Allelopathic Effects of Corn Straw and Its Water Extracts on Four Weed Species and Foxtail Millet
Abstract
:1. Introduction
2. Results
2.1. Effects of Corn Straw Water Extracts on Four Weed Species
2.2. Effects of Corn Straw Mulching on the Four Weeds
2.3. Effects of Corn Straw Mulching on Foxtail Millet
2.3.1. Effects of Corn Straw Mulching on Plant Height, Leaf Area and SPAD of Foxtail Millet
2.3.2. Effects of Corn Straw Mulching on Photosynthesis of Foxtail Millet Leaves
2.3.3. Effects of Corn Straw Mulching on Foxtail Millet Yield
3. Discussion
3.1. Allelopathic Effects of Straw Water Extract on Weeds
3.2. Allelopathic Effects of Corn Straw Mulching on Weeds
3.3. Effect of Corn Straw Mulching on Foxtail Millet
4. Materials and Methods
4.1. Experimental Materials
4.2. Experimental Design
4.2.1. Petri Dish Experiment
4.2.2. Field Experiment
4.3. Data Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, Y.; Han, Y. Pan-genome brings opportunities to revitalize ancient crop foxtail millet. Plant Commun. 2023, 5, 100735. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, M.; Liang, Y.; Zhang, L.; Diao, X. Salt stress responses in foxtail millet: Physiological and molecular regulation. Crop J. 2023, 11, 1011–1021. [Google Scholar] [CrossRef]
- Wang, L.; Fu, H.; Zhao, J.; Wang, J.; Dong, S.; Yuan, X.; Li, X.; Chen, M. Genome-wide identification and expression profiling of Glutathione S-Transferase gene family in foxtail millet (Setaria italica L.). Plants 2023, 12, 1138. [Google Scholar] [CrossRef] [PubMed]
- Vetriventhan, M.; Upadhyaya, H.D.; Anandakumar, C.R.; Senthilvel, S.; Parzies, H.K.; Bharathi, A.; Varshney, R.K.; Gowda, C.L.L. Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection. Plant Genet. Resour. 2012, 10, 214–223. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Pundir, R.; Gowda, C.; Reddy, V.; Singh, S. Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet. Resour. 2009, 7, 177–184. [Google Scholar] [CrossRef]
- Han, F.; Sun, M.; He, W.; Guo, S.; Feng, J.; Wang, H.; Yang, Q.; Pan, H.; Lou, Y.; Zhuge, Y. Transcriptome analysis reveals molecular mechanisms under salt stress in leaves of foxtail millet (Setaria italica L.). Plants 2022, 11, 1864. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xia, X.; Zhao, Y.; Liu, M.; Xiao, N.; Guo, S.; Lu, Y.; Li, J.; Wei, Z.; Gao, F.; et al. Interpreting variety–location–fertilizer interactions to enhance foxtail millet productivity in northern China. Agronomy 2022, 12, 2216. [Google Scholar] [CrossRef]
- Kalsi, R.; Bhasin, J. Nutritional exploration of foxtail millet (Setaria italica) in addressing food security and its utilization trends in food system. eFood 2023, 4, e111. [Google Scholar] [CrossRef]
- Zhou, S.; Ye, F.; Xia, D.; Liu, Z.; Wu, Y.; Chen, F. Climate change impacts assessment and developing adaptation strategies for rainfed foxtail millet in northern Shanxi, China. Agric. Water Manag. 2023, 290, 108575. [Google Scholar] [CrossRef]
- Guo, M.; Wang, Y.; Yuan, X.; Dong, S.; Wen, Y.; Song, X.; Guo, P. Responses of the antioxidant system to fluroxypyr in foxtail millet (Setaria italica L.) at the seedling stage. J. Integr. Agric. 2017, 17, 554–565. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Dong, Q.; Qiu, T.; Shi, C.; Li, X.; Dong, S.; Zhao, J.; Guo, P.; Yuan, X. Comprehensive evaluation and main identification indexes of herbicide resistance of high-quality foxtail millet (Setaria italica L.). Agronomy 2023, 13, 3033. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, N.; Khan, I.A. Complementing cultural weed control with plant allelopathy: Implications for improved weed management in wheat crop. Acta Ecol. Sin. 2023, 43, 27–33. [Google Scholar] [CrossRef]
- Wang, C.; Qi, J.; Liu, Q.; Wang, Y.; Wang, H. Allelopathic potential of aqueous extracts from fleagrass (Adenosma buchneroides Bonati) against two crop and three weed species. Agriculture 2022, 12, 1103. [Google Scholar] [CrossRef]
- Hussain, M.I.; Danish, S.; SánchezMoreiras, A.M.; Vicente, Ó.; Jabran, K.; Chaudhry, U.K.; Branca, F.; Reigosa, M.J. Unraveling sorghum allelopathy in agriculture: Concepts and implications. Plants 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Bashar, H.M.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Rahaman, F.; Haque, M.A.; Hossain, A. Evaluation of allelopathic effects of Parthenium hysterophorus L. methanolic extracts on some selected plants and weeds. PLoS ONE 2023, 18, e0280159. [Google Scholar] [CrossRef] [PubMed]
- Okrushko, S.E. Allelopathic effect of couch grass (Elymus repens L.) on germination of common wheat seeds. Zemdirbyste 2022, 109, 323–328. [Google Scholar] [CrossRef]
- Kong, C.; Li, Z.; Li, F.; Xia, X.; Wang, P. Chemically mediated plant–plant interactions: Allelopathy and allelobiosis. Plants 2024, 13, 626. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Chen, J.; Song, Y.; Geng, Z.; Li, K.; Siddique, K. Straw mulching for enhanced water use efficiency and economic returns from soybean fields in the loess plateau China. Sci. Rep. 2022, 12, 17111. [Google Scholar] [CrossRef] [PubMed]
- Cheruiyot, W.K.; Zhu, S.; Indoshi, S.N.; Wang, W.; Ren, A.; Cheng, Z.; Zhao, Z.; Zhang, J.; Lu, J.; Zhang, X.; et al. Shallow-incorporated straw returning further improves rainfed maize productivity, profitability and soil carbon turnover on the basis of plastic film mulching. Agric. Water Manag. 2023, 289, 108535. [Google Scholar] [CrossRef]
- Sun, X.; Li, S.; Du, H. The influence of corn straw mulching on soil moisture, temperature and organic matter. J. Biobased Mater. Bioenergy 2017, 11, 662–665. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Peng, Z.; Yang, X.; Zhang, S. Late topdressing can sustain wheat grain yield under straw mulching in the loess plateau of China. Agron. J. 2022, 114, 3487–3497. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Allelopathy and allelochemicals of Solidago canadensis L. and S. altissima L. for their naturalization. Plants 2022, 11, 3235. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, Y.; Cao, C. Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environment. Chil. J. Agric. Res. 2015, 75, 481–487. [Google Scholar] [CrossRef]
- Ullah, R.; Aslam, Z.; Maitah, M.; Zaman, Q.u.; Bashir, S.; Hassan, W.; Chen, Z. Sustainable weed control and enhancing nutrient use efficiency in crops through Brassica (Brassica compestris L.) allelopathy. Sustainability 2020, 12, 5763. [Google Scholar] [CrossRef]
- Choudhary, C.S.; Behera, B.; Raza, M.B.; Mrunalini, K.; Bhoi, T.K.; Lal, M.K.; Nongmaithem, D.; Pradhan, S.; Song, B.; Das, T.K. Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere 2023, 25, 100667. [Google Scholar] [CrossRef]
- Qin, X.; Huang, T.; Lu, C.; Dang, P.; Zhang, M.; Guan, X.; Wen, P.; Wang, T.; Chen, Y.; Siddique, K.H. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agric. Water Manag. 2021, 256, 107128. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, C.; Huang, Y.; Huang, H.; Yang, B.; Zhao, Z.; Zhang, J.; Jia, Z. Effects of different straw mulch modes on soil water storage and water use efficiency of spring maize (Zea mays L.) in the Loess Plateau of China. Plant Soil Environ. 2016, 61, 253–259. [Google Scholar] [CrossRef]
- Valvi, N.A.; Tripathi, V.C.; Rane, A.; Narvankar, V.; Narkhede, S.S. Allelopathic effect of aqueous leaf extract of Tectona grandis on germination and growth of Oryza sativa. Int. J. Farm Sci. 2022, 12, 127–132. [Google Scholar] [CrossRef]
- Akhtar, K.; Ain, N.U.; Wang, W.; Ren, G.; Feng, Y.; Djalovic, I.; Prasad, P.V.V.; Yang, G.; He, B.; Wen, R. Straw mulch decreased nitrogen fertilizer requirements via regulating soil moisture and temperature to improve physiology, nitrogen, and water use efficiency of wheat. Agron. J. 2023, 115, 3106–3118. [Google Scholar] [CrossRef]
- Crawford, L.E.; Williams, M.M.; Wortman, S.E. An Early-killed rye (Secale cereale) cover crop has potential for weed management in edamame (Glycine max). Weed Sci. 2018, 66, 502–507. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Khan, A.M.; Ren, G.; Afridi, M.Z.; Feng, Y.; Yang, G. Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Zhu, J.; Liang, W.; Yang, S.; Wang, H.; Shi, C.; Wang, S.; Zhou, W.; Lu, Q.; Islam, F.B.; Xu, W.; et al. Safety of oilseeds rape straw mulch of different lengths to rice and its suppressive effects on weeds. Agronomy 2020, 10, 201. [Google Scholar] [CrossRef]
- Mehra, L.K.; Cowger, C.; Weisz, R.; Ojiambo, P.S. Quantifying the effects of wheat residue on severity of Stagonospora nodorum blotch and yield in winter wheat. Phytopathology 2015, 105, 1417–1426. [Google Scholar] [CrossRef]
- Dadkhah, A. Allelopathic potential of canola and wheat to control weeds in soybean (Glycine max). Russ. Agric. Sci. 2015, 41, 111–114. [Google Scholar] [CrossRef]
- Bertholdsson, N. Allelopathy—A tool to improve the weed competitive ability of wheat with Herbicide-resistant Black-grass (Alopecurus myosuroides Huds.). Agronomy 2012, 2, 284–294. [Google Scholar] [CrossRef]
- Alghamdi, S.; AlNehmi, A.; Ibrahim, O. Potential Allelopathic Effect of wheat straw aqueous extract on Bermudagrass noxious weed. Sustainability 2022, 14, 15989. [Google Scholar] [CrossRef]
- Đorđević, T.; Sarić-Krsmanović, M.; Gajić Umiljendić, J. Phenolic compounds and allelopathic potential of fermented and unfermented wheat and corn straw extracts. Chem. Biodivers. 2019, 16, e1800420. [Google Scholar] [CrossRef]
- Nagy, K.N.; Kardos, L.V.; Orbán, Z.; Bakacsy, L. The allelochemical potential of an invasive ornamental plant, the Indian blanket flower (Gaillardia pulchella Foug.). Plant Spec. Biol. 2023, 39, 102–108. [Google Scholar] [CrossRef]
- Chung, I.M.; Park, S.K.; Ali, M.; Prabakaran, M.; Oh, Y.T.; Kim, S.H.; Siddiqui, N.A.; Ahmad, A. Flavonoid glycosides from leaves and straw of Oryza sativa and their effects of cytotoxicity on a macrophage cell line and allelopathic on weed germination. Saudi Pharm. J. 2018, 26, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Aslam, Z.; Attia, H.; Sultan, K.; Alamer, K.H.; Mansha, M.Z.; Althobaiti, A.T.; Al Kashgry, N.A.T.; Algethami, B.; Zaman, Q.U. Sorghum allelopathy: Aternative weed management strategy and its impact on mung bean productivity and soil rhizosphere properties. Life 2022, 12, 1359. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, E.; Bodor, A.; Szierer, Á.; Kovács, E.; Perei, K.; Tölgyesi, C.; Bátori, Z.; Feigl, G. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. J. Hazard. Mater. 2022, 436, 129255. [Google Scholar] [CrossRef]
- Zou, X.; Niu, W.; Liu, J.; Li, Y.; Liang, B.; Guo, L.; Guan, Y. Effects of residual mulch film on the growth and fruit quality of tomato (Lycopersicon esculentum Mill.). Water Air Soil Poll. 2017, 228, 71. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Z.; Jiang, H.; Zhang, L. Black film mulching and plant density influencing soil water temperature conditions and maize root growth. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, C.; Yu, S.; Lai, Z.; Wang, H.; Zhang, F.; Li, Z.; Wu, P.; Fan, J. Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China. Agric. Water Manag. 2023, 289, 108558. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.S.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.; Jin, Y.; Liu, P.; Lou, S. The effects of straw mulching combined with nitrogen applications on the root distributions and nitrogen utilization efficiency of summer maize. Sci. Rep. 2020, 10, 21082. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.; Wen, T.; Guo, X.; Fan, G. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, N.; Sun, Z.; Yin, G.; Zhang, Y.; Bai, W.; Feng, L.; John, Y. Fall straw incorporation with plastic film cover increases corn yield and water use efficiency under a semi-Arid climate. Agriculture 2022, 12, 2151. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, G.; Feng, F.; Guo, Y.; Hu, F.; Chen, G.; Zhao, C.; Yu, A.; Chai, Q. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res. 2017, 204, 42–51. [Google Scholar]
- Hu, Y.; Ma, P.; Duan, C.; Wu, S.; Feng, H.; Zou, Y. Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China. Agric. Water Manag. 2020, 231, 106031. [Google Scholar] [CrossRef]
- Behzadnejad, J.; Tahmasebi-Sarvestani, Z.; Aein, A.; Mokhtassi-Bidgoli, A. Wheat straw mulching helps improve yield in sesame (Sesamum indicum L.) under drought stress. Int. J. Plant Prod. 2020, 14, 389–400. [Google Scholar] [CrossRef]
Rain Frequency | Treatment | C. album | S. viridis | E. crus-galli | A. retroflexus |
---|---|---|---|---|---|
First rain | CK | 65.33 ± 7.07 a | 26.67 ± 6.11 a | 26.67 ± 6.11 a | 12.00 ± 2.00 a |
PZ1 | 41.33 ± 8.86 b | 16.00 ± 4.00 ab | 16.00 ± 4.00 bc | 2.67 ± 0.62 bc | |
PZ2 | 37.33 ± 5.33 b | 14.67 ± 2.31 b | 21.33 ± 2.31 ab | 4.00 ± 1.93 b | |
PZ3 | / | / | / | / | |
Z1 | 41.33 ± 6.22 b | 17.33 ± 6.11 ab | 17.33 ± 6.11 b | 2.67 ± 0.62 bc | |
Z2 | 29.33 ± 2.31 c | 12.00 ± 4.58 b | 14.67 ± 3.58 bc | 1.33 ± 0.51 c | |
Z3 | 14.67 ± 6.86 d | 8.00 ± 2.93 c | 9.33 ± 6.93 d | / | |
Second rain | CK | 65.33 ± 8.33 a | 10.67 ± 1.11 b | 26.67 ± 2.31 a | 4.00 ± 2.00 a |
PZ1 | 29.33 ± 3.24 c | 6.67 ± 2.31 c | 18.67 ± 2.31 b | 2.66 ± 0.61 ab | |
PZ2 | 20.00 ± 2.00 d | 8.00 ± 2.00 bc | 16.00 ± 4.00 b | 1.33 ± 2.30 b | |
PZ3 | / | / | / | / | |
Z1 | 40.00 ± 4.42 b | 24.00 ± 4.00 a | 17.33 ± 6.11 b | 2.66 ± 0.61 ab | |
Z2 | 38.67 ± 6.07 b | 8.00 ± 2.93 bc | 16.00 ± 6.93 b | 2.66 ± 2.30 ab | |
Z3 | 30.67 ± 4.13 c | / | 8.00 ± 6.93 c | 1.33 ± 0.50 b | |
Third rain | CK | 80.00 ± 4.33 a | 14.67 ± 8.33 b | 40.00 ± 6.93 a | 4.00 ± 2.00 ab |
PZ1 | 21.33 ± 6.11 c | 9.33 ± 2.31 c | 13.33 ± 2.86 d | 2.66 ± 0.61 b | |
PZ2 | 20.00 ± 6.93 c | 5.33 ± 2.31 d | 10.67 ± 4.33 d | 2.66 ± 0.61 b | |
PZ3 | / | / | / | / | |
Z1 | 48.00 ± 6.93 b | 26.67 ± 5.73 a | 38.67 ± 2.13 a | 6.66 ± 2.11 a | |
Z2 | 46.67 ± 4.62 b | 17.33 ± 4.04 b | 30.67 ± 2.31 b | 2.66 ± 0.61 b | |
Z3 | 41.33 ± 8.33 b | 16.00 ± 2.05 b | 17.33 ± 6.11 c | 1.33 ± 0.50 c |
Rain Frequency | Treatment | Weed Number (Plant) | Plant Control Effect (%) | Fresh Weight (g) | Fresh Weight Control Effect (%) |
---|---|---|---|---|---|
First rain | CK | 130.67 a | 125.67 a | ||
PZ1 | 77.33 b | 39.49 c | 70.00 c | 44.21 b | |
PZ2 | 76.00 b | 39.29 c | 60.67 d | 51.49 b | |
PZ3 | / | / | / | / | |
Z1 | 77.33 b | 39.49 c | 99.00 b | 20.71 d | |
Z2 | 58.67 c | 53.92 b | 78.00 c | 37.99 c | |
Z3 | 32.00 d | 74.38 a | 49.33 e | 61.03 a | |
Second rain | CK | 105.33 a | 530.00 a | ||
PZ1 | 45.33 d | 56.56 a | 363.00 c | 32.38 c | |
PZ2 | 58.67 c | 44.06 b | 299.00 d | 44.4 b | |
PZ3 | / | / | / | / | |
Z1 | 82.67 b | 21.56 c | 480.67 b | 12.30 d | |
Z2 | 62.67 c | 40.50 b | 354.67 c | 33.44 c | |
Z3 | 38.67 d | 62.76 a | 211.00 e | 60.11 a | |
Third rain | CK | 134.67 a | 827.00 a | ||
PZ1 | 44.00 e | 64.46 ab | 797.33 a | 3.37 c | |
PZ2 | 36.00 f | 71.22 a | 752.67 b | 11.28 a | |
PZ3 | / | / | / | / | |
Z1 | 94.67 b | 23.44 d | 800.67 a | 3.18 c | |
Z2 | 81.33 c | 36.43 c | 759.00 b | 8.22 b | |
Z3 | 54.67 d | 60.09 b | 733.33 c | 8.87 b |
Treatments | Panicle Weight (g) | Panicle Length (cm) | Panicle Grains Weight (g) | 1000-Grain Weight (g) | Yield (kg/ha) |
---|---|---|---|---|---|
CK | 18.57 ± 1.002 c | 26.10 ± 2.61 c | 11.51 ± 0.64 c | 2.96 ± 0.01 b | 5240.88 ± 159.95 c |
PZ1 | 18.66 ± 0.50 c | 27.23 ± 0.47 bc | 11.99 ± 1.33 bc | 2.96 ± 0.04 b | 5325.65 ± 226.36 c |
PZ2 | 19.23 ± 1.36 bc | 28.07 ± 0.78 bc | 12.18 ± 0.98 bc | 2.97 ± 0.03 b | 5561.12 ± 157.80 b |
PZ3 | 20.81 ± 0.40 ab | 28.63 ± 0.55 b | 13.75 ± 0.70 bc | 2.98 ± 0.04 b | 5666.78 ± 136.96 ab |
Z1 | 18.78 ± 1.73 c | 29.23 ± 1.06 b | 12.56 ± 2.73 bc | 3.02 ± 0.01 ab | 5681.40 ± 209.57 ab |
Z2 | 22.68 ± 1.76 a | 34.03 ± 0.59 a | 15.48 ± 1.22 a | 3.07 ± 0.05 a | 5781.51 ± 333.98 a |
Z3 | 21.29 ± 0.05 a | 32.23 ± 1.36 a | 14.46 ± 1.24 ab | 3.07 ± 0.02 a | 5711.02 ± 336.76 a |
Treatment | CK | PZ1 | PZ2 | PZ3 | Z1 | Z2 | Z3 |
---|---|---|---|---|---|---|---|
Corn straw mulching amount (kg/ha) | 0 | 0 | 0 | 0 | 3000 | 6000 | 12,000 |
Black film covering area (%) | 0 | 50% | 70% | 100% | 0 | 0 | 0 |
Year | Soil Depth (cm) | pH | Available K (mg/kg) | Available P (mg/kg) | Available N (mg/kg) | Total N (g/kg) | Total P (g/kg) | Total K (g/kg) | Organic (g/kg) |
---|---|---|---|---|---|---|---|---|---|
2019 | 0~5 | 8.21 | 484.20 | 43.70 | 64.20 | 1.22 | 0.76 | 19.36 | 8.52 |
5~10 | 8.14 | 471.90 | 26.79 | 42.80 | 1.27 | 0.76 | 18.08 | 8.52 | |
10~15 | 8.17 | 319.60 | 21.28 | 49.93 | 1.11 | 0.77 | 18.53 | 7.99 | |
2020 | 0~5 | 8.11 | 377.40 | 21.06 | 48.20 | 1.11 | 0.91 | 21.91 | 8.09 |
5~10 | 8.19 | 297.80 | 18.93 | 56.55 | 1.04 | 0.81 | 23.33 | 8.52 | |
10~15 | 8.10 | 303.90 | 24.10 | 51.77 | 1.07 | 0.87 | 21.76 | 8.22 |
Rainfall Frequency | Rainfall Date | Rainfall Time | Precipitation (mm) | Measurement Date |
---|---|---|---|---|
First rain | 29 June | 8:40 a.m. to 11:30 a.m. | 18 | 4 July |
Second rain | 8 July | 6:00 a.m. to 2:30 p.m. | 52.3 | 13 July |
Third rain | 26 July | 11:30 a.m. to 5:20 p.m. | 43.9 | 31 July |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Dong, J.; Li, P.; Cao, B.; Liu, M.; Guo, Z.; Song, X.; Ma, Y.; Hu, C.; Yuan, X. Allelopathic Effects of Corn Straw and Its Water Extracts on Four Weed Species and Foxtail Millet. Plants 2024, 13, 1315. https://doi.org/10.3390/plants13101315
Dong S, Dong J, Li P, Cao B, Liu M, Guo Z, Song X, Ma Y, Hu C, Yuan X. Allelopathic Effects of Corn Straw and Its Water Extracts on Four Weed Species and Foxtail Millet. Plants. 2024; 13(10):1315. https://doi.org/10.3390/plants13101315
Chicago/Turabian StyleDong, Shuqi, Jiaxin Dong, Peiyao Li, Bo Cao, Mengyao Liu, Zhenyu Guo, Xie Song, Yongqing Ma, Chunyan Hu, and Xiangyang Yuan. 2024. "Allelopathic Effects of Corn Straw and Its Water Extracts on Four Weed Species and Foxtail Millet" Plants 13, no. 10: 1315. https://doi.org/10.3390/plants13101315
APA StyleDong, S., Dong, J., Li, P., Cao, B., Liu, M., Guo, Z., Song, X., Ma, Y., Hu, C., & Yuan, X. (2024). Allelopathic Effects of Corn Straw and Its Water Extracts on Four Weed Species and Foxtail Millet. Plants, 13(10), 1315. https://doi.org/10.3390/plants13101315