Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant
Abstract
:1. Introduction
2. Results
2.1. Effect of MGS-1 Exposure on Growth and Photosynthetic Pigments
2.2. Effect of MGS-1 Exposure on Antioxidant System of Sweet Potato
2.3. Nutritional Parameters
2.4. Amino Acid Profiling
2.5. Elemental and Total C:N Analysis
3. Discussion
4. Materials and Methods
4.1. Mars Global Simulant (MGS-1)
4.2. Experimental Design
4.3. Estimation of Total Chlorophyll
4.4. Determination of Proline Content
4.5. 3,3′-Diaminobenzidine (DAB) Staining
4.6. Sample Preparation for GC-MS and LC-MS
4.7. Amino Acid Profiling
4.8. Total C:N
4.9. Elemental Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rainwater, R.; Mukherjee, A. The legume-rhizobia symbiosis can be supported on Mars soil simulants. PLoS ONE 2021, 16, e0259957. [Google Scholar] [CrossRef] [PubMed]
- Duri, L.G.; El-Nakhel, C.; Caporale, A.G.; Ciriello, M.; Graziani, G.; Pannico, A.; Palladino, M.; Ritieni, A.; De Pascale, S.; Vingiani, S. Mars regolith simulant ameliorated by compost as in situ cultivation substrate improves lettuce growth and nutritional aspects. Plants 2020, 9, 628. [Google Scholar] [CrossRef] [PubMed]
- DeMattio, D.; McGuire, N.; Rosa Polonia, R.A.; Hufendick, B.T. Project HOME: Hydroponic Operations for Mars Exploration. Beyond Undergrad. Res. J. 2020, 4, 5. [Google Scholar]
- Carr, M.; Head, J. Martian surface/near-surface water inventory: Sources, sinks, and changes with time. Geophys. Res. Lett. 2015, 42, 726–732. [Google Scholar] [CrossRef]
- Plaut, J.J.; Picardi, G.; Safaeinili, A.; Ivanov, A.B.; Milkovich, S.M.; Cicchetti, A.; Kofman, W.; Mouginot, J.; Farrell, W.M.; Phillips, R.J. Subsurface radar sounding of the south polar layered deposits of Mars. Science 2007, 316, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Wamelink, W.W.G.; Frissel, Y.J.; Krijnen, J.H.W.; Verwoert, R.M.; Goedhart, W.P. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants. PLoS ONE 2014, 9, e103138. [Google Scholar] [CrossRef]
- Pandith, J.A.; Neekhra, S.; Ahmad, S.; Sheikh, R.A. Recent developments in space food for exploration missions: A review. Life Sci. Space Res. 2023, 36, 123–134. [Google Scholar] [CrossRef]
- Eichler, A.; Hadland, N.; Pickett, D.; Masaitis, D.; Handy, D.; Perez, A.; Batcheldor, D.; Wheeler, B.; Palmer, A. Challenging the agricultural viability of martian regolith simulants. Icarus 2021, 354, 114022. [Google Scholar] [CrossRef]
- Kasiviswanathan, P.; Swanner, E.D.; Halverson, L.J.; Vijayapalani, P. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS ONE 2022, 17, e0272209. [Google Scholar] [CrossRef]
- Wamelink, G.; Frissel, J.; Krijnen, W.; Verwoert, M. Crop growth and viability of seeds on Mars and Moon soil simulants. Terraforming Mars 2021, 13, 313–329. [Google Scholar]
- Mortley, D.G.; Aglan, H.A.; Bonsi, C.K.; Hill, W.A. Growth of Sweetpotato in Lunar and Mars Simulants. In SAE Technical Paper; Event: International Conference On Environmental Systems; SAE International in United States: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Berni, R.; Leclercq, C.C.; Roux, P.; Hausman, J.F.; Renaut, J.; Guerriero, G. A molecular study of Italian ryegrass grown on Martian regolith simulant. Sci. Total Environ. 2023, 854, 158774. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Chauhan, V.B.S.; Pati, K.; Bansode, V.; Nedunchezhiyan, M.; Verma, A.K.; Monalisa, K.; Naik, P.K.; Naik, S.K. Biology and biotechnological aspect of sweet potato (Ipomoea batatas L.): A commercially important tuber crop. Planta 2022, 256, 40. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Jakhwal, R.; Singh, B.; Tomar, H. Space farming: Need for fresh vegetable crop. Ann. Hortic. 2023, 16, 65–71. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; López-Yerena, A.; Jaime-Rodríguez, C.; González-Coria, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Romanyà, J.; Pérez, M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants 2022, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.D.; Pace, R.D.; Bromfield, E.; Jones, G.; Lu, J.Y. Sweet potato in a vegetarian menu plan for NASA’s Advanced Life Support Program. Life Support Biosph. Sci. 1998, 5, 347–351. [Google Scholar] [PubMed]
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar] [PubMed]
- Tedesco, D.; de Almeida Moreira, B.R.; Júnior, M.R.B.; Maeda, M.; da Silva, R.P. Sustainable management of sweet potatoes: A review on practices, strategies, and opportunities in nutrition-sensitive agriculture, energy security, and quality of life. Agric. Syst. 2023, 210, 103693. [Google Scholar] [CrossRef]
- Cannon, K.M.; Britt, D.T.; Smith, T.M.; Fritsche, R.F.; Batcheldor, D. Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus 2019, 317, 470–478. [Google Scholar] [CrossRef]
- Brooker, R.; Brown, L.K.; George, T.S.; Pakeman, R.J.; Palmer, S.; Ramsay, L.; Schöb, C.; Schurch, N.; Wilkinson, M.J. Active and adaptive plasticity in a changing climate. Trends Plant Sci. 2022, 27, 717–728. [Google Scholar] [CrossRef]
- Duri, L.G.; Caporale, A.G.; Rouphael, Y.; Vingiani, S.; Palladino, M.; De Pascale, S.; Adamo, P. The Potential for Lunar and Martian Regolith Simulants to Sustain Plant Growth: A Multidisciplinary Overview. Front. Astron. Space Sci. 2022, 8, 747821. [Google Scholar] [CrossRef]
- Stevens, J.C.; Manning, P.; Berg, D.V.J.L.L.; Graaf, D.C.C.M.; Wamelink, W.G.W.; Boxman, W.A.; Bleeker, A.; Vergeer, P.; Arroniz-Crespo, M.; Limpens, J.; et al. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ. Pollut. 2011, 159, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Mareri, L.; Parrotta, L.; Cai, G. Environmental stress and plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef] [PubMed]
- Therby-Vale, R.; Lacombe, B.; Rhee, S.Y.; Nussaume, L.; Rouached, H. Mineral nutrient signaling controls photosynthesis: Focus on iron deficiency-induced chlorosis. Trends Plant Sci. 2022, 27, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Glanz-Idan, N.; Wolf, S. Upregulation of photosynthesis in mineral nutrition-deficient tomato plants by reduced source-to-sink ratio. Plant Signal. Behav. 2020, 15, 1712543. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yuan, W.; Di, B.; Zhang, G.; Zhu, J.; Zhou, P.; Ding, T.; Qian, J. Relationship among Electrical Signals, Chlorophyll Fluorescence, and Root Vitality of Strawberry Seedlings under Drought Stress. Agronomy 2022, 12, 1428. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Ghalami, R.Z.; Kamran, M.; Van Breusegem, F.; Karpiński, S. To be or not to be? Are Reactive oxygen species, antioxidants, and stress signalling universal determinants of life or death? Cells 2022, 11, 4105. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mehta, S.; Yadav, S.; Nagar, G.; Ghosh, R.; Roy, A.; Chakraborty, A.; Singh, I.K. How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int. J. Mol. Sci. 2022, 23, 1995. [Google Scholar] [CrossRef] [PubMed]
- Schuerger, A.C.; Wheeler, R.M.; Levine, H.G.; Paul, A.-L.; Ferl, R.J. Vegetable Health Challenges in Extraterrestrial Production. In Handbook of Vegetable and Herb Diseases; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–49. [Google Scholar]
- Nie, M.; Ning, N.; Chen, J.; Zhang, Y.; Li, S.; Zheng, L.; Zhang, H. Melatonin enhances salt tolerance in sorghum by modulating photosynthetic performance, osmoregulation, antioxidant defense, and ion homeostasis. Open Life Sci. 2023, 18, 20220734. [Google Scholar] [CrossRef]
- Hafeez, A.; Rasheed, R.; Ashraf, M.A.; Qureshi, F.F.; Hussain, I.; Iqbal, M. Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and their Interaction to Environmental Pollution; Elsevier: Amsterdam, The Netherlands, 2023; pp. 139–159. [Google Scholar]
- Phillips, A.L. Interrogating the Multi-Stress Tolerance of Oryza Australiensis Using Novel Genomic and Phenomic Strategies. Ph.D. Thesis, University of Adelaide, School of Agriculture, Food, and Wine, Urrbrae, Australia, 2022. [Google Scholar]
- Hashem, H.A.; Khalil, R. Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals. In Reactive Oxygen Species: Prospects in Plant Metabolism; Springer: Berlin/Heidelberg, Germany, 2023; pp. 179–211. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Zentgraf, U.; Andrade-Galan, A.G.; Bieker, S. Specificity of H2O2 signaling in leaf senescence: Is the ratio of H2O2 contents in different cellular compartments sensed in Arabidopsis plants? Cell. Mol. Biol. Lett. 2022, 27, 4. [Google Scholar] [CrossRef]
- Paul, A.-L.; Elardo, M.S.; Ferl, R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun. Biol. 2022, 5, 382. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Wheeler, L.G. Ascorbic Acid in Plants: Biosynthesis and Function. Crit. Rev. Biochem. Mol. Biol. 2000, 35, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Duan, S.; Lu, B.; Yang, C.; Ding, H.; Shen, H. Spraying alginate oligosaccharide improves photosynthetic performance and sugar accumulation in citrus by regulating antioxidant system and related gene expression. Front. Plant Sci. 2023, 13, 1108848. [Google Scholar] [CrossRef] [PubMed]
- Faryal, S.; Ullah, R.; Khan, M.N.; Ali, B.; Hafeez, A.; Jaremko, M.; Qureshi, K.A. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, osmolytes biosynthesis and antioxidant biosystems. Molecules 2022, 27, 5744. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Ohri, P.; Bhardwaj, R. Decoding sugar regulation and homeostasis in plants: Cracking functional roles under stresses. J. Plant Growth Regul. 2023, 42, 4797–4817. [Google Scholar] [CrossRef]
- Farooq, M.; Jang, Y.-H.; Kim, E.-G.; Park, J.-R.; Eom, G.-H.; Zhao, D.-D.; Kim, K.-M. Evaluation of Amino Acid Profiles of Rice Genotypes under Different Salt Stress Conditions. Plants 2023, 12, 1315. [Google Scholar] [CrossRef]
- Liao, H.-S.; Chung, Y.-H.; Hsieh, M.-H. Glutamate: A multifunctional amino acid in plants. Plant Sci. 2022, 318, 111238. [Google Scholar] [CrossRef]
- Kocaman, A. Combined interactions of amino acids and organic acids in heavy metal binding in plants. Plant Signal. Behav. 2023, 18, 2064072. [Google Scholar] [CrossRef]
- Klem, K.; Oravec, M.; Holub, P.; Šimor, J.; Findurová, H.; Surá, K.; Veselá, B.; Hodaňová, P.; Jansen, M.; Urban, O. Interactive effects of nitrogen, UV and PAR on barley morphology and biochemistry are associated with the leaf C:N balance. Plant Physiol. Biochem. 2022, 172, 111–124. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, J.; Jia, X.; Tang, Z.; Shangguan, Z.; Wang, R.; Yan, W. Environmental stress-discriminatory taxa are associated with high C and N cycling functional potentials in dryland grasslands. Sci. Total Environ. 2022, 817, 152991. [Google Scholar] [CrossRef]
- Gu, X.; Leng, J.; Zhu, J.; Zhang, K.; Zhao, J.; Wu, P.; Xing, Q.; Tang, K.; Li, X.; Hu, B. Influence mechanism of C/N ratio on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 2022, 343, 126116. [Google Scholar] [CrossRef] [PubMed]
- Joos, L.; De Tender, C. Soil under stress: The importance of soil life and how it is influenced by (micro) plastic pollution. Comput. Struct. Biotechnol. J. 2022, 20, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Xu, L.; Li, W.; Yao, Q.; Yin, X.; Wang, Q.; Tan, W.; Xing, W.; Liu, D. Low nitrogen stress-induced transcriptome changes revealed the molecular response and tolerance characteristics in maintaining the C/N balance of sugar beet (Beta vulgaris L.). Front. Plant Sci. 2023, 14, 1164151. [Google Scholar] [CrossRef] [PubMed]
- Strain, H.H.; Cope, B.T.; Svec, W.A. [42] Analytical procedures for the isolation, identification, estimation, and investigation of the chlorophylls. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1971; Volume 23, pp. 452–476. [Google Scholar]
- Shabnam, N.; Tripathi, I.; Sharmila, P.; Pardha-Saradhi, P. A rapid, ideal, and eco-friendlier protocol for quantifying proline. Protoplasma 2016, 253, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Daudi, A.; O’Brien, J.A. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protocol 2012, 2, e263. [Google Scholar] [CrossRef]
- Salih, A.M.; Al-Qurainy, F.; Khan, S.; Tarroum, M.; Nadeem, M.; Shaikhaldein, H.O.; Alabdallah, N.M.; Alansi, S.; Alshameri, A. Mass propagation of Juniperus procera Hoechst. Ex Endl. From seedling and screening of bioactive compounds in shoot and callus extract. BMC Plant Biol. 2021, 21, 192. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Zhang, X.; Zhang, Y.; Jiang, X.; Ren, Y.; Gao, D.; Zhu, X.; Usadel, B.; Fernie, A.R.; Wen, W. Depicting the genetic and metabolic panorama of chemical diversity in the tea plant. Plant Biotechnol. J. 2023. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Hofkens, M.; De Zaeytijd, J.; Visser, R.; Melis, P. Towards environmentally sustainable growing media for strawberry cultivation: Effect of biochar and fertigation on circular use of nutrients. Agric. Water Manag. 2023, 284, 108361. [Google Scholar] [CrossRef]
- Mawari, G.; Kumar, N.; Sarkar, S.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Khan, N.A. Heavy Metal Accumulation in Fruits and Vegetables and Human Health Risk Assessment: Findings from Maharashtra, India. Environ. Health Insights 2022, 16, 1–10. [Google Scholar] [CrossRef]
Treatments | Storage Root Biomass (gm/Plant) | Ascorbic Acid (µg/mg DW) | Sugar Parameters (µg/mg DW) | Total C:N Ratio (%) | |||
---|---|---|---|---|---|---|---|
Fructose | Sucrose | Glucose | Vines | SR | |||
Control | 99 ± 11.16 | 0.615 ± 0.04 | 0.145 ± 0.03 | 0.014 ± 0.001 | 10.36 ± 0.72 | 21.25 ± 0.34 | 60.06 ± 0.97 |
25% of MGS-1 | 59.4 ± 11.64 ** | 0.709 ± 0.06 | 0.699 ± 0.04 *** | 0.015 ± 0.006 | 12.09 ± 1.02 | 17.85 ± 0.38 *** | 35.54 ± 0.18 *** |
50% of MGS-1 | 33.13 ± 6.66 ** | 0.838 ± 0.14 | 0.993 ± 0.03 *** | 0.046 ± 0.002 *** | 13.31 ± 0.46 ** | 17.63 ± 0.84 ** | 30.48 ± 0.04 *** |
75% of MGS-1 | 6.66 ± 2.30 ** | 0.865 ± 0.08 * | 1.154 ± 0.01 *** | 0.105 ± 0.006 *** | 13.4 ± 0.77 ** | 13.95 ± 0.13 *** | 31.69 ± 0.48 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinnannan, K.; Somagattu, P.; Yammanuru, H.; Nimmakayala, P.; Chakrabarti, M.; Reddy, U.K. Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant. Plants 2024, 13, 55. https://doi.org/10.3390/plants13010055
Chinnannan K, Somagattu P, Yammanuru H, Nimmakayala P, Chakrabarti M, Reddy UK. Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant. Plants. 2024; 13(1):55. https://doi.org/10.3390/plants13010055
Chicago/Turabian StyleChinnannan, Karthik, Prapooja Somagattu, Hyndavi Yammanuru, Padma Nimmakayala, Manohar Chakrabarti, and Umesh K. Reddy. 2024. "Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant" Plants 13, no. 1: 55. https://doi.org/10.3390/plants13010055
APA StyleChinnannan, K., Somagattu, P., Yammanuru, H., Nimmakayala, P., Chakrabarti, M., & Reddy, U. K. (2024). Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant. Plants, 13(1), 55. https://doi.org/10.3390/plants13010055