum Vulgare Genotypes Belonging to the Carvacrol and Thymol Chemotypes. Plants 2023, 12, 1344. [Google Scholar] [CrossRef] [PubMed]
- Shama, J.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit Polyphenols: A Review of Anti-Inflammatory Effects in Humans. Crit. Rev. Food Sci. Nutr. 2016, 56, 419–444. [Google Scholar] [CrossRef]
- Jiménez, S.; Gascón, S.; Luquin, A.; Laguna, M.; Ancin-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer. PLoS ONE 2016, 11, e0159136. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, G.; Sun, C.; Peng, F.; Yu, L.; Chen, Y.; Tan, Y.; Cao, X.; Tang, Y.; Xie, X.; et al. Chemistry, Pharmacokinetics, Pharmacological Activities, and Toxicity of Quercitrin. Phytother. Res. 2022, 36, 1545–1575. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Noreikienė, I.; Zymonė, K.; Juodytė, R.; Žvikas, V.; Janulis, V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants 2021, 10, 545. [Google Scholar] [CrossRef]
- Tarrago-Trani, M.T.; Phillips, K.M.; Cotty, M. Matrix-Specific Method Validation for Quantitative Analysis of Vitamin C in Diverse Foods. J. Food Compos. Anal. 2012, 26, 12–25. [Google Scholar] [CrossRef]
- Baiamonte, I.; Raffo, A.; Nardo, N.; Kelderer, M.; Paoletti, F. Effect of Growing Method and Cold Storage on Phenolic Compounds Composition of Eight Apple Cultivars. J. Nutr. Ecol. Food Res. 2013, 1, 288–294. [Google Scholar] [CrossRef]
- Natoli, M.; Leoni, B.D.; D’Agnano, I.; D’Onofrio, M.; Brandi, R.; Arisi, I.; Zucco, F.; Felsani, A. Cell Growing Density Affects the Structural and Functional Properties of Caco-2 Differentiated Monolayer. J. Cell. Physiol. 2011, 226, 1531–1543. [Google Scholar] [CrossRef]
- Ates, M.; Kaynak, M.S.; Sahin, S. Effect of permeability enhancers on paracellular permeability of acyclovir. J Pharm Pharmacol. 2016, 68, 781–790. [Google Scholar] [CrossRef]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of Drug Permeability and Prediction of Drug Absorption in Caco-2 Monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
R. canina | R. corymbifera | R. micrantha | R. rubiginosa | R. rugosa | |
---|---|---|---|---|---|
Leaflets/leaf (n.) | 6.6 ± 0.16 ab | 6.0 ± 0.23 b | 5.8 ± 0.17 b | 5.9 ± 0.09 b | 8.2 ± 0.18 a |
Leaflet length (cm) | 5.1 ± 0.16 a | 3.9 ± 0.12 ab | 4.4 ± 0.13 ab | 2.3 ± 0.10 b | 3.8 ± 0.12 ab |
Leaflet width (cm) | 3.0 ± 0.06 a | 2.2 ± 0.06 b | 2.7 ± 0.07 a | 1.7 ± 0.07 b | 2.7 ± 0.07 a |
Internode length (cm) | 2.6 ± 0.11 ab | 3.7 ± 0.38 a | 2.6 ± 0.12 ab | 3.0 ± 0.12 a | 1.6 ± 0.09 b |
Petal length (cm) | 2.8 ± 0.05 b | 2.9 ± 0.03 b | 2.6 ± 0.07 b | 2.9 ± 0.04 b | 4.5 ± 0.06 a |
Petal width (cm) | 2.6 ± 0.01 b | 2.3 ± 0.04 b | 2.4 ± 0.02 b | 2.6 ± 0.08 b | 4.7 ± 0.07 a |
Hypanthium width (cm) | 0.5 ± 0.04 b | 0.5 ± 0.02 b | 0.6 ± 0.03 b | 0.6 ± 0.05 b | 1.0 ± 0.09 a |
Hip length (cm) | 2.0 ± 0.11 a | 1.9 ± 0.15 a | 1.8 ± 0.17 a | 1.9 ± 0.13 a | 2.1 ± 0.62 a |
Hip width (cm) | 1.2 ± 0.33 b | 1.5 ± 0.26 a | 1.4 ± 0.22 ab | 1.6 ± 0.25 a | 1.8 ± 0.43 a |
Hip weight (g) | 1.5 ± 0.03 b | 2.1 ± 0.07 b | 1.8 ± 0.05 b | 1.7 ± 0.08 b | 3.0 ± 0.33 a |
Seeds/hip (n.) | 21.6 ± 0.90 b | 20.4 ± 0.66 b | 13.2 ± 0.83 c | 18.4 ± 0.78 b | 42.5 ± 0.19 a |
Rose Species | Catechin mg/g | p-Coumaric Acid mg/g | Rutin mg/g | Quercetin 3-Glucoside mg/g | Kaempferol 3-Rutinoside mg/g | Quercitrin mg/g | Quercetin mg/g |
---|---|---|---|---|---|---|---|
R. canina | 0.181 ± 0.008 b | _ b | 0.067 ± 0.004 b | 0.044 ±0.003 a | 0.019 ±0.001 bc | 0.003 ±0.000 b | tr a |
R. corymbifera | 0.419 ± 0.016 a | trb | 0.074 ±0.017 b | 0.010 ± 0.007 c | 0.033 ± 0.009 ab | 0.040 ±0.012 a | 0.002 ± 0.001 a |
R. micrantha | 0.006 ± 0.000 c | 0.002 ±0.000 a | 0.025 ± 0.001 c | 0.017 ± 0.001 bc | 0.008 ± 0.001 c | 0.005 ± 0.000 b | 0.002 ± 0.000 a |
R. rubiginosa | _ c | _ b | 0.093 ± 0.007 ab | 0.027 ± 0.004 b | 0.027 ± 0.010 b | 0.021 ± 0.013 ab | 0.001 ± 0.000 a |
R. rugosa | tr c | _ b | 0.125 ± 0.024 a | 0.027 ± 0.008 b | 0.044 ± 0.001 a | 0.015 ± 0.001 b | 0.001 ± 0.000 a |
Pr > F | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | 0.092 |
Significant | Yes | Yes | Yes | Yes | Yes | Yes | No |
Rose Species | Lutein µg/g | Zeaxanthin µg/g | β-Carotene µg/g | Lycopene µg/g |
---|---|---|---|---|
R. canina | 5.32 ± 0.33 b | 1.42 ± 0.05 d | 15.45 ± 0.73 b | 19.44 ± 0.17 b |
R. corymbifera | 5.63 ± 0.83 b | 3.16 ± 0.77 bc | 68.29 ± 10.28 a | 32.88 ± 9.33 ab |
R. micrantha | 5.94 ± 0.08 b | 4.35 ± 0.18 b | 51.99 ± 2.34 a | 43.96 ± 4.58 ab |
R. rubiginosa | 4.71 ± 0.01 b | 2.47 ± 0.01 cd | 26.99 ± 0.61 b | 80.96 ± 28.25 a |
R. rugosa | 10.79 ± 0.28 a | 11.62 ± 0.28 a | 59.09 ± 1.13 a | 53.63 ± 4.67 ab |
Pr > F | <0.0001 | <0.0001 | <0.0001 | 0.04 |
Significant | Yes | Yes | Yes | Yes |
Sample | Concentration (mg/mL) | Papp × 10−6 (cm s−1) |
---|---|---|
C | 0.21 ± 0.12 | |
R. canina | 10 | 0.24 ± 0.03 |
20 | 0.16 ± 0.01 | |
25 | 0.17 ± 0.01 | |
R. corymbifera | 10 | 0.13 ± 0.01 |
20 | 0.12 ± 0.04 | |
25 | 1.61±0.03 | |
R. micrantha | 10 | nd |
20 | nd | |
25 | nd | |
R. rubiginosa | 10 | 0.18 ± 0.03 |
20 | 0.19 ± 0.03 | |
25 | 0.25 ± 0.02 | |
R. rugosa | 10 | nd |
20 | nd | |
25 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guantario, B.; Nardo, N.; Fascella, G.; Ranaldi, G.; Zinno, P.; Finamore, A.; Pastore, G.; Mammano, M.M.; Baiamonte, I.; Roselli, M. Comparative Study of Bioactive Compounds and Biological Activities of Five Rose Hip Species Grown in Sicily. Plants 2024, 13, 53. https://doi.org/10.3390/plants13010053
Guantario B, Nardo N, Fascella G, Ranaldi G, Zinno P, Finamore A, Pastore G, Mammano MM, Baiamonte I, Roselli M. Comparative Study of Bioactive Compounds and Biological Activities of Five Rose Hip Species Grown in Sicily. Plants. 2024; 13(1):53. https://doi.org/10.3390/plants13010053
Chicago/Turabian StyleGuantario, Barbara, Nicoletta Nardo, Giancarlo Fascella, Giulia Ranaldi, Paola Zinno, Alberto Finamore, Gianni Pastore, Michele Massimo Mammano, Irene Baiamonte, and Marianna Roselli. 2024. "Comparative Study of Bioactive Compounds and Biological Activities of Five Rose Hip Species Grown in Sicily" Plants 13, no. 1: 53. https://doi.org/10.3390/plants13010053
APA StyleGuantario, B., Nardo, N., Fascella, G., Ranaldi, G., Zinno, P., Finamore, A., Pastore, G., Mammano, M. M., Baiamonte, I., & Roselli, M. (2024). Comparative Study of Bioactive Compounds and Biological Activities of Five Rose Hip Species Grown in Sicily. Plants, 13(1), 53. https://doi.org/10.3390/plants13010053