Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Vineyard
2.2. Pruning Management
2.3. Irrigation
2.4. Physiological and Agronomic Parameters
2.4.1. Stem Water Potential Measurements
2.4.2. Chlorophyll Measurements
2.4.3. Canopy Description
2.4.4. Quantitative and Qualitative Analysis
2.5. Multispectral Images and Vegetation Indexes Calculation
2.6. Statistical Analysis and Stem Water Potential Modelling
3. Results
3.1. Climatic Characterisation
3.2. Canopy Development
3.3. Physiological Responses
3.4. Vine Production and Quality
3.5. Vine Spectral Behaviour
3.6. Stem Water Potential Estimation
3.6.1. Simple Linear Regression Models
3.6.2. Multiple-Variable Regression Modelling with Spectral Bands
4. Discussion
5. Conclusions
6. Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
9:00 Solar Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Date | NDVI | RDVI | TCARI | OSAVI | NDRE | ||||||
25 June 2021 | P | 0.79 | ns | 0.69 | * | 0.05 | ns | 0.76 | * | 0.22 | ns |
NP | 0.75 | 0.60 | 0.19 | 0.69 | 0.22 | ||||||
6 July 2021 | P | 0.82 | ns | 0.72 | * | −0.05 | * | 0.79 | * | 0.28 | ns |
NP | 0.77 | 0.62 | 0.16 | 0.62 | 0.27 | ||||||
20 July 2021 | P | 0.79 | * | 0.57 | * | −0.02 | * | 0.70 | * | 0.21 | * |
NP | 0.69 | 0.44 | 0.16 | 0.58 | 0.19 | ||||||
30 July 2021 | P | 0.78 | * | 0.60 | * | 0.02 | * | 0.71 | * | 0.21 | ns |
NP | 0.65 | 0.44 | 0.20 | 0.56 | 0.19 | ||||||
19 August 2021 | P | 0.72 | * | 0.45 | * | 0.16 | ns | 0.59 | * | 0.23 | * |
NP | 0.52 | 0.29 | 0.18 | 0.40 | 0.18 | ||||||
Average 2021 | P | 0.78 | * | 0.61 | * | 0.03 | * | 0.71 | * | 0.23 | * |
NP | 0.67 | 0.47 | 0.17 | 0.58 | 0.21 | ||||||
30 June 2022 | P | 0.75 | ns | 0.64 | ns | 0.14 | ns | 0.71 | ns | 0.19 | * |
NP | 0.77 | 0.64 | 0.08 | 0.73 | 0.20 | ||||||
15 July 2022 | P | 0.68 | * | 0.55 | ns | 0.29 | * | 0.64 | ns | 0.18 | * |
NP | 0.73 | 0.58 | 0.21 | 0.67 | 0.19 | ||||||
5 August 2022 | P | 0.65 | ns | 0.56 | ns | 0.34 | ns | 0.62 | ns | 0.17 | * |
NP | 0.66 | 0.53 | 0.31 | 0.62 | 0.19 | ||||||
12 August 2022 | P | 0.64 | ns | 0.52 | ns | 0.33 | ns | 0.60 | ns | 0.18 | ns |
NP | 0.64 | 0.51 | 0.32 | 0.59 | 0.18 | ||||||
Average 2022 | P | 0.67 | ns | 0.56 | ns | 0.29 | ns | 0.63 | ns | 0.18 | * |
NP | 0.70 | 0.56 | 0.23 | 0.65 | 0.19 |
12:00 Solar Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Date | NDVI | RDVI | TCARI | OSAVI | NDRE | ||||||
25 June 2021 | P | 0.84 | * | 0.63 | * | −0.26 | * | 0.76 | * | 0.22 | ns |
NP | 0.80 | 0.54 | 0.002 | 0.69 | 0.24 | ||||||
6 July 2021 | P | 0.74 | ns | 0.58 | * | 0.18 | ns | 0.68 | * | 0.24 | ns |
NP | 0.71 | 0.51 | 0.19 | 0.63 | 0.24 | ||||||
20 July 2021 | P | 0.71 | * | 0.53 | * | 0.15 | ns | 0.64 | * | 0.18 | * |
NP | 0.66 | 0.45 | 0.18 | 0.57 | 0.16 | ||||||
30 July 2021 | P | 0.78 | * | 0.58 | * | 0.02 | * | 0.70 | * | 0.21 | * |
NP | 0.70 | 0.49 | 0.18 | 0.61 | 0.20 | ||||||
19 August 2021 | P | 0.66 | * | 0.45 | * | 0.19 | ns | 0.57 | * | 0.17 | ns |
NP | 0.56 | 0.36 | 0.21 | 0.46 | 0.15 | ||||||
Average 2021 | P | 0.74 | * | 0.55 | * | 0.06 | * | 0.67 | * | 0.2 | ns |
NP | 0.69 | 0.47 | 0.15 | 0.59 | 0.2 | ||||||
30 June 2022 | P | 0.78 | ns | 0.57 | ns | 0.03 | ns | 0.69 | ns | 0.20 | ns |
NP | 0.79 | 0.57 | −0.01 | 0.70 | 0.21 | ||||||
15 July 2022 | P | 0.70 | * | 0.51 | ns | 0.18 | * | 0.62 | ns | 0.16 | * |
NP | 0.74 | 0.51 | 0.10 | 0.64 | 0.17 | ||||||
5 August 2022 | P | 0.65 | ns | 0.48 | ns | 0.28 | ns | 0.59 | ns | 0.25 | ns |
NP | 0.66 | 0.48 | 0.27 | 0.59 | 0.25 | ||||||
12 August 2022 | P | 0.65 | ns | 0.49 | ns | 0.24 | ns | 0.58 | ns | 0.17 | ns |
NP | 0.66 | 0.49 | 0.23 | 0.59 | 0.17 | ||||||
Average 2022 | P | 0.68 | ns | 0.51 | ns | 0.18 | ns | 0.61 | ns | 0.19 | ns |
NP | 0.71 | 0.51 | 0.15 | 0.63 | 0.20 |
References
- Ortega-Farias, S.; Mejías, R.S.; Simunovic, Y.M. Efecto de Distintos Niveles de Poda y Reposición Hídrica Sobre El Crecimiento Vegetativo, Rendimiento y Composición de Bayas En Vides Cv. Cabernet Sauvignon. Agric. Tec. 2007, 67, 401–413. [Google Scholar] [CrossRef]
- Striegler, R.K.; Lake, C.B.; Morris, J.R.; Threlfall, R.T.; Main, G.L.; Graves, S.G. Minimal Input Production Systems Affect Yield and Juice Quality of “Sunbelt” Grapes in California’s San Joaquin Valley. HortScience 2002, 37, 867–870. [Google Scholar] [CrossRef]
- Sabbatini, P.; Wierba, K.; Clearwater, L.; Howell, G.S. Impact of Training System and Pruning Severity on Yield, Fruit Composition, and Vegetative Growth of ‘Niagara’ Grapevines in Michigan. Int. J. Fruit Sci. 2015, 15, 237–250. [Google Scholar] [CrossRef]
- Munitz, S.; Schwartz, A.; Netzer, Y. Water Consumption, Crop Coefficient and Leaf Area Relations of a Vitis Vinifera Cv. “Cabernet Sauvignon” Vineyard. Agric. Water Manag. 2019, 219, 86–94. [Google Scholar] [CrossRef]
- Espinoza, C.Z.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Wenter, A.; Zanotelli, D.; Montagnani, L.; Tagliavini, M.; Andreotti, C. Effect of Different Timings and Intensities of Water Stress on Yield and Berry Composition of Grapevine (Cv. Sauvignon Blanc) in a Mountain Environment. Sci. Hortic. 2018, 236, 137–145. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Freeman, B.M.; Hosssom, C. Effect of Irrigation, Crop Level and Potassium Fertilisation on Carignane Vines. I. Degree of Water Stress and Effect on Growth and Yield. Am. J. Enol. Vitic. 1983, 34, 186–196. [Google Scholar] [CrossRef]
- Cole, J.; Pagay, V. Usefulness of Early Morning Stem Water Potential as a Sensitive Indicator of Water Status of Deficit-Irrigated Grapevines (Vitis vinifera L.). Sci. Hortic. 2015, 191, 10–14. [Google Scholar] [CrossRef]
- Deloire, A.; Carbonneau, A.; Wang, Z.; Ojeda, H. Vine and Water a Short Review. J. Int. des Sci. la Vigne du Vin 2004, 38, 1–13. [Google Scholar] [CrossRef]
- Medrano, H.; Bota, J.; Cifre, J.; Flexas, J.; Ribas-Carbó, M.; Gulias, J. Eficiencia En El Uso Del Agua Por Las Plantas. Available online: https://www.redalyc.org/pdf/176/17604304.pdf (accessed on 20 February 2024).
- Knipling, E.B. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Caruso, G.; Tozzini, L.; Rallo, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating Biophysical and Geometrical Parameters of Grapevine Canopies (‘Sangiovese’) by an Unmanned Aerial Vehicle (UAV) and VIS-NIR Cameras. Vitis—J. Grapevine Res. 2017, 56, 63–70. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Matese, A.; Capraro, F.; Primicerio, J.; Gualato, G.; Gennaro, S.F.D.; Agati, G. Mapping of Vine Vigor by UAV and Anthocyanin Content by a Non-Destructive Fluorescence Technique. In Precision Agriculture’13; Wageningen Academic: Wageningen, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Lamb, D.W.; Weedon, M.M.; Bramley, R.G.V. Using Remote Sensing to Predict Grape Phenolics and Colour at Harvest in a Cabernet Sauvignon Vineyard: Timing Observations against Vine Phenology and Optimising Image Resolution. Aust. J. Grape Wine Res. 2004, 10, 46–54. [Google Scholar] [CrossRef]
- Hall, A.; Louis, J.P.; Lamb, D.W. Low-Resolution Remotely Sensed Images of Winegrape Vineyards Map Spatial Variability in Planimetric Canopy Area Instead of Leaf Area Index. Aust. J. Grape Wine Res. 2008, 14, 9–17. [Google Scholar] [CrossRef]
- Mathews, A.J.; Jensen, J.L.R. Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud. Remote Sens. 2013, 5, 2164–2183. [Google Scholar] [CrossRef]
- Berry, A.; Vivier, M.A.; Poblete-Echeverría, C. Evaluation of Canopy Fraction-Based Vegetation Indices, Derived from Multispectral UAV Imagery, to Map Water Status Variability in a Commercial Vineyard. Irrig. Sci. 2024. [Google Scholar] [CrossRef]
- López-García, P.; Intrigliolo, D.S.; Moreno, M.A.; Martínez-Moreno, A.; Ortega, J.F.; Pérez-álvarez, E.P.; Ballesteros, R. Assessment of Vineyard Water Status by Multispectral and Rgb Imagery Obtained from an Unmanned Aerial Vehicle. Am. J. Enol. Vitic. 2021, 72, 285–297. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. The Potential of High Spatial Resolution Information to Define Within-Vineyard Zones Related to Vine Water Status. Precis. Agric. 2008, 9, 285–302. [Google Scholar] [CrossRef]
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agric. 2021, 11, 457. [Google Scholar] [CrossRef]
- Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of Grape Yields from Time-Series Vegetation Indices Using Satellite Remote Sensing and a Machine-Learning Approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of Vineyard Water Status Variability by Thermal and Multispectral Imagery Using an Unmanned Aerial Vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of Drought on Photosynthesis in Grapevines under Field Conditions: An Evaluation of Stomatal and Mesophyll Limitations. Funct. Plant Biol. 2002, 29, 461. [Google Scholar] [CrossRef]
- Triolo, R.; Roby, J.P.; Pisciotta, A.; Di Lorenzo, R.; van Leeuwen, C. Impact of Vine Water Status on Berry Mass and Berry Tissue Development of Cabernet Franc (Vitis vinifera L.), Assessed at Berry Level. J. Sci. Food Agric. 2019, 99, 5711–5719. [Google Scholar] [CrossRef] [PubMed]
- Pôças, I.; Rodrigues, A.; Gonçalves, S.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Predicting Grapevine Water Status Based on Hyperspectral Reflectance Vegetation Indices. Remote Sens. 2015, 7, 16460–16479. [Google Scholar] [CrossRef]
- Pellegrino, A.; Lebon, E.; Voltz, M.; Wery, J. Relationships between Plant and Soil Water Status in Vine (Vitis vinifera L.). Plant Soil 2005, 266, 129–142. [Google Scholar] [CrossRef]
- Ramón Rodríguez-Pérez, J.; Riaño, D.; Ustin, S.L. Evaluation of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in Vineyards Modelling-Rainfall-Evapotranspiration View Project Nitrous Oxide (N2O) Emissions in Croplands View Project. Am. J. Enol. Vitic. 2006, 58, 302–317. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A Comparison between Multispectral Aerial and Satellite Imagery in Precision Viticulture. Precis. Agric. 2018, 19, 195–217. [Google Scholar] [CrossRef]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef]
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical Remote Sensing Applications in Viticulture—A Review. Aust. J. Grape Wine Res. 2002, 8, 36–47. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
- Atencia Payares, L.K.; Tarquis, A.M.; Hermoso Peralo, R.; Cano, J.; Cámara, J.; Nowack, J.; Gómez del Campo, M. Multispectral and Thermal Sensors Onboard UAVs for Heterogeneity in Merlot Vineyard Detection: Contribution to Zoning Maps. Remote Sens. 2023, 15, 4024. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation; NASA/GSFC, Final Report; NASA: Greenbelt, MD, USA, 1974; pp. 1–137. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Medrano, H.; Flexas, J.; Pou, A.; Tomàs, M.; Martorell, S.; Gulias, J. Agua y Vino: Mejorar La Eficiencia Del Uso Del Agua Aumenta La Calidad de La Cosecha. ACTAS Hortic. 2010, 60, 599–602. [Google Scholar]
- Williams, L.E.; Baeza, P. Relationships among Ambient Temperature and Vapor Pressure Deficit and Leaf and Stem Water Potentials of Fully Irrigated, Field-Grown Grapevines. Am. J. Enol. Vitic. 2007, 58, 173–181. [Google Scholar] [CrossRef]
- Intrieri, C.; Poni, S.; Lia, G.; Del Campo, M.G. Vine Performance and Leaf Physiology of Conventionally and Minimally Pruned Sangiovese Grapevines. Vitis 2001, 40, 123–130. [Google Scholar]
- Serrano, L.; González-Flor, C.; Gorchs, G. Assessing Vineyard Water Status Using the Reflectance Based Water Index. Agric. Ecosyst. Environ. 2010, 139, 490–499. [Google Scholar] [CrossRef]
- Escalona, J.M.; Flexas, J.; Medrano, H. Stomatal and Non-Stomatal Limitations of Photosynthesis under Water Stress in Field-Grown Grapevines. Funct. Plant Biol. 2000, 27, 87. [Google Scholar] [CrossRef]
- Schultz, H.R. Water relations and photosynthetic responses of two grapevine cultivars of different geographical origin during water stress. Acta Hortic. 1996, 427, 251–266. [Google Scholar] [CrossRef]
- Rossini, M.; Fava, F.; Cogliati, S.; Meroni, M.; Marchesi, A.; Panigada, C.; Giardino, C.; Busetto, L.; Migliavacca, M.; Amaducci, S.; et al. Assessing Canopy PRI from Airborne Imagery to Map Water Stress in Maize. ISPRS J. Photogramm. Remote Sens. 2013, 86, 168–177. [Google Scholar] [CrossRef]
- Bianchi, D.; Brancadoro, L. Water Use Efficiency and Nutritional Status of a New Grapevine Rootstock Selection. Horticulturae 2021, 7, 503. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, J.R.; Riaño, D.; Carlisle, E.; Ustin, S.; Smart, D.R. Evaluation of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in Vineyards. Am. J. Enol. Vitic. 2007, 58, 302–317. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating Leaf Carotenoid Content in Vineyards Using High Resolution Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle (UAV). Agric. For. Meteorol. 2013, 171, 281–294. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Costanza, L.; Alhajj Ali, S.; Camposeo, S.; Lopriore, G.; Pedrero Salcedo, F.; Vivaldi, G.A. Prediction of Stem Water Potential in Olive Orchards Using High-Resolution Planet Satellite Images and Machine Learning Techniques. Agronomy 2024, 14, 1. [Google Scholar] [CrossRef]
9:00 Solar Time | 12:00 Solar Time | ETo (mm/Day) | |||||
---|---|---|---|---|---|---|---|
Date | T (°C) | RH (%) | VPD (kPa) | T (°C) | RH (%) | VPD (kPa) | |
25 June 2021 | 27.4 | 43.9 | 2.05 | 33.5 | 29.8 | 3.63 | 6.6 |
5 July 2021 | 28.2 | 42.8 | 2.19 | 34.0 | 30.8 | 3.68 | 8.2 |
20 July 2021 | 28.8 | 39.6 | 2.39 | 35.9 | 19.8 | 4.74 | 7.9 |
30 July 2021 | 28.3 | 34.1 | 2.53 | 33.6 | 12.7 | 4.54 | 9.1 |
19 August 2021 | 28.7 | 41.0 | 2.32 | 33.1 | 22.8 | 3.91 | 6.3 |
Average 2021 | 28.3 | 40.3 | 2.30 | 34.0 | 23.2 | 4.10 | 7.6 |
30 June 2022 | 27.5 | 28.2 | 2.64 | 30.0 | 23.1 | 3.25 | 7.0 |
15 July 2022 | 35.2 | 22.6 | 4.40 | 40.2 | 15.4 | 6.32 | 8.1 |
5 August 2022 | 29.1 | 37.7 | 2.52 | 36.6 | 18.4 | 5.01 | 7.3 |
12 August 2022 | 29.3 | 31.0 | 2.81 | 36.6 | 21.2 | 4.85 | 6.3 |
Average 2022 | 30.3 | 29.8 | 3.09 | 35.8 | 19.5 | 4.86 | 7.2 |
2021 | 2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P | CV (%) | NP | CV (%) | P | CV (%) | NP | CV (%) | |||
Pruning weight (g/plant) | 177.5 | 27% | 87.5 | 29% | * | 216.9 | 30% | 101.7 | 35% | * |
Canopy height (cm) | 69.75 | 21% | 70.67 | 18% | ns | 86.25 | 25% | 106.08 | 11% | ns |
Width (cm) | 71.52 | 19% | 58.9 | 15% | ns | 96.07 | 10% | 89.73 | 19% | ns |
External canopy area (m2) | 2.34 | 8% | 2.07 | 12% | ns | 3.06 | 10% | 3.14 | 9% | ns |
Canopy volume (m3) | 0.53 | 13% | 0.46 | 23% | ns | 0.91 | 27% | 1.04 | 14% | ns |
Canopy contour (m) | 1.64 | 11% | 1.64 | 14% | ns | 1.72 | 15% | 1.73 | 6% | ns |
Covered soil by the canopy (%) | 43% | 6% | 36% | 9% | * | 49% | 4% | 45% | 2% | * |
9:00 Solar Time | 12:00 Solar Time | |||||
---|---|---|---|---|---|---|
Date | P Ψstem (MPa) | NP Ψstem (MPa) | P Ψstem (MPa) | NP Ψstem (MPa) | ||
25 June 2021 | −0.5 | −0.6 | ns | −0.8 | −0.8 | ns |
5 July 2021 | −0.6 | −0.7 | ns | −1.1 | −0.9 | ns |
20 July 2021 | −0.5 | −0.8 | * | −1.0 | −1.1 | * |
30 July 2021 | −0.6 | −0.7 | * | −1.0 | −1.4 | * |
19 August 2021 | −0.7 | −1.1 | * | −1.3 | −1.6 | * |
Average 2021 | −0.6 | −0.8 | * | −1.0 | −1.2 | ns |
30 June 2022 | −0.9 | −0.9 | ns | −1.1 | −1.1 | ns |
15 July 2022 | −1.1 | −0.8 | * | −1.1 | −0.9 | * |
5 August 2022 | −1.7 | −1.5 | * | −1.9 | −1.7 | ns |
12 August 2022 | −1.6 | −1.3 | * | −1.7 | −1.7 | ns |
Average 2022 | −1.3 | −1.1 | ns | −1.4 | −1.3 | ns |
9:00 Solar Time | 12:00 Solar Time | |||||
---|---|---|---|---|---|---|
Date | P Chlorophyll µmol Chlorophyll/m2 Leaf Area | NP Chlorophyll µmol Chlorophyll/m2 Leaf Area | P Chlorophyll µmol Chlorophyll/m2 Leaf Area | NP Chlorophyll µmol Chlorophyll/m2 Leaf Area | ||
25 June 2021 | 15.00 | 17.05 | ns | 14.05 | 15.65 | ns |
5 July 2021 | 16.05 | 17.18 | ns | 19.75 | 14.65 | * |
20 July 2021 | 17.18 | 15.80 | ns | 20.40 | 17.08 | ns |
30 July 2021 | 14.45 | 14.75 | ns | 18.23 | 15.38 | * |
19 August 2021 | 18.98 | 16.32 | ns | 18.45 | 15.61 | * |
Average 2021 | 16.33 | 16.22 | ns | 18.18 | 15.67 | ns |
30 June 2022 | 14.9 | 14.7 | ns | 14.5 | 14.9 | ns |
15 July 2022 | 16.2 | 14.9 | * | 16.7 | 15.8 | ns |
5 August 2022 | 15.8 | 15.0 | ns | 15.6 | 15.5 | ns |
12 August 2022 | 14.1 | 14.2 | ns | 14.7 | 14.7 | ns |
Average 2022 | 15.3 | 14.7 | ns | 15.4 | 15.2 | ns |
2021 | 2022 | |||||
---|---|---|---|---|---|---|
P | NP | P | NP | |||
Production per plant (kg) | 1.88 | 1.53 | ns | 1.27 | 1.60 | ns |
Berry weight (g) | 0.77 | 0.51 | * | 0.39 | 0.34 | ns |
Bunch weight (g) | 52.2 | 25.6 | * | 27.96 | 20.86 | * |
Number of bunches per plant | 36.25 | 56.5 | ns | 37.17 | 62.0 | * |
TSS (°Brix) | 28.48 | 28.88 | ns | 25.8 | 25.4 | ns |
pH | 3.44 | 3.41 | ns | 3.65 | 3.81 | * |
9:00 | NDVI | RDVI | TCARI | OSAVI | NDRE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | P | 0.78 | * | 0.61 | * | 0.03 | * | 0.71 | * | 0.23 | * | |
NP | 0.67 | 0.47 | 0.17 | 0.58 | 0.21 | |||||||
2022 | P | 0.67 | ns | 0.56 | ns | 0.29 | ns | 0.63 | ns | 0.18 | * | |
NP | 0.70 | 0.56 | 0.23 | 0.65 | 0.19 | |||||||
12:00 | ||||||||||||
2021 | P | 0.74 | * | 0.55 | * | 0.06 | * | 0.67 | * | 0.20 | ns | |
NP | 0.69 | 0.47 | 0.15 | 0.59 | 0.20 | |||||||
2022 | P | 0.68 | ns | 0.51 | ns | 0.18 | ns | 0.61 | ns | 0.19 | ns | |
NP | 0.71 | 0.51 | 0.15 | 0.63 | 0.20 | |||||||
FA | ||||||||||||
Treatment | P NP | * | * | ns | * | ns | ||||||
Year | 2021 2022 | * | ns | * | ns | * |
Model Type | Single-Season and Single-Time | Multi-Season 2021–2022 | |||||
---|---|---|---|---|---|---|---|
2021 * | 2022 ** | Single Time *** | Both Times | ||||
Indexes | 9:00 | 12:00 | 9:00 | 12:00 | 9:00 | 12:00 | 9:00–12:00 |
NDVI | 0.5 | 0.65 | 0.62 | 0.65 | 0.44 | 0.58 | 0.43 |
RDVI | 0.49 | 0.6 | 0.37 | 0.48 | 0.12 | 0.39 | 0.23 |
TCARI | 0.13 | 0.40 | 0.53 | 0.56 | 0.56 | 0.48 | 0.36 |
OSAVI | 0.73 | 0.65 | 0.52 | 0.58 | 0.25 | 0.49 | 0.33 |
NDRE | 0.23 | 0.41 | 0.30 | 0.12 | 0.40 | 0.00 | 0.10 |
Bands | |||||||
RED | 0.02 | 0.47 | 0.71 | 0.68 | 0.69 | 0.64 | 0.38 |
GREEN | 0.27 | 0.21 | 0.62 | 0.72 | 0.50 | 0.62 | 0.18 |
RED EDGE | 0.51 | 0.25 | 0.0008 | 0.12 | 0.03 | 0.08 | 0.00 |
NIR | 0.46 | 0.42 | 0.03 | 0.02 | 0.00 | 0.08 | 0.04 |
Metric | Value |
---|---|
n | 176 |
R2 | 0.72 |
R2 adj. | 0.72 |
Se | 0.215 |
MSE | 0.05 |
MAE | 0.17 |
DW | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowack, J.C.; Atencia-Payares, L.K.; Tarquis, A.M.; Gomez-del-Campo, M. Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies. Plants 2024, 13, 1350. https://doi.org/10.3390/plants13101350
Nowack JC, Atencia-Payares LK, Tarquis AM, Gomez-del-Campo M. Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies. Plants. 2024; 13(10):1350. https://doi.org/10.3390/plants13101350
Chicago/Turabian StyleNowack, Juan C., Luz K. Atencia-Payares, Ana M. Tarquis, and M. Gomez-del-Campo. 2024. "Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies" Plants 13, no. 10: 1350. https://doi.org/10.3390/plants13101350
APA StyleNowack, J. C., Atencia-Payares, L. K., Tarquis, A. M., & Gomez-del-Campo, M. (2024). Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies. Plants, 13(10), 1350. https://doi.org/10.3390/plants13101350