Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Experimental Design and Field Management
2.3. Measurements and Calculations
2.3.1. Above-Ground and Underground Biomass
2.3.2. Photosynthetic Gas Exchange Characteristics
2.3.3. Soil Quality
2.3.4. Grain Yield and Its Components
2.3.5. Water and Nitrogen Use Efficiency
2.4. Statistical Analysis
3. Result
3.1. Root and Shoot Growth
3.1.1. Above-Ground Dry Matter
3.1.2. Root Dry Matter
3.1.3. Root Shoot Ratio
3.2. Photosynthetic Gas Exchange Characteristics
3.2.1. Net Photosynthetic Rate
3.2.2. Transpiration Rate
3.2.3. Stomatal Conductance
3.3. Yield and Water and Nitrogen Use Efficiency
3.4. Soil Enzyme Activity and pH
3.5. Correlation Analysis between Various Indicators of Spring Maize
3.6. Construction of a Comprehensive Growth Evaluation Model for Spring Maize
3.6.1. Comprehensive Evaluation Hierarchy Model
3.6.2. Indicator Weights
AHP Method for Determining Indicator Weights
Entropy Weight Method for Determining Indicator Weights
Combination Weight Determination Based on the Game Theory
3.6.3. Comprehensive Growth Evaluation of Spring Maize Based on TOPSIS Method
4. Discussion
4.1. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Root and Shoot Growth
4.2. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Photosynthetic Gas Exchange Characteristics
4.3. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Maize Yield and Water and Nitrogen Use Efficiency
4.4. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Soil Enzyme Activity and pH
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Gu, X.; Li, Y.; Fang, H.; Chen, P. Ridge-furrow mulching combined with appropriate nitrogen rate for enhancing photosynthetic efficiency, yield and water use efficiency of summer maize in a semi-arid region of China. Agric. Water Manag. 2023, 287, 108450. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Z.; Qiao, S.; Zhang, Z.; Huang, Q.; Su, Z. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. Eur. J. Agron. 2022, 136, 126511. [Google Scholar] [CrossRef]
- Dong, M.; Zhao, J.; Li, E.; Liu, Z.; Guo, S.; Zhang, Z. Effects of Changing Climate Extremes on Maize Grain Yield in Northeast China. Agronomy 2023, 13, 1050. [Google Scholar] [CrossRef]
- Lee, C.; He, Z.; Luo, H. Spatio-temporal characteristics of land ecological security and analysis of influencing factors in cities of major grain-producing regions of China. Environ. Impact Rev. 2024, 104, 107344. [Google Scholar] [CrossRef]
- Yang, B.; Yue, S.; Gao, N.; Wei, Y.; Shen, Y.; Ai, Z.; Li, S. Effects of the key environmental and management factors on the advantages of film mulching spring maize in northwest China: A meta-analysis. Eur. J. Agron. 2023, 150, 126947. [Google Scholar] [CrossRef]
- Ahmad, S.; Saqlain, Z.M.; Haider, A.H.; Erinle, K.O.; Wani, S.H.; Iqbal, R.; Okone, O.; Raza, A.; Waqas, M.M.; Nawaz, M. Physiological and biochemical properties of wheat (Triticum aestivum L.) under different mulching and water management systems in the semi-arid region of Punjab, Pakistan. Arid Land Res. Manag. 2022, 362, 181–196. [Google Scholar] [CrossRef]
- Abbate, C.; Scavo, A.; Pesce, G.R.; Fontanazza, S.; Restuccia, A.; Mauromicale, G. Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture 2023, 13, 197. [Google Scholar] [CrossRef]
- Shinde, Y.A.; Jagtap, M.P.; Patil, M.G.; Khatri, N. Experimental investigation on the effect of soil solarization incorporating black, silver, and transparent polythene, and straw as mulch, on the microbial population and weed growth. Chemosphere 2023, 336, 139263. [Google Scholar] [CrossRef] [PubMed]
- Cuello, J.P.; Hwang, H.Y.; Gutierrez, J.; Kim, S.Y.; Kim, P.J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 2015, 91, 48–57. [Google Scholar] [CrossRef]
- Khalil, A.H.P.S.; Chong, E.W.N.; Owolabi, F.A.T.; Asniza, M.; Tye, Y.Y.; Tajarudin, H.A.; Paridah, M.T.; Rizal, S. Microbial-induced CaCO 3 filled seaweed-based film for green plasticulture application. J. Cleaner Prod. 2018, 199, 150–163. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Shi, H.; Li, W.; Yang, W.; Qin, Y. Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore-size distribution. Geoderma 2020, 370, 114341. [Google Scholar] [CrossRef]
- Fu, F.; Long, B.; Huang, Q.; Li, J.; Yang, C.; Zhou, W. Integrated effects of residual plastic films on soil-rhizosphere microbe-plant ecosystem. J. Hazard. Mater. 2023, 445, 130420. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, C.; Yan, C.; Mao, L.; Liu, Q.; Li, Z.; He, W. Effects of agricultural plastic film residues on transportation and distribution of water and nitrate in soil. Chemosphere 2020, 242, 125131. [Google Scholar]
- Zhu, J.; Wang, Z.; Li, W.; Jia, H. Effect of residual plastic film on soil water salt, nutrient and cotton growth under long-term mulched drip irrigation. J. Arid. Res. Environ. 2021, 35, 151–156. [Google Scholar]
- Li, B.; Huang, S.; Wang, H.; Liu, M.; Xue, S.; Tang, D.; Cheng, W.; Fan, T.; Yang, X. Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition. Environ. Pollut. 2021, 272, 116418. [Google Scholar] [CrossRef]
- Chen, P.; Gu, X.; Li, Y.; Qiao, L.; Li, Y.; Fang, H.; Yin, M.; Zhou, C. Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China. Agric. Water Manag. 2022, 260, 107289. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Wei, S.; Liu, Z.; Zong, R.; Jin, T.; Zhang, M.; Sun, C.; Li, Q. Biodegradable film mulching promotes better soil quality and increases summer maize grain yield in North China Plain. Arch. Agron. Soil Sci. 2023, 69, 2493–2509. [Google Scholar] [CrossRef]
- Eugenio, C.; Ida, D.; Lucia, O.; Maurizio, B.; Milena, P.; Elvira, F.; Mori, M.; Morra, L. Assessing Yield and Quality of Melon (Cucumis melo L.) Improved by Biodegradable Mulching Film. Plants 2023, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Rugchati, O.; Thanacharoenchanaphas, K. Application of Biodegradable Film from Yam (Dioscorea alata) Starch in Thailand for Agriculture Activity. In. J. Environ. Rural. Dev. 2020, 6, 28–33. [Google Scholar]
- Wang, Z.; Li, M.; Flury, M.; Schaeffer, S.M.; Chang, Y.; Zhao, T.; Jia, Z.; Li, S.; Ding, F.; Wang, J. Agronomic performance of polyethylene and biodegradable plastic film mulches in a maize cropping system in a humid continental climate. Sci. Total Environ. 2021, 786, 147460. [Google Scholar] [CrossRef] [PubMed]
- Dubenok, N.N.; Mayer, A.V. Long-term Studies of the Hydrothermal Regime of Agrocenoses and a Combined Irrigation System for Its Regulation. Russ. Agric. Sci. 2022, 48, 123–127. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Yan, W.; Tan, G.; Sun, N.; Zhao, H.; Li, F.; Yu, J.; Meng, X.; Bian, S. Effects of Surface Mulching on Soil Water Temperature, Physiological Characteristics and Yield of Maize. Int. J. Plant Prod. 2023, 17, 283–296. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Li, H.; Dong, H.; Li, B.; Guo, Y.; Wang, Y.; Guo, X.; Yin, T.; Liu, X.; et al. Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional non-biodegradable and new biodegradable microplastics. Environ. Pollut. 2023, 341, 122897. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shen, C. Research progress on regulation of nitrate metabolism and utilization in crops. J. Nanjing Agric. Univ. 2020, 45, 848–855. [Google Scholar]
- Qiu, Z.; Liao, J.; Chen, J.; Li, A.; Lin, M.; Liu, H.; Huang, W.; Sun, B.; Liu, S.; Zheng, P. Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou dancong) leaf quality under different nitrogen fertilization regimes. Food Chem. 2024, 439, 138127. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Cui, J.; Gao, J.; Guo, L.; Zhang, Q. Nitrogen fertilization application strategies improve yield of the rice cultivars with different yield types by regulating phytohormones. Sci. Rep. 2023, 13, 21803. [Google Scholar] [CrossRef]
- Liu, X.; Fu, N.; Li, C.; Wang, L.; Yang, Q. Trends and Causes Analysis of Water Requirement for Main Grain Crops in Henan Province. Trans. Chin. Soc. Agric. Mach. 2015, 46, 188–197. [Google Scholar]
- Zhang, H.; Wang, Z.; Yu, S.; Teng, A.; Zhang, C.; Lei, L.; Ba, Y.; Chen, X. Crop coefficient determination and evapotranspiration estimation of watermelon under water deficit in a cold and arid environment. Front. Plant Sci. 2023, 14, 1153835. [Google Scholar] [CrossRef]
- Antonietta, M.; Fanello, D.D.; Acciaresi, H.A.; Guiamet, J.J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res. 2014, 155, 111–119. [Google Scholar] [CrossRef]
- Zhao, B.; Ata, U.; Duan, A.; Gao, Y.; Lou, H.; Liu, Z.; Qin, A.; Ning, D.; Ma, S.; Liu, Z. Estimating the Impacts of Plant Internal Nitrogen Deficit at Key Top Dressing Stages on maize Productivity and Intercepted Photosynthetic Active Radiation. Front. Plant Sci. 2022, 13, 864258. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, C.; Tian, L.; Shen, Z.; Feng, G.; Hou, W.; Liu, F.; Gao, Q.; Wang, Y. Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling. Eur. J. Agron. 2023, 151, 126994. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Z.; Li, Z.; Wang, B.; Zhang, P.; Jia, Z. Is biodegradable film an alternative to polyethylene plastic film for improving maize productivity in rainfed agricultural areas?—Evidence from field experiments. Agric. Water Manag. 2022, 272, 107868. [Google Scholar] [CrossRef]
- Qi, D.; Chen, P. Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging. Agric. Water Manag. 2022, 261, 107352. [Google Scholar] [CrossRef]
- Li, G.; Cheng, G.; Lu, W.; Lu, D. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J. Integr. Agric. 2021, 20, 554–564. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y.; Zhang, J.; Li, W.; Bian, Q. Effects of Water and Nitrogen Fertilization on Physiological Characteristics and Yield of Cotton under Drip Irrigation in Mildly Salinized Soil. Trans. Chin. Soc. Agric. Mach. 2018, 49, 296–308. [Google Scholar]
- Zhu, X.; Stephen, P.L.; Donald, R.O. Improving Photosynthetic Efficiency for Greater Yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef]
- Tian, G.; Qi, D.; Zhu, J.; Xu, Y. Effects of nitrogen fertilizer rates and waterlogging on leaf physiological characteristics and grain yield of maize. Arch. Agron. Soil Sci. 2020, 67, 863–875. [Google Scholar] [CrossRef]
- Gao, F.; Khan, R.; Yang, L.; Chi, Y.; Wang, Y.; Zhou, X. Uncovering the potentials of long-term straw return and nitrogen supply on subtropical maize (Zea mays L.) photosynthesis and grain yield. Field Crops Res. 2023, 302, 109062. [Google Scholar] [CrossRef]
- Li, H.; Kuang, N.; Gou, Q.; Ma, Y.; Li, Q. Effects of different film mulches on photosynthetic characteristics and yield of summer maize (Zea mays L.) in the North China Plain. Arch. Agron. Soil Sci. 2020, 67, 179–190. [Google Scholar] [CrossRef]
- Duan, F.; Wei, Z.; Soualiou, S.; Zhou, W. Nitrogen partitioning in maize organs and underlined mechanisms from different plant density levels and N application rate in China. Field Crops Res. 2023, 294, 1088. [Google Scholar] [CrossRef]
- Shao, G.; Cheng, H.; Dai, H.; Zhang, H.; Ai, J.; Liu, K.; Li, Z.; Zamanian, K.; Qian, X. Nitrogen uptake and utilization of two maize hybrids with contrasting nitrogen use efficiencies depending on fertilization amount. Arch. Agron. Soil Sci. 2023, 69, 2202–2217. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Wang, G.; Liu, Z.; Sun, W.; Zhang, Y.; Zhang, X. Different Responses in Root Water Uptake of Summer Maize to Planting Density and Nitrogen Fertilization. Front. Plant Sci. 2022, 13, 918043. [Google Scholar] [CrossRef]
- Li, P.; Jia, L.; Chen, Q.; Zhang, H.; Deng, J.; Lu, J.; Xu, L.; Li, H.; Hu, F.; Jiao, J. Adaptive evaluation for agricultural sustainability of different fertilizer management options for a green manure-maize rotation system: Impacts on crop yield, soil biochemical properties and organic carbon fractions. Sci. Total Environ. 2023, 908, 168170. [Google Scholar] [CrossRef]
- Yang, W.; Yan, N.; Zhang, J.; Yan, J.; Ma, D.; Wang, S.; Yin, L. The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau. Agric. Water Manag. 2022, 274, 107952. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Shi, H.; Hu, Q.; Zhang, Y.; Leng, X. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 2021, 776, 145970. [Google Scholar] [CrossRef]
- Li, Y.; Ihsan, M.; Chi, Y.; Wang, D.; Zhou, X. Straw Return and Nitrogen Fertilization to Maize Regulate Soil Properties, Microbial Community, and Enzyme Activities Under a Dual Cropping System. Front. Microbiol. 2022, 13, 823963. [Google Scholar]
- Fudjoe, S.; Li, L.; Anwar, S.; Shi, S.; Xie, J.; Wang, L.; Xie, L.; Zhou, Y. Nitrogen fertilization promoted microbial growth and N2O emissions by increasing the abundance of nirS and nosZ denitrifiers in semiarid maize field. Front. Microbiol. 2023, 14, 1265562. [Google Scholar] [CrossRef]
Year | F Fest | Jointing | Tasseling | Grain Filling | |||
---|---|---|---|---|---|---|---|
Above-Ground Dry Matter | Root Dry Matter | Above-Ground Dry Matter | Root Dry Matter | Above-Ground Dry Matter | Root Dry Matter | ||
2021 | F | 1.16 ns | 3.83 ns | 4.35 ns | 5.12 * | 5.39 * | 8.16 * |
N | 12.44 ** | 29.36 ** | 43.94 ** | 102.72 ** | 45.27 ** | 139.07 ** | |
F×N | 0.04 ns | 0.16 ns | 0.16 ns | 0.27 ns | 0.15 ns | 0.19 ns | |
2022 | F | 4.09 ns | 4.31 ns | 2.38 ns | 5.52 * | 7.01 * | 10.18 ** |
N | 29.27 ** | 27.05 ** | 18.33 ** | 58.71 ** | 63.02 ** | 157.72 ** | |
F×N | 0.02 ns | 0.06 ns | 0.05 ns | 0.26 ns | 0.20 ns | 0.04 ns | |
Y | 34.57 ** | 9.79 ** | 3.48 ns | 12.39 ** | 16.10 ** | 8.94 ** | |
F | 4.73 * | 8.05 ** | 5.87 * | 10.55 ** | 12.31 * | 18.20 ** | |
N | 39.39 ** | 54.90 ** | 51.40 ** | 151.20 ** | 106.92 ** | 295.61 ** | |
Y×F | 0.38 ns | 0.21 ns | 0.03 ns | 0.19 ns | 0.03 ns | 0.01 ns | |
Y×N | 1.52 ns | 0.90 ns | 0.03 ns | 0.25 ns | 0.66 ns | 0.10 ns | |
F×N | 0.02 ns | 0.01 ns | 0.16 ns | 0.52 ns | 0.28 ns | 0.16 ns | |
Y×F×N | 0.05 ns | 0.19 ns | 0.00 ns | 0.01 ns | 0.07 ns | 0.08 ns |
Year | F Fest | Jointing Stage | Tasseling Period | Grain Filling Period |
---|---|---|---|---|
2021 | F | 0.41 ns | 0.03 ns | 0.22 ns |
N | 1.77 ns | 19.24 ** | 17.72 ** | |
F×N | 0.12 ns | 0.38 ns | 0.32 ns | |
2022 | F | 0.11 ns | 0.27 ns | 0.13 ns |
N | 0.60 ns | 6.23 ** | 10.43 ** | |
F×N | 0.07 ns | 0.25 ns | 0.17 ns | |
Y | 4.73 * | 1.41 ns | 0.86 ns | |
F | 0.45 ns | 0.28 ns | 0.33 ns | |
N | 2.03 ns | 19.40 ** | 27.09 ** | |
Y×F | 0.02 ns | 0.13 ns | 0.00 ns | |
Y×N | 0.13 ns | 0.10 ns | 0.25 ns | |
F×N | 0.01 ns | 0.56 ns | 0.35 ns | |
Y×F×N | 0.17 ns | 0.01 ns | 0.12 ns |
Year | F Fest | Jointing Stage | Tasseling Period | Grain filling Period | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pn | Tr | Gs | Pn | Tr | Gs | Pn | Tr | Gs | ||
2021 | F | 0.84 ns | 3.02 ns | 4.00 ns | 2.10 ns | 3.73 ns | 3.88 ns | 5.74 * | 8.71 ** | 21.70 ** |
N | 15.14 ** | 24.54 ** | 33.63 ** | 17.82 ** | 26.54 ** | 21.23 ** | 38.33 ** | 81.79 ** | 86.84 ** | |
F×N | 0.12 ns | 0.89 ns | 0.44 ns | 0.13 ns | 0.08 ns | 0.04 ns | 0.12 ns | 1.19 ns | 4.31 * | |
2022 | F | 3.16 ns | 4.22 ns | 2.24 ns | 3.39 ns | 5.83 * | 8.07 * | 3.42 ns | 4.57 * | 8.84 ** |
N | 19.89 ** | 34.39 ** | 8.29 ** | 25.51 ** | 34.77 ** | 56.66 ** | 23.08 ** | 21.97 ** | 136.09 ** | |
F×N | 0.27 ns | 0.61 ns | 0.23 ns | 0.50 ns | 0.22 ns | 0.11 ns | 0.10 ns | 0.92 ns | 0.04 ns | |
Y | 7.13 * | 1.15 ns | 71.52 ** | 35.52 ** | 2.26 ns | 21.89 ** | 7.42 * | 1.15 ns | 0.72 ns | |
F | 3.97 ns | 7.14 * | 5.56 * | 5.42 * | 9.36 ** | 10.16 ** | 8.85 ** | 12.50 ** | 28.98 ** | |
N | 34.23 ** | 58.08 ** | 31.60 ** | 43.00 ** | 60.68 ** | 62.68 ** | 59.28 ** | 88.49 ** | 213.84 ** | |
Y×F | 0.97 ns | 0.02 ns | 0.02 ns | 0.08 ns | 0.06 ns | 0.02 ns | 0.04 ns | 0.07 ns | 1.28 ns | |
Y×N | 2.68 ns | 0.21 ns | 0.88 ns | 0.39 ns | 0.07 ns | 0.23 ns | 0.28 ns | 5.04 ** | 10.15 ** | |
F×N | 0.38 ns | 1.47 ns | 0.44 ns | 0.55 ns | 0.26 ns | 0.11 ns | 0.21 ns | 0.77 ns | 2.03 ns | |
Y×F×N | 0.07 ns | 0.05 ns | 0.16 ns | 0.09 ns | 0.03 ns | 0.01 ns | 0.01 ns | 1.30 ns | 2.23 ns |
Year | Treatments | Yield (kg·ha−1) | ET (mm) | WUE (kg·m−3) | IWUE (kg·m−3) | NPF (kg·kg−1) | NFA (kg·kg−1) |
---|---|---|---|---|---|---|---|
2021 | DN0 | 10,056.06 ± 723.38 d | 786.20 ± 16.74 ab | 1.28 ± 0.07 d | 1.60 ± 0.12 d | -- | -- |
DN1 | 12,275.78 ± 497.49 bc | 818.83 ± 14.01 ab | 1.50 ± 0.05 bcd | 1.96 ± 0.08 bc | 76.72 ± 3.11 a | 28.83 ± 3.03 a | |
DN2 | 14,016.28 ± 542.33 ab | 839.86 ± 15.91 a | 1.67 ± 0.10 a | 2.24 ± 0.11 ab | 43.80 ± 2.04 b | 12.38 ± 0.40 b | |
DN3 | 13,680.4 ± 653.61 ab | 844.57 ± 20.03 a | 1.62 ± 0.03 abc | 2.18 ± 0.08 ab | 28.50 ± 1.13 c | 7.55 ± 0.83 c | |
PN0 | 11,014.06 ± 622.97 cd | 770.25 ± 21.94 b | 1.43 ± 0.10 cd | 1.76 ± 0.10 cd | -- | -- | |
PN1 | 12,973.96 ± 514.01 ab | 793.97 ± 16.97 ab | 1.63 ± 0.05 abc | 2.07 ± 0.08 ab | 81.09 ± 3.21 a | 12.25 ± 1.28 b | |
PN2 | 14,895.24 ± 586.73 a | 827.76 ± 20.65 ab | 1.80 ± 0.03 a | 2.38 ± 0.10 a | 46.55 ± 1.83 b | 12.13 ± 0.23 b | |
PN3 | 14,621.44 ± 607.53 a | 835.34 ± 14.52 a | 1.75 ± 0.09 a | 2.33 ± 0.10 a | 30.46 ± 1.27 c | 7.52 ± 0.24 c | |
F fest | F | 4.23 ns | 1.52 ns | 6.38 * | 4.25 ns | 2.71 ns | 24.17 ** |
N | 18.00 ** | 5.05 * | 9.52 ** | 17.95 ** | 251.76 ** | 44.21 ** | |
F×N | 0.02 ns | 0.07 ns | 0.01 ns | 0.02 ns | 0.15 ns | 22.97 ** | |
2022 | DN0 | 9446.10 ± 446.82 d | 746.38 ± 11.50 cd | 1.26 ± 0.04 d | 1.55 ± 0.07 d | -- | -- |
DN1 | 11,207.88 ± 488.95 cd | 765.96 ± 16.27 bcd | 1.46 ± 0.07 cd | 1.84 ± 0.08 cd | 70.05 ± 3.06 a | 25.21 ± 0.88 a | |
DN2 | 13,773.96 ± 766.25 ab | 801.97 ± 14.61 ab | 1.72 ± 0.12 ab | 2.26 ± 0.13 ab | 43.04 ± 2.39 b | 13.52 ± 1.31 bc | |
DN3 | 13,107.30 ± 518.96 abc | 813.98 ± 15.09 a | 1.61 ± 0.03 abc | 2.15 ± 0.09 abc | 27.31 ± 1.08 c | 7.63 ± 0.18 d | |
PN0 | 10,028.44 ± 895.66 d | 727.34 ± 10.15 d | 1.38 ± 0.11 cd | 1.65 ± 0.15 d | -- | -- | |
PN1 | 12,017.44 ± 626.16 bc | 758.35 ± 13.62 bcd | 1.59 ± 0.10 bc | 1.97 ± 0.10 bc | 75.11 ± 3.91 a | 12.43 ± 2.92 bcd | |
PN2 | 14,567.82 ± 498.79 a | 784.20 ± 11.10 abc | 1.86 ± 0.05 a | 2.39 ± 0.08 a | 45.52 ± 1.56 b | 14.19 ± 1.25 b | |
PN3 | 14,248.88 ± 573.33 a | 795.25 ± 16.05 ab | 1.79 ± 0.07 ab | 2.34 ± 0.09 a | 29.69 ± 1.19 c | 8.79 ± 1.16 cd | |
F fest | F | 3.61 ns | 2.65 ns | 6.64 * | 3.75 ns | 2.78 ns | 8.60 * |
N | 21.63 ** | 9.98 ** | 14.52 ** | 21.65 ** | 169.04 ** | 24.24 ** | |
F×N | 0.07 ns | 0.08 ns | 0.09 ns | 0.07 ns | 0.20 ns | 13.45 ** | |
Y | 4.45 * | 25.85 ** | 0.00 ns | 0.83 ns | 4.09 ns | 0.02 ns | |
F | 7.81 ** | 3.88 ns | 13.29 ** | 7.97 ** | 5.48 * | 11.74 ** | |
N | 39.48 ** | 13.72 ** | 24.50 ** | 39.48 ** | 412.74 ** | 25.52 ** | |
Y×F | 0.00 ns | 0.00 ns | 0.00 ns | 0.00 ns | 0.01 ns | 0.53 ns | |
Y×N | 0.29 ns | 0.06 ns | 0.35 ns | 0.38 ns | 1.77 ns | 0.54 ns | |
F×N | 0.05 ns | 0.01 ns | 0.03 ns | 0.05 ns | 0.34 ns | 13.78 ** | |
Y×F×N | 0.04 ns | 0.14 ns | 0.07 ns | 0.05 ns | 0.01 ns | 0.12 ns |
Year | F Fest | Urease | Sucrase | pH |
---|---|---|---|---|
2021 | F | 9.66 ** | 4.33 ns | 0.02 ns |
N | 76.05 ** | 15.13 ** | 0.48 ns | |
F×N | 0.06 ns | 0.12 ns | 0.002 ns | |
2022 | F | 6.16 * | 8.61 * | 0.06 ns |
N | 64.21 ** | 37.80 ** | 1.32 ns | |
F×N | 0.24 ns | 0.20 ns | 0.003 ns | |
Y | 1.21 ns | 0.45 ns | 0.08 ns | |
F | 15.49 ** | 11.18 ** | 0.06 ns | |
N | 139.26 ** | 43.66 ** | 1.57 ns | |
Y×F | 0.10 ns | 0.02 ns | 0.00 ns | |
Y×N | 0.24 ns | 0.04 ns | 0.04 ns | |
F×N | 0.14 ns | 0.25 ns | 0.01 ns | |
Y×F×N | 0.17 ns | 0.04 ns | 0.00 ns |
Degradable Plastic Film | Ordinary Plastic Film | |||||
---|---|---|---|---|---|---|
Local Weights | Final Weight | Consistency Check Parameters | Local Weights | Final Weight | Consistency Check Parameters | |
Target layer C | 0.4435 | 0.4435 | CR = 0.0664 < 0.1 λmax = 4.1774 | 0.4115 | 0.4115 | CR = 0.0477 < 0.1 λmax = 4.1274 |
0.1360 | 0.1360 | 0.1781 | 0.1781 | |||
0.2493 | 0.2493 | 0.2604 | 0.2604 | |||
0.1713 | 0.1713 | 0.1460 | 0.1460 | |||
Criterion layer C1 | 0.6667 | 0.2957 | CR = 0.0000 < 0.1 λmax = 2.0000 | 0.6000 | 0.2469 | CR = 0.0000 < 0.1 λmax = 2.0000 |
0.3333 | 0.1478 | 0.4000 | 0.1646 | |||
Criterion layer C2 | 0.2500 | 0.0340 | CR = 0.0000 < 0.1 λmax = 3.0000 | 0.5232 | 0.0932 | CR = 0.0904 < 0.1 λmax = 3.0940 |
0.5000 | 0.0680 | 0.1928 | 0.0343 | |||
0.2500 | 0.0340 | 0.2840 | 0.0506 | |||
Criterion layer C3 | 0.4641 | 0.1157 | CR = 0.0157 < 0.1 λmax = 3.0163 | 0.4797 | 0.1249 | CR = 0.0036 < 0.1 λmax = 3.0037 |
0.2636 | 0.0657 | 0.1805 | 0.0470 | |||
0.2723 | 0.0679 | 0.3398 | 0.0885 | |||
Criterion layer C4 | 0.2918 | 0.0500 | CR = 0.0516 < 0.1 λmax = 3.0536 | 0.1634 | 0.0239 | CR = 0.0088 < 0.1 λmax = 3.0092 |
0.4632 | 0.0793 | 0.5396 | 0.0788 | |||
0.2451 | 0.0420 | 0.2970 | 0.0434 |
Treatments | Index | C11 | C12 | C21 | C22 | C23 | C31 | C32 | C33 | C41 | C42 | C43 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D | Weight | 0.0797 | 0.0837 | 0.0922 | 0.0754 | 0.1102 | 0.0834 | 0.0923 | 0.0983 | 0.0864 | 0.0785 | 0.1199 |
P | 0.0787 | 0.0817 | 0.0980 | 0.0717 | 0.0999 | 0.0858 | 0.0862 | 0.0802 | 0.0834 | 0.0822 | 0.1522 |
Treatments | Index | C11 | C12 | C21 | C22 | C23 | C31 | C32 | C33 | C41 | C42 | C43 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D | Weight | 0.2634 | 0.1382 | 0.0427 | 0.0691 | 0.0454 | 0.1109 | 0.0697 | 0.0724 | 0.0554 | 0.0792 | 0.0536 |
P | 0.2113 | 0.1470 | 0.0942 | 0.0422 | 0.0610 | 0.1166 | 0.0553 | 0.0867 | 0.0365 | 0.0795 | 0.0665 |
Treatments | C11 | C12 | C21 | C22 | C23 | C31 | C32 | C33 | C41 | C42 | C43 | D+ | D− | Ci | Sorted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DN0 | 0.3963 | 0.4774 | 0.4066 | 0.3435 | 0.3685 | 0.3703 | 0.3066 | 0.4288 | 0.2998 | 0.3930 | 0.5091 | 0.2023 | 0.0040 | 0.0194 | 8 |
DN1 | 0.4772 | 0.4936 | 0.4678 | 0.4821 | 0.4175 | 0.4647 | 0.4181 | 0.4666 | 0.4263 | 0.4792 | 0.5048 | 0.1245 | 0.0825 | 0.3985 | 5 |
DN2 | 0.5647 | 0.5114 | 0.5147 | 0.5557 | 0.5381 | 0.5979 | 0.6614 | 0.5719 | 0.5664 | 0.5485 | 0.4941 | 0.0322 | 0.1855 | 0.8522 | 1 |
DN3 | 0.5443 | 0.5166 | 0.5924 | 0.5838 | 0.6327 | 0.5380 | 0.5420 | 0.5209 | 0.6384 | 0.5613 | 0.4918 | 0.0413 | 0.1755 | 0.8097 | 4 |
S+ | 0.5647 | 0.5166 | 0.5924 | 0.5838 | 0.6327 | 0.5979 | 0.6614 | 0.5719 | 0.6384 | 0.5613 | 0.5091 | ||||
S− | 0.3963 | 0.4774 | 0.4066 | 0.3435 | 0.3685 | 0.3703 | 0.3066 | 0.4288 | 0.2998 | 0.3930 | 0.4918 | ||||
PN0 | 0.3999 | 0.4757 | 0.4121 | 0.3700 | 0.3570 | 0.3846 | 0.3169 | 0.4255 | 0.3284 | 0.4162 | 0.5091 | 0.1781 | 0.0043 | 0.0235 | 7 |
PN1 | 0.4749 | 0.4931 | 0.4568 | 0.4995 | 0.4165 | 0.4567 | 0.4325 | 0.4875 | 0.4408 | 0.4731 | 0.5055 | 0.1130 | 0.0689 | 0.3789 | 6 |
PN2 | 0.5599 | 0.5121 | 0.5216 | 0.5318 | 0.5623 | 0.5880 | 0.6452 | 0.5640 | 0.5586 | 0.5452 | 0.4928 | 0.0300 | 0.1616 | 0.8435 | 2 |
PN3 | 0.5487 | 0.5180 | 0.5911 | 0.5751 | 0.6188 | 0.5457 | 0.5443 | 0.5131 | 0.6211 | 0.5530 | 0.4925 | 0.0323 | 0.1584 | 0.8308 | 3 |
S+ | 0.5599 | 0.5180 | 0.5911 | 0.5751 | 0.6188 | 0.5880 | 0.6452 | 0.5640 | 0.6211 | 0.5530 | 0.5091 | ||||
S− | 0.3999 | 0.4757 | 0.4121 | 0.3700 | 0.3570 | 0.3846 | 0.3169 | 0.4255 | 0.3284 | 0.4162 | 0.4925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chen, T.; Yu, S.; Zhou, C.; Teng, A.; Lei, L.; Li, F. Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency. Plants 2024, 13, 1241. https://doi.org/10.3390/plants13091241
Zhang H, Chen T, Yu S, Zhou C, Teng A, Lei L, Li F. Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency. Plants. 2024; 13(9):1241. https://doi.org/10.3390/plants13091241
Chicago/Turabian StyleZhang, Hengjia, Tao Chen, Shouchao Yu, Chenli Zhou, Anguo Teng, Lian Lei, and Fuqiang Li. 2024. "Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency" Plants 13, no. 9: 1241. https://doi.org/10.3390/plants13091241
APA StyleZhang, H., Chen, T., Yu, S., Zhou, C., Teng, A., Lei, L., & Li, F. (2024). Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency. Plants, 13(9), 1241. https://doi.org/10.3390/plants13091241