The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing
2.2. Haplotype Identification and Genetic Diversity Analysis
2.3. Phylogeny Inference and Genetic Structure Estimation
2.4. Phylogeographical Pattern and Demographic History Inference
2.5. Ecological Niche Modeling
3. Results
3.1. Genetic Diversity and Differentiation
3.2. Phytogeographical Pattern and Demographic History
3.3. Ecological Niche Modeling and Population Size Changing
4. Discussion
4.1. High Genetic Diversity and Significant Genetic Differentiation of U. macrocarpa
4.2. Demographic History Inference of U. macrocarpa
4.3. Potential Refugia under the Climate Oscillation in Quaternary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.-N.; Wang, W.-T.; Zhang, D.-Y. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol. 2016, 209, 1757–1772. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.-N.; Liao, W.-J.; Zhang, D.-Y. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol. 2010, 188, 892–901. [Google Scholar] [CrossRef]
- Feng, L.; Du, F.K. Landscape Genomics in Tree Conservation Under a Changing Environment. Front. Plant Sci. 2022, 13, 822217. [Google Scholar] [CrossRef] [PubMed]
- Pennington, P.T.; Cronk, Q.C.B.; Richardson, J.A.; Donoghue, M.J.; Smith, S.A. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society of London. Ser. B Biol. Sci. 2004, 359, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.-Y.; Wen, J.; Peng, H. Evolution of the eastern Asian–North American biogeographic disjunctions in ferns and lycophytes. J. Syst. Evol. 2015, 53, 2–32. [Google Scholar] [CrossRef]
- Wolfe, J.A. Tertiary climates and floristic relationships at high latitudes in the northern hemisphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1980, 30, 313–323. [Google Scholar] [CrossRef]
- Husemann, M.; Guzman, N.V.; Danley, P.D.; Cigliano, M.M.; Confalonieri, V.A. Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): Deep divergence across the Americas. J. Biogeogr. 2013, 40, 261–273. [Google Scholar] [CrossRef]
- Wang, J.; Källman, T.; Liu, J.; Guo, Q.; Wu, Y.; Lin, K.; Lascoux, M. Speciation of two desert poplar species triggered by Pleistocene climatic oscillations. Heredity 2014, 112, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Ye, H.; Wang, Z.; Wu, J.; Gao, Y.; Han, W.; Na, D.; Sun, G.; Wang, Y. Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC Plant Biol. 2020, 20, 526. [Google Scholar] [CrossRef]
- Qiu, Y.-X.; Fu, C.-X.; Comes, H.P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenetics Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.-F.; Zhang, J.-G.; Abuduhamiti, B.; Wang, W.-T.; Jia, Z.-Q. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evol. Biol. 2018, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.R.; Lister, A.M.; Barnes, I.; Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B Biol. Sci. 2010, 277, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Lou, A.-R. Phylogeography and paleodistribution models of a widespread birch (Betula platyphylla Suk.) across East Asia: Multiple refugia, multidirectional expansion, and heterogeneous genetic pattern. Ecol. Evol. 2019, 9, 7792–7807. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Liu, R.; Wang, L.; Qiu, Q.; Chen, K.; Liu, J. Phylogeographic analyses suggest that a deciduous species (Ostryopsis davidiana Decne., Betulaceae) survived in northern China during the Last Glacial Maximum. J. Biogeogr. 2009, 36, 2148–2155. [Google Scholar] [CrossRef]
- Liu, H.-Z.; Harada, K. Geographic distribution and origin of the chloroplast T/C-type in Quercus mongolica var. crispula in northeastern Japan. Plant Species Biol. 2014, 29, 207–211. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Wang, I.J.; Comes, H.P.; Peng, H.; Qiu, Y.-X. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Sci. Rep. 2016, 6, 24041. [Google Scholar] [CrossRef]
- Favre, A.; Päckert, M.; Pauls, S.U.; Jähnig, S.C.; Uhl, D.; Michalak, I.; Muellner-Riehl, A.N. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 2015, 90, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Gandolfo, M.A.; Onstein, R.E.; Cantrill, D.J.; Jacobs, B.F.; Jordan, G.J.; Lee, D.E.; Popova, S.; Srivastava, R.; Su, T.; et al. Testing the Biases in the Rich Cenozoic Angiosperm Macrofossil Record. Int. J. Plant Sci. 2016, 177, 371–388. [Google Scholar] [CrossRef]
- Fragnière, Y.; Song, Y.-G.; Fazan, L.; Manchester, S.R.; Garfì, G.; Kozlowski, G. Biogeographic Overview of Ulmaceae: Diversity, Distribution, Ecological Preferences, and Conservation Status. Plants 2021, 10, 1111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Deng, M.; Bouchenak-Khelladi, Y.; Zhou, Z.-K.; Hu, G.-W.; Xing, Y.-W. The diversification of the northern temperate woody flora—A case study of the Elm family (Ulmaceae) based on phylogenomic and paleobotanical evidence. J. Syst. Evol. 2022, 60, 728–746. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, L.; Liu, Y.; Long, L.; Wu, J.; Yuan, M.; Wang, J.; Yang, M. Comparative transcriptomes of four Elm species provide insights into the genetic features and adaptive evolution of Ulmus spp. For. Ecol. Manag. 2024, 553, 121560. [Google Scholar] [CrossRef]
- Fu, L.; Chen, J.; Tang, Y. Materiae ad floram Ulmacearum Sinensium. Acta Phytotaxon. Sin. 1979, 17, 45–51. [Google Scholar]
- Yan, D. Leaf Morphological Differences of Ulmus macrocarpa. Master’s Thesis, Shanxi Normal University, Taiyuan, China, 2018. [Google Scholar]
- Fu, L. Research on the Ulmus genus in China. J. Northeast For. Univ. 1980, 3, 1–40. [Google Scholar]
- Lee, I.; Kwon, D.H.; Lee, S.H.; Lee, S.D.; Kim, D.W.; Lee, J.-H.; Hyun, S.K.; Kang, K.H.; Kim, C.; Kim, B.W.; et al. Immune-modulation Effect of Ulmus macrocarpa Hance Water Extract on Balb/c Mice. J. Life Sci. 2014, 24, 1151–1156. [Google Scholar] [CrossRef]
- Han, H.-J.; Song, X.; Yadav, D.; Hwang, M.S.; Lee, J.H.; Lee, C.H.; Kim, T.H.; Lee, J.J.; Kwon, J. Ulmus macrocarpa Hance modulates lipid metabolism in hyperlipidemia via activation of AMPK pathway. PLoS ONE 2019, 14, e0217112. [Google Scholar] [CrossRef] [PubMed]
- Brunet, J.; Zalapa, J.; Guries, R. Conservation of genetic diversity in slippery elm (Ulmus rubra) in Wisconsin despite the devastating impact of Dutch elm disease. Conserv. Genet. 2016, 17, 1001–1010. [Google Scholar] [CrossRef]
- Zalapa, J.E.; Brunet, J.; Guries, R.P. Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China. Genome 2008, 51, 492–500. [Google Scholar] [CrossRef]
- Machon, N.; Lefranc, M.; Bilger, I.; Mazer, S.J.; Sarr, A. Allozyme variation in Ulmus species from France: Analysis of differentiation. Heredity 1997, 78, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Martín del Puerto, M.; Martínez García, F.; Mohanty, A.; Martín, J.P. Genetic Diversity in Relict and Fragmented Populations of Ulmus glabra Hudson in the Central System of the Iberian Peninsula. Forests 2017, 8, 143. [Google Scholar] [CrossRef]
- Khan, R.U.; Ali, N.; Rahman, S.U.; Rahman, I.U.; Hashem, A.; Almutairi, K.F.; Fathi Abd_Allah, E.; Harsonowati, W.; Khan, M.A.; Rahim, F.; et al. Genetic Diversity and Population Structure of the Endangered Ulmusvillosa in Pakistan Revealed by DNA Barcode Markers. Appl. Sci. 2022, 12, 9293. [Google Scholar] [CrossRef]
- Chen, P.; Liu, P.; Zhang, Q.; Bu, C.; Lu, C.; Srivastava, S.; Zhang, D.; Song, Y. Gene Coexpression Network Analysis Indicates that Hub Genes Related to Photosynthesis and Starch Synthesis Modulate Salt Stress Tolerance in Ulmus pumila. Int. J. Mol. Sci. 2021, 22, 4410. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Coutin, J.F.; Shukla, M.; Dhaliwal, A.K.; Nigg, M.; Bernier, L.; Sherif, S.M.; Saxena, P.K. Deciphering the Genome-Wide Transcriptomic Changes during Interactions of Resistant and Susceptible Genotypes of American Elm with Ophiostoma novo-ulmi. J. Fungi 2022, 8, 120. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, S.; Yang, C.; Cao, D.; Fan, S.; Zhang, X. Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm (Ulmus pumila) Cultivars. Biology 2022, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, W.; Yan, D.-T.; Li, J.; Liu, L.; Wang, Y.-L. Molecular phylogeography and paleodistribution modeling of the boreal tree species Ulmus lamellosa (T. Wang et S. L. Chang) (Ulmaceae) in China. Tree Genet. Genomes 2017, 13, 11. [Google Scholar] [CrossRef]
- Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef] [PubMed]
- Drescher, A.; Ruf, S.; Calsa, T., Jr.; Carrer, H.; Bock, R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 2000, 22, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Cai, X.; Gong, M.; Xia, M.; Xing, H.; Dong, S.; Tian, S.; Li, J.; Lin, J.; Liu, Y.; et al. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genom. 2023, 24, 30. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-B.; Lim, C.E.; Kim, J.-S.; Kim, K.; Lee, J.H.; Yu, H.-J.; Mun, J.-H. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: Insights into evolutionary divergence and phylogenomic implications. BMC Genom. 2020, 21, 415. [Google Scholar] [CrossRef] [PubMed]
- Amar, M.H. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J. Genet. Eng. Biotechnol. 2020, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, W.; Tong, T.; Li, Y.; Zhang, M.; Lin, X.; Zou, X.; Wu, Q.; Guo, X. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci. Rep. 2021, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Liu, J.; Yu, J.; Wang, L.; Zhou, S. Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. PLoS ONE 2012, 7, e35071. [Google Scholar] [CrossRef] [PubMed]
- Neubig, K.M.; Whitten, W.M.; Carlsward, B.S.; Blanco, M.A.; Endara, L.; Williams, N.H.; Moore, M. Phylogenetic utility of ycf1 in orchids: A plastid gene more variable than matK. Plant Syst. Evol. 2009, 277, 75–84. [Google Scholar] [CrossRef]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef]
- Chiang, T.-Y.; Schaal, B.A. Molecular evolution and phylogeny of the atpB-rbcL spacer of chloroplast DNA in the true mosses. Genome 2000, 43, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Demesure, B.; Sodzi, N.; Petit, R.J. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 1995, 4, 129–134. [Google Scholar] [CrossRef]
- Allen, G.C.; Flores-Vergara, M.A.; Krasynanski, S.; Kumar, S.; Thompson, W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef]
- Singh, V.K.; Mangalam, A.K.; Dwivedi, S.; Naik, S. Primer Premier: Program for Design of Degenerate Primers from a Protein Sequence. BioTechniques 1998, 24, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.-i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Pons, O.; Petit, R.J. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 1996, 144, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREE2: Software for Constructing Population Trees from Allele Frequency Data and Computing Other Population Statistics with Windows Interface. Mol. Biol. Evol. 2009, 27, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, N.A. distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Dupanloup, I.; Schneider, S.; Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 2002, 11, 2571–2581. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Rosenberg, M.S.; Anderson, C.D. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol. Evol. 2011, 2, 229–232. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Buckley, T.R. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, S.; Ferguson, D.K. Catalogue of Cenozoic megafossil plants in China. Palaeontogr. Abt. B 1996, 238, 141–179. [Google Scholar]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.-X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Blair, C.; He, X. RASP 4: Ancestral State Reconstruction Tool for Multiple Genes and Characters. Mol. Biol. Evol. 2019, 37, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 2005, 22, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.A.; Rannala, B. Bayesian Inference of Recent Migration Rates Using Multilocus Genotypes. Genetics 2003, 163, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Cornille, A.; Giraud, T.; Bellard, C.; Tellier, A.; Le Cam, B.; Smulders, M.J.M.; Kleinschmit, J.; Roldan-Ruiz, I.; Gladieux, P. Postglacial recolonization history of the European crabapple (Malus sylvestris Mill.), a wild contributor to the domesticated apple. Mol. Ecol. 2013, 22, 2249–2263. [Google Scholar] [CrossRef] [PubMed]
- Schoener, T.W. The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology 1968, 49, 704–726. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.; Underwood, N.; Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Deli, T.; Kiel, C.; Schubart, C.D. Phylogeographic and evolutionary history analyses of the warty crab Eriphia verrucosa (Decapoda, Brachyura, Eriphiidae) unveil genetic imprints of a late Pleistocene vicariant event across the Gibraltar Strait, erased by postglacial expansion and admixture among refugial lineages. BMC Evol. Biol. 2019, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Duminil, J.; Fineschi, S.; Hampe, A.; Salvini, D.; Vendramin, G.G. Invited Review: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 2005, 14, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Vázquez, L.; Feng, L.; Liu, Z.; Zhao, G. Climatic and Soil Factors Shape the Demographical History and Genetic Diversity of a Deciduous Oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 2018, 9, 1534. [Google Scholar] [CrossRef]
- Ye, H.; Wang, Z.; Hou, H.; Wu, J.; Gao, Y.; Han, W.; Ru, W.; Sun, G.; Wang, Y. Localized environmental heterogeneity drives the population differentiation of two endangered and endemic Opisthopappus Shih species. BMC Ecol. Evol. 2021, 21, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-F.; Cushman, S.A.; He, Y.-X.; Li, Y. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Hortic. Res. 2020, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-D.; Wang, H.-F.; Bao, L.; Wang, T.-M.; Bai, W.-N.; Ye, J.-W.; Ge, J.-P. Evolutionary history of a widespread tree species Acer mono in East Asia. Ecol. Evol. 2014, 4, 4332–4345. [Google Scholar] [CrossRef]
- Qi, X.-S.; Chen, C.; Comes, H.P.; Sakaguchi, S.; Liu, Y.-H.; Tanaka, N.; Sakio, H.; Qiu, Y.-X. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytol. 2012, 196, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhou, H.-J.; Potter, D.; Hu, Y.-H.; Feng, X.-J.; Dang, M.; Feng, L.; Zulfiqar, S.; Liu, W.-Z.; Zhao, G.-F.; et al. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS). Mol. Phylogenetics Evol. 2018, 126, 250–265. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-W.; Tian, B.; Li, D.-Z. Monsoon intensification in East Asia triggered the evolution of its flora. Front. Plant Sci. 2022, 13, 1046538. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wan, S.; Colin, C.; Yu, Z.; Révillon, S.; Jin, H.; Zhang, J.; Zhao, D.; Shi, X.; Li, A. Paleoenvironmental evolution of South Asia and its link to Himalayan uplift and climatic change since the late Eocene. Glob. Planet. Chang. 2021, 200, 103459. [Google Scholar] [CrossRef]
- Zhisheng, A.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, J.; Wang, J.; He, Z. Palynofloras from Pliocene Balouhe Formation and Pleistocene in Zhangqiu County, Shandong Province. Acta Palaeontol. Sin. 2002, 41, 72–76. [Google Scholar]
- Ye, J.-W.; Zhang, Y.; Wang, X.-J. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region. Chin. J. Plant Ecol. 2017, 41, 1003–1019. [Google Scholar]
- Royden, L.H.; Burchfiel, B.C.; van der Hilst, R.D. The Geological Evolution of the Tibetan Plateau. Science 2008, 321, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Kou, Y.; Zhang, Z.; Yuan, L.; Li, D.; López-Pujol, J.; Fan, D.; Zhang, Z. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol. Biol. 2018, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Swenson, N.G.; Howard, D.J. Clustering of Contact Zones, Hybrid Zones, and Phylogeographic Breaks in North America. Am. Nat. 2005, 166, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, X.; Ma, Y. The taihang and yan mountains rosemainly in quarteranary. North China Earthq. Sci. 1999, 17, 1–7. [Google Scholar]
- Stefenon, V.M.; Klabunde, G.; Lemos, R.P.M.; Rogalski, M.; Nodari, R.O. Phylogeography of plastid DNA sequences suggests post-glacial southward demographic expansion and the existence of several glacial refugia for Araucaria angustifolia. Sci. Rep. 2019, 9, 2752. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, C.-B.; Ma, X.-G.; Liang, Q.-L.; He, X.-J. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol. Phylogenet. Evol. 2013, 68, 628–643. [Google Scholar] [CrossRef]
Source | df | SS | MS | Est. Var. | Var. Per. (%) | F-Statistic (p < 0.05) | |
---|---|---|---|---|---|---|---|
Among three groups | Among Groups | 2 | 86.067 | 43.034 | 1.147 | 53% | FCT = 0.532 FSC = 0.141 FST = 0.598 |
Among Pops | 19 | 30.051 | 1.582 | 0.143 | 7% | ||
Within Pops | 88 | 76.400 | 0.868 | 0.868 | 40% | ||
Total | 109 | 192.518 | 2.158 | 100% | |||
Group Ⅰ vs. Group Ⅱ | Among Groups | 1 | 32.995 | 32.995 | 0.797 | 44% | FCT = 0.440 FSC = 0.150 FST = 0.524 |
Among Pops | 14 | 22.717 | 1.623 | 0.152 | 8% | ||
Within Pops | 64 | 55.200 | 0.863 | 0.863 | 48% | ||
Total | 79 | 110.913 | 1.811 | 100% | |||
Group Ⅰ vs. Group Ⅲ | Among Groups | 1 | 60.684 | 60.684 | 1.634 | 59% | FCT = 0.587 FSC = 0.155 FST = 0.651 |
Among Pops | 13 | 24.222 | 1.863 | 0.178 | 6% | ||
Within Pops | 60 | 58.400 | 0.973 | 0.973 | 35% | ||
Total | 74 | 143.307 | 2.785 | 100% | |||
Group Ⅱ vs. Group Ⅲ | Among Groups | 1 | 35.023 | 35.023 | 1.047 | 55% | FCT = 0.554 FSC = 0.105 FST = 0.601 |
Among Pops | 11 | 13.162 | 1.197 | 0.089 | 5% | ||
Within Pops | 52 | 39.200 | 0.754 | 0.754 | 40% | ||
Total | 64 | 87.385 | 1.889 | 100% | |||
Total | Among Pops | 21 | 116.118 | 5.529 | 0.932 | 52% | FST = 0.518 |
Within Pops | 88 | 76.400 | 0.868 | 0.868 | 48% | ||
Total | 109 | 192.518 | 1.80 | 100% |
Group Ⅰ | Group II | Group III | |
---|---|---|---|
MIGRATE–N | |||
group Ⅰ | - | 0.6451 (0.4540–2.1406) | 1.3744 (0.3632–2.9279) |
group Ⅱ | 1.3054 (0.3393–2.7281) | - | 0.6251 (0–2.0838) |
group Ⅲ | 0.9069 (0.186–2.0686) | 0.8154 (0.1240–2.0686) | - |
BAYESASS | |||
group Ⅰ | 0.9511 (0.9178–0.9844) | 0.0342 (0.0015–0.9844) | 0.0403 (0.0038–0.0768) |
group Ⅱ | 0.0068 (0–0.0199) | 0.9571 (0.9212–0.9930) | 0.0201 (0–0.0464) |
group Ⅲ | 0.0420 (0.0108–0.0732) | 0.0086 (0–0.0256) | 0.9396 (0.8971–0.9821) |
Current | MH | LGM | LIG | |
---|---|---|---|---|
Current | - | 0.9647 + | 0.9500 + | 0.9306 + |
MH | 0.8155 * | - | 0.9563 + | 0.9265 + |
LGM | 0.7900 * | 0.7924 * | - | 0.9327 + |
LIG | 0.7218 * | 0.7229 * | 0.7341 * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Wang, Y.; Liu, H.; Lei, D.; Li, H.; Gao, Z.; Feng, X.; Han, M.; Qie, Q.; Zhou, H. The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China. Plants 2024, 13, 1334. https://doi.org/10.3390/plants13101334
Ye H, Wang Y, Liu H, Lei D, Li H, Gao Z, Feng X, Han M, Qie Q, Zhou H. The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China. Plants. 2024; 13(10):1334. https://doi.org/10.3390/plants13101334
Chicago/Turabian StyleYe, Hang, Yiling Wang, Hengzhao Liu, Dingfan Lei, Haochen Li, Zhimei Gao, Xiaolong Feng, Mian Han, Qiyang Qie, and Huijuan Zhou. 2024. "The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China" Plants 13, no. 10: 1334. https://doi.org/10.3390/plants13101334
APA StyleYe, H., Wang, Y., Liu, H., Lei, D., Li, H., Gao, Z., Feng, X., Han, M., Qie, Q., & Zhou, H. (2024). The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China. Plants, 13(10), 1334. https://doi.org/10.3390/plants13101334