Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Test Design
2.2. Data Collection and Preprocessing
2.2.1. Acquisition of Spectral Data
2.2.2. Acquisition of Agronomic Parameters
2.2.3. Spectral Data Processing
2.3. Model Construction and Validation
- (1)
- Previous research has demonstrated better correlations between empirical vegetation indices and crop parameters; therefore, this study also selected some empirical vegetation indices.
- (2)
- The “trilateral” spectral parameters, which encompass the regions in the blue edge, yellow edge, and red edge spectra, are derived by extracting the peak value, valley value, area, or a combination of different bands from the blue edge, yellow edge, and red edge.
- (3)
- The inversion of agricultural parameters can be effectively achieved by selecting any two-band vegetation index as the input parameter for the model. In this study, three arbitrary dual-band indices were initially chosen and then subjected to a 0–2 order fractional differential operation. Within the range of its spectral measurement wavelength, the combination index of the optimal order and the best vegetation index were selected.
2.4. Model Approach
2.5. Model Evaluation Index
3. Results
3.1. LCCA, LCCW, SLW and Yield (GY)
3.2. Correlation Analysis between LCCA, LCCW and Spectral Index
3.3. Establishment of Estimation Model of LCCA and LCCW Based on Optimal Spectral Index
4. Discussion
5. Conclusions
- (1)
- Compared to “trilateral” parameters and empirical vegetation indices, any two-band vegetation indices constructed from hyperspectral reflectance after fractional order differentiation processing exhibit stronger correlations with potato LCC. As the order of differentiation increases, both the correlation between spectral indices and potato LCC and the predictive accuracy of the models initially increase but then decrease. When employing fractional order differentiations (e.g., 0.5th order and 1.5th order), the correlation between any two-band spectral indices and potato LCC exceeds that obtained when using integer-order differentiations (e.g., 1st order and 2nd order). Among them, the maximum correlation coefficients of the DI with the highest correlation after 0–2 order differentiation processing are: 0.787, 0.798, 0.792, 0.788, and 0.756, respectively.
- (2)
- In the constructed LCCA and LCCW models, the performance and fitting effects are as follows: RF > BPNN > SVM, with the input combinations ranked as follows: combination 3 > combination 4 > combination 2 > combination 1. The RF method consistently demonstrates the highest accuracy and best fitting performance in model construction. The optimal input variables and modeling method for both LCCA and LCCW models are combination 3 and RF method. Therefore, expressing LCCA is recommended for estimating crop leaf chlorophyll content in agricultural practice.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scott, G.J.; Petsakos, A.; Juarez, H. Climate Change, Food Security, and Future Scenarios for Potato Production in India to 2030. Food Secur. 2019, 11, 43–56. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, N.; Niu, X.; Jiang, W.; Wang, X. Assessment of Potato Farmland Soil Nutrient Based on MDS-SQI Model in the Loess Plateau. Sustainability 2021, 13, 3957. [Google Scholar] [CrossRef]
- Gitelson, A.; Viña, A.; Ciganda, V.; Rundquist, D.; Arkebauer, T. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. lett. 2005, 32. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Jan, I.; Ullah, H.; Fahad, S.; Saud, S.; Adnan, M.; Ali, B.; Liu, K.; Harrison, M.T.; Hassan, S.; et al. Biochemical Response of Okra (Abelmoschus esculentus L.) to Selenium (Se) under Drought Stress. Sustainability 2023, 15, 5694. [Google Scholar] [CrossRef]
- Lu, J.; Wang, D.; Liu, K.; Chu, G.; Huang, L.; Tian, X.; Zhang, Y. Inbred varieties outperformed hybrid rice varieties under dense planting with reducing nitrogen. Sci. Rep. 2020, 10, 8769. [Google Scholar] [CrossRef]
- Xu, D. Determination of Chlorophyll Content and Several Problems in Its Application. Plant Physiol. Newsl. 2009, 45, 896–898, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Zhou, J.; Shang, R.; Wang, Y.; Jing, P. Comparative study on several determination methods of chlorophyll content in plants. IOP Conf. Ser. Mater. Sci. Eng. 2020, 730, 012066. [Google Scholar] [CrossRef]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, W.; Huang, X.; Zhang, F.; Chen, J. Estimation Model of Soybean Yield Based on Ground Hyperspectral Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2024, 55, 145–153+240, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, S.; Yu, H.; Zhang, J.; Zhou, H.; Kong, L.; Huang, L.; Sui, Y. Research on Inversion Model of Soybean Leaf Chlorophyll Content Based on Optimal Spectral Index. Spectrosc. Spect. Anal. 2021, 41, 1912–1919, (In Chinese with English Abstract). [Google Scholar]
- Zhao, J.; Zhang, C.; Min, L.; Guo, Z.; Li, N. Retrieval of Farmland Surface Soil Moisture Based on Feature Optimization and Machine Learning. Remote Sens. 2022, 14, 5102. [Google Scholar] [CrossRef]
- Shi, H.; Guo, J.; An, J.; Tang, Z.; Wang, X.; Li, W.; Zhao, X.; Jin, L.; Xiang, Y.; Li, Z.; et al. Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index. Agronomy 2023, 13, 663. [Google Scholar] [CrossRef]
- Zhao, H.; Gan, S.; Yuan, X.; Hu, L.; Wang, J.; Liu, S. Application of a Fractional Order Differential to the Hyperspectral Inversion of Soil Iron Oxide. Agriculture 2022, 12, 1163. [Google Scholar] [CrossRef]
- Nehela, Y.; Mazrou, Y.S.A.; Taha, N.A.; Elzaawely, A.A.; Xuan, T.D.; Makhlouf, A.H.; El-Nagar, A. Hydroxylated Cinnamates Enhance Tomato Resilience to Alternaria alternated, the Causal Agent of Early Blight Disease, and Stimulate Growth and Yield Traits. Plants 2023, 12, 1775. [Google Scholar] [CrossRef]
- Li, S.; Peng, B.; Fang, L.; Li, Q. Hyperspectral Band Selection via Optimal Combination Strategy. Remote Sens. 2022, 14, 2858. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Scuderi, G.; Ruisi, P.; Dandekar, A.M. Advanced Methods of Plant Disease Detection. A Review. Agro. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Feng, W.; Shen, W.; He, L.; Duan, J.; Guo, B.; Li, Y.; Guo, T. Improved Remote Sensing Detection of Wheat Powdery Mildew Using Dual-Green Vegetation Indices. Precis. Agric. 2016, 17, 608–627. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Z.; Liu, Y.; Zhao, J.; Sun, Q.; Li, Y. A Spatial–Spectral Combination Method for Hyperspectral Band Selection. Remote Sens. 2022, 14, 3217. [Google Scholar] [CrossRef]
- Pang, L.; Xiao, J.; Ma, J.; Yan, L. Hyperspectral imaging technology to detect the vigor of thermal-damaged Quercus variabilis seeds. J. Forestry Res. 2021, 32, 461–469. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, X.; An, J.; Tang, Z.; Li, W.; Shi, H. Estimation of Soybean Leaf Area Index Based on Fractional Differential and Optimal Spectral Index. Trans. Chin. Soc. Agric. Mach. 2023, 54, 329–342, (In Chinese with English Abstract). [Google Scholar]
- Song, G.; Wang, Q. Coupling Effective Variable Selection with Machine Learning Techniques for Better Estimating Leaf Photosynthetic Capacity in a Tree Species (Fagus crenata Blume) from Hyperspectral Reflectance. Agr. Forest Meteorol. 2023, 338, 109528. [Google Scholar] [CrossRef]
- Gamon, J.; Penuelas, J.; Field, C. A Narrow-Waveband Spectral Index that Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M. Remote Estimation of Chlorophyll Content in Higher Plant Leaves. J. Indian Soc. Remote. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Tao, X.; Liang, S.; He, T.; Jin, H. Estimation of Fraction of Absorbed Photosynthetically Active Radiation from Multiple Satellite Data: Model Development and Validation. Remote Sens. Environ. 2016, 184, 539–557. [Google Scholar] [CrossRef]
- Zheng, J.; Li, F.; Du, X. Using Red Edge Position Shift to Monitor Grassland Grazing Intensity in Inner Mongolia. J. Indian Soc. Remote. 2018, 46, 81–88. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral Remote Sensing of Plant Pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Fan, H.; Guo, X.; Wang, S.; Lu, J.W. Real-time and Multi-stage Recommendations for Nitrogen Fertilizer Topdressing Rates in Winter Oilseed Rape Based on Canopy Hyperspectral Data. Ind. Crop. Prod. 2020, 154, 112699. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 2004, 17, 113–126. [Google Scholar] [CrossRef]
- Tang, Z.; Xiang, Y.; Wang, X.; An, J.; Guo, J.; Wang, H.; Zhang, F. Comparison of SPAD Value and LAI Spectral Estimation of Soybean Leaves Based on Different Analysis Models. Soyb. Sci. 2023, 42, 55–63, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Xiang, Y.; Liang, J.; Guo, J.; Li, W.; Zhang, F. Application of Hyperspectral Technology for Leaf Function Monitoring and Nitrogen Nutrient Diagnosis in Soybean (Glycine max L.) Production Systems on the Loess Plateau of China. Eur. J. Agron. 2024, 154, 127098. [Google Scholar] [CrossRef]
- Blanes, I.; Serra-Sagrista, J.; Marcellin, M.W.; Bartrina-Rapesta, J. Divide-and-Conquer Strategies for Hyperspectral Image Processing: A Review of Their Benefits and Advantages. IEEE Signal Proc. Mag. 2012, 29, 71–81. [Google Scholar] [CrossRef]
- Yang, C.; Xu, J.; Feng, M.; Bai, J.; Sun, H.; Song, L.; Wang, C.; Yang, W.; Xiao, L.; Zhang, M. Evaluation of Hyperspectral Monitoring Model for Aboveground Dry Biomass of Winter Wheat by Using Multiple Factors. Agronomy 2023, 13, 983. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, W.; Xiang, Y.; Li, Z.; Zhang, F.; Chen, J. Monitoring of Soil Moisture Content of Winter Wheat Based on Hyperspectral and Machine Learning Models. Trans. Chin. Soc. Agric. Mach. 2023, 54, 350–358, (In Chinese with English Abstract). [Google Scholar]
- Sonobe, R.; Sugimoto, Y.; Kondo, R.; Seki, H.; Sugiyama, E.; Kiriiwa, Y.; Suzuki, K. Hyperspectral Wavelength Selection for Estimating Chlorophyll Content of Muskmelon Leaves. Eur. J. Remote Sens. 2021, 54, 513–524. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhao, F.; Liu, Y. Hyperspectral Remote Sensing Images Feature Extraction Based on Spectral Fractional Differentiation. Remote Sens. 2023, 15, 2879. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Meng, X.; Xiao, Z.; Wu, X.; Wang, X.; Ren, L.; Li, Y.; Zhao, C.; Yang, C. Hyperspectral Estimation of Nitrogen Content in Wheat Based on Fractional Difference and Continuous Wavelet Transform. Agriculture 2023, 13, 1017. [Google Scholar] [CrossRef]
- Qian, B.; Ye, H.; Huang, W.; Xie, Q.; Pan, Y.; Xing, N.; Lan, Y. A Sentinel-2-Based Triangular Vegetation Index for Chlorophyll Content Estimation. Agr. Forest Meteorol. 2022, 322, 109000. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Wang, D.; Li, H.; Mouazen, A.M. A Novel Spectral Index for Estimation of Relative Chlorophyll Content of Sugar Beet. Comput. Electron. Agric. 2021, 184, 106088. [Google Scholar] [CrossRef]
- Van der Werff, H.M.A.; Van der Meer, F.D. Shape-Based Classification of Spectrally Identical Objects. ISPRS J Photogramm. 2008, 63, 251–258. [Google Scholar] [CrossRef]
- Inoue, Y.; Moran, M.S.; Horie, T. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model. Plant Prod. Sci. 1998, 1, 269–279. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.; Zhou, W.; Liu, Z.; Pan, Y.; Shi, Z.; Wang, L.; Wang, G. Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing. Sustainability 2018, 10, 2474. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Zheng, Z.; Qiao, Y.; Zhang, K.; Guo, T.; Chen, J. Estimation of Potato Chlorophyll Content from UAV Multispectral Images with Stacking Ensemble Algorithm. Agronomy 2022, 12, 2318. [Google Scholar] [CrossRef]
Selected Spectra Parameters | Calculation Formula | Reference |
---|---|---|
CARI | (R700 − R670) − 0.2 × (R700 + R670) | [22] |
GRVI | R800/R550 | [22] |
PRI | (R570 − R530)/(R570 + R530) | [22] |
IPVI | R800 × (R800 + R670) | [22] |
PRI1 | (R531 − R570)/(R531 + R570) | [23] |
SR1 | R750/R700 | [24] |
SR3 | R750/R550 | [24] |
SR705 | R750/R705 | [25] |
SR680 | R800/R680 | [25] |
SIPI | (R800 − R445)/(R800 − R680) | [25] |
Db | The highest value of the blue edge band (490–530 nm) in the 1-FD order spectral. | [26] |
Dy | The highest value of the yellow edge band (462–642 nm) after the 1-FD order treatment. | [26] |
Dr | The highest value of the red edge band (670–760 nm) after the 1-FD order treatment. | [27] |
Rg | The highest value of the green edge band (510~560 nm). | [27] |
Rr | The lowest value of the red edge band (650~690 nm). | [27] |
SDb | The sum of the blue edge wavelength range in the spectral reflectance after the 1-FD order treatment. | [28] |
SDy | The sum of the yellow edge wavelength range after the 1-FD order treatment | [28] |
SDr | The sum of the red edge wavelength range after the 1-FD order treatment. | [28] |
SDr-SDb | / | [29] |
SDr/SDy | / | [29] |
Difference Index (DI) | − | [13] |
Soil-Adjusted Vegetation Index (SAVI) | [13] |
Year | Treatment | LCCA | LCCW | SLW | GY | |
---|---|---|---|---|---|---|
mg·dm−2 | mg·g−1 | g·dm−2 | kg·ha−1 | |||
2022 | B0 | N0 | 33.60 hi | 2.07 ab | 16.54 bcd | 50,520.34 f |
N1 | 33.87 hi | 2.16 ab | 19.00 abcd | 58,533.81 e | ||
N2 | 38.44 fgh | 2.34 ab | 14.63 cd | 65,618.02 d | ||
N3 | 49.00 bcd | 2.64 ab | 18.72 bcd | 69,750.80 bc | ||
N4 | 40.78 ef | 2.33 ab | 16.80 bcd | 63,574.08 d | ||
B1 | N0 | 33.55 hi | 2.24 ab | 13.43 cd | 52,084.25 f | |
N1 | 34.09 hi | 2.65 ab | 13.65 cd | 64,221.69 d | ||
N2 | 42.74 ef | 2.70 ab | 16.53 bcd | 71,766.71 ab | ||
N3 | 54.95 cde | 2.73 ab | 22.73 ab | 74,203.79 a | ||
N4 | 44.77 a | 2.50 ab | 20.73 abcd | 68,307.19 c | ||
2023 | B0 | N0 | 35.22 ghi | 2.07 ab | 15.66 bcd | 46,397.08 e |
N1 | 39.75 fg | 2.45 ab | 17.32 bcd | 53,743.41 d | ||
N2 | 40.87 ef | 2.57 ab | 17.33 bcd | 60,027.95 b | ||
N3 | 50.91 abc | 2.69 ab | 21.41 abc | 63,212.80 a | ||
N4 | 45.11 de | 2.11 ab | 20.17 abcd | 60,036.28 b | ||
B1 | N0 | 32.56 i | 2.04 ab | 13.14 d | 48,711.15 e | |
N1 | 38.81 fgh | 2.89 a | 16.48 bcd | 56,542.28 c | ||
N2 | 49.38 bcd | 1.88 b | 17.01 bcd | 62,935.39 a | ||
N3 | 53.35 ab | 2.97 a | 26.52 a | 64,432.88 a | ||
N4 | 45.79 cde | 2.76 ab | 19.74 abcd | 58,184.26 bc | ||
Significant level | ||||||
B | ** | ns | ns | ** | ||
N | ** | ns | ** | ** | ||
B×N | ** | ns | * | * |
Index | Spectral Index Category | Spectral Index | r |
---|---|---|---|
LCCA | Empirical spectral index | CARI | 0.496 |
GRVI | 0.404 | ||
PRI | 0.317 | ||
IPVI | 0.771 | ||
PRI1 | 0.338 | ||
SR1 | 0.669 | ||
SR3 | 0.533 | ||
SR705 | 0.658 | ||
SR680 | 0.504 | ||
SIPI | 0.372 | ||
Db | 0.567 | ||
“trilateral” parameters | Dy | 0.568 | |
Dr | 0.673 | ||
Rg | 0.536 | ||
Rr | −0.087 | ||
SDb | 0.565 | ||
SDy | −0.262 | ||
SDr | 0.711 | ||
SDr-SDb | 0.717 | ||
SDr/SDy | 0.432 | ||
LCCW | Empirical spectral index | CARI | 0.563 |
GRVI | 0.133 | ||
PRI | −0.106 | ||
IPVI | 0.695 | ||
PRI1 | 0.123 | ||
SR1 | 0.515 | ||
SR3 | 0.473 | ||
SR705 | 0.394 | ||
SR680 | 0.383 | ||
SIPI | 0.302 | ||
Db | 0.531 | ||
“trilateral” parameters | Dy | 0.532 | |
Dr | 0.560 | ||
Rg | 0.548 | ||
Rr | 0.106 | ||
SDb | 0.481 | ||
SDy | −0.064 | ||
SDr | 0.613 | ||
SDr-SDb | 0.612 | ||
SDr/SDy | 0.398 |
Index | Spectral Index | Differential Order | rmax | Position of Wavelength (i, j)/(nm) |
---|---|---|---|---|
LCCA | DI | 0 | 0.787 | 740,733 |
0.5 | 0.798 | 755,697 | ||
1 | 0.792 | 737,758 | ||
1.5 | 0.788 | 736,748 | ||
2 | 0.756 | 702,753 | ||
SAVI | 0 | 0.700 | 708,756 | |
0.5 | 0.787 | 694,755 | ||
1 | 0.792 | 754,745 | ||
1.5 | 0.785 | 748,736 | ||
2 | 0.756 | 753,702 | ||
LCCW | DI | 0 | 0.684 | 757,724 |
0.5 | 0.723 | 756,671 | ||
1 | 0.723 | 739,670 | ||
1.5 | 0.737 | 726,680 | ||
2 | 0.702 | 694,751 | ||
SAVI | 0 | 0.612 | 674,678 | |
0.5 | 0.706 | 671,756 | ||
1 | 0.723 | 670,739 | ||
1.5 | 0.736 | 751,731 | ||
2 | 0.702 | 751,694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Lu, X.; Sun, T.; Liu, X.; Huang, X.; Tang, Z.; Li, Z.; Xiang, Y.; Zhang, F.; Zhen, J. Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters. Plants 2024, 13, 1314. https://doi.org/10.3390/plants13101314
Shi H, Lu X, Sun T, Liu X, Huang X, Tang Z, Li Z, Xiang Y, Zhang F, Zhen J. Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters. Plants. 2024; 13(10):1314. https://doi.org/10.3390/plants13101314
Chicago/Turabian StyleShi, Hongzhao, Xingxing Lu, Tao Sun, Xiaochi Liu, Xiangyang Huang, Zijun Tang, Zhijun Li, Youzhen Xiang, Fucang Zhang, and Jingbo Zhen. 2024. "Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters" Plants 13, no. 10: 1314. https://doi.org/10.3390/plants13101314
APA StyleShi, H., Lu, X., Sun, T., Liu, X., Huang, X., Tang, Z., Li, Z., Xiang, Y., Zhang, F., & Zhen, J. (2024). Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters. Plants, 13(10), 1314. https://doi.org/10.3390/plants13101314