Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review
Abstract
:1. Introduction
2. Germplasm Enhancement and Genetic Diversity Creation
2.1. Physical Mutagenesis
2.2. Chemical Mutagenesis
2.3. T-DNA Insertion
2.4. Transposable Elements as a Source of Variation
3. Strategies for Genotype-Phenotype Association
3.1. Bi-Parental Mapping
3.2. Multi-Parent Mapping
3.3. Bulked Segregant Analysis
3.4. Genome-Wide Association Study
3.4.1. Populations Selection for GWAS
3.4.2. Genotyping/Population Structure
3.4.3. Data Processing and Testing for Associations
3.4.4. Accounting for False Discovery
3.4.5. Genome-Wide Association Meta-Analysis
3.5. Pan-Genome Analysis
3.6. DNA Molecular Markers
4. Genetic Information Transfer of mRNA
5. Gene Editing
6. Artificial Intelligence (AI) Breeding
6.1. Beneficial Aspects of AI Technologies to Overcome the Phenomics Bottlenecks to Improve Crop Breeding
6.2. Role of AI in Automation and Digital Agriculture
6.3. Beneficial Aspects of AI in Gene Function Analysis to Improve Crop Breeding
7. Current Challenges and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ahmar, S.; Gill, R.A.; Jung, K.-H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, A.R.; Darrah, L.L. Compendium of Recurrent Selection Methods and Their Application. Crit. Rev. Plant Sci. 1985, 3, 1–33. [Google Scholar] [CrossRef]
- Wallace, J.G.; Rodgers-Melnick, E.; Buckler, E.S. On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. Annu. Rev. Genet. 2018, 52, 421–444. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, J.; Ying, J. Talking about the Basic Points of Crop Breeding. China Rice 2020, 26, 23–26. [Google Scholar]
- Doebley, J.F.; Gaut, B.S.; Smith, B.D. The Molecular Genetics of Crop Domestication. Cell 2006, 127, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, J.; Edmeades, G.O. Eight Cycles of Selection for Drought Tolerance in Lowland Tropical Maize. II. Responses in Reproductive Behavior. Field Crops Res. 1993, 31, 253–268. [Google Scholar] [CrossRef]
- Gosal, S.S.; Wani, S.H.; Kang, M.S. Biotechnology and Drought Tolerance. J. Crop Improv. 2009, 23, 19–54. [Google Scholar] [CrossRef]
- Ashraf, H.; Ghouri, F.; Baloch, F.S.; Nadeem, M.A.; Fu, X.; Shahid, M.Q. Hybrid Rice Production: A Worldwide Review of Floral Traits and Breeding Technology, with Special Emphasis on China. Plants 2024, 13, 578. [Google Scholar] [CrossRef]
- Whitford, R.; Fleury, D.; Reif, J.C.; Garcia, M.; Okada, T.; Korzun, V.; Langridge, P. Hybrid Breeding in Wheat: Technologies to Improve Hybrid Wheat Seed Production. J. Exp. Bot. 2013, 64, 5411–5428. [Google Scholar] [CrossRef]
- Schnable, P.S.; Springer, N.M. Progress toward Understanding Heterosis in Crop Plants. Annu. Rev. Plant Biol. 2013, 64, 71–88. [Google Scholar] [CrossRef]
- Neele, A.E.F.; Nab, H.J.; Louwes, K.M. Identification of Superior Parents in a Potato Breeding Programme. Theoret. Appl. Genet. 1991, 82, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Packa, D.; Załuski, D.; Graban, Ł.; Lajszner, W. An Evaluation of Spelt Crosses for Breeding New Varieties of Spring Spelt. Agronomy 2019, 9, 167. [Google Scholar] [CrossRef]
- Davies, D.R.; Wall, E.T. Artificial Mutagenesis in Plant Breeding. Nature 1958, 182, 955–956. [Google Scholar] [CrossRef]
- Van De Peer, Y.; Maere, S.; Meyer, A. The Evolutionary Significance of Ancient Genome Duplications. Nat. Rev. Genet. 2009, 10, 725–732. [Google Scholar] [CrossRef]
- Yu, H.; Shahid, M.Q.; Li, Q.; Li, Y.; Li, C.; Lu, Z.; Wu, J.; Zhang, Z.; Liu, X. Production Assessment and Genome Comparison Revealed High Yield Potential and Novel Specific Alleles Associated with Fertility and Yield in Neo-Tetraploid Rice. Rice 2020, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Sprague, G.F.; Alexander, D.E.; Dudley, J.W. Plant Breeding and Genetic Engineering: A Perspective. BioScience 1980, 30, 17–21. [Google Scholar] [CrossRef]
- Chan, S.W.L. Chromosome Engineering: Power Tools for Plant Genetics. Trends Biotechnol. 2010, 28, 605–610. [Google Scholar] [CrossRef]
- Korzun, V.; GmbH, L.-P. Use of molecular markers in cereal breeding. Cell Mol. Biol. Lett. 2002, 7, 811–820. [Google Scholar]
- Dietrich, W.F.; Miller, J.; Steen, R.; Merchant, M.A.; Damron-Boles, D.; Husain, Z.; Dredge, R.; Daly, M.J.; Ingalls, K.A.; O’Connor, T.J.; et al. A Comprehensive Genetic Map of the Mouse Genome. Nature 1996, 380, 149–152. [Google Scholar] [CrossRef]
- Che, Y.; He, Y.; Song, N.; Yang, Y.; Wei, L.; Yang, X.; Zhang, Y.; Zhang, J.; Han, H.; Li, X.; et al. Four-Year and Five-Developing-Stage Dynamic QTL Mapping for Tiller Number in the Hybrid Population of Agropyron Gaertn. Front. Plant Sci. 2022, 13, 835437. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Ma, Z.; Chen, S. Quantitative Trait Locus Mapping of Fruit Aroma Compounds in Cucumber (Cucumber Sativus L.) Based on a Recombinant Inbred Line Population. Hortic. Res. 2022, 9, uhac151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, F.; Wang, J.; Li, G.; Zhang, H.; Zhang, Y. Reconstruction of Linkage Maps in the Distorted Segregation Populations of Backcross, Doubled Haploid and Recombinant Inbred Lines. Chinese Sci. Bull. 2007, 52, 1648–1653. [Google Scholar] [CrossRef]
- Li, H.-Y.; Wang, S.-Z.; Qasim, S.M.; Chen, Z.-X.; Wang, L.; Chen, F.-Y.; Liu, X.-D.; Lu, Y.-G. Excavation of Neutral Alleles San, Sbn, and Scn from Rice Germplasm Harboring S5n Gene. Acta Agron. Sin. 2013, 39, 1366–1376. [Google Scholar] [CrossRef]
- Deokar, A.; Sagi, M.; Daba, K.; Tar’an, B. QTL Sequencing Strategy to Map Genomic Regions Associated with Resistance to Ascochyta Blight in Chickpea. Plant Biotechnol. J. 2019, 17, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-Wide Association Study Using Whole-Genome Sequencing Rapidly Identifies New Genes Influencing Agronomic Traits in Rice. Nat. Genet. 2016, 48, 927–934B. [Google Scholar] [CrossRef]
- Xu, P.; Li, H.; Li, H.; Zhao, G.; Dai, S.; Cui, X.; Liu, Z.; Shi, L.; Wang, X. Genome-Wide and Candidate Gene Association Studies Identify BnPAP17 as Conferring the Utilization of Organic Phosphorus in Oilseed Rape. J. Integr. Agric. 2024, 23, 1134–1149. [Google Scholar] [CrossRef]
- Bone, W.P.; Siewert, K.M.; Jha, A.; Klarin, D.; Damrauer, S.M.; VA Million Veteran Program; Chang, K.-M.; Tsao, P.S.; Assimes, T.L.; Ritchie, M.D.; et al. Multi-Trait Association Studies Discover Pleiotropic Loci between Alzheimer’s Disease and Cardiometabolic Traits. Alzheimers Res. Ther. 2021, 13, 34. [Google Scholar] [CrossRef]
- Korte, A.; Vilhjálmsson, B.; Segura, V.; Platt, A.; Long, Q.; Nordborg, M. A Mixed-Model Approach for Genome-Wide Association Studies of Correlated Traits in Structured Populations. Nat. Genet. 2012, 44, 1066–1071. [Google Scholar] [CrossRef]
- Klei, L.; Luca, D.; Devlin, B.; Roeder, K. Pleiotropy and Principal Components of Heritability Combine to Increase Power for Association Analysis. Genet. Epidemiol. 2008, 32, 9–19. [Google Scholar] [CrossRef]
- van der Sluis, S.; Posthuma, D.; Dolan, C.V. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies. PLoS Genet. 2013, 9, e1003235. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Efficient Multivariate Linear Mixed Model Algorithms for Genome-Wide Association Studies. Nat. Methods 2014, 11, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Misra, G.; Badoni, S.; Parween, S.; Singh, R.K.; Leung, H.; Ladejobi, O.; Mott, R.; Sreenivasulu, N. Genome-wide Association Coupled Gene to Gene Interaction Studies Unveil Novel Epistatic Targets among Major Effect Loci Impacting Rice Grain Chalkiness. Plant Biotechnol. J. 2021, 19, 910–925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for Genome Editing: Progress, Implications and Challenges. Human Mol. Genet. 2014, 23, R40–R46. [Google Scholar] [CrossRef] [PubMed]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Y.; Wei, X.; Dai, Y.; Yuan, D.; Lu, Y.; Pan, Y.; Zhu, Z. Small RNAs as Important Regulators for the Hybrid Vigour of Super-Hybrid Rice. J. Exp. Bot. 2014, 65, 5989–6002. [Google Scholar] [CrossRef]
- Ni, Z.; Kim, E.-D.; Ha, M.; Lackey, E.; Liu, J.; Zhang, Y.; Sun, Q.; Chen, Z.J. Altered Circadian Rhythms Regulate Growth Vigour in Hybrids and Allopolyploids. Nature 2009, 457, 327–331. [Google Scholar] [CrossRef]
- Marcon, C.; Paschold, A.; Malik, W.A.; Lithio, A.; Baldauf, J.A.; Altrogge, L.; Opitz, N.; Lanz, C.; Schoof, H.; Nettleton, D.; et al. Stability of Single-Parent Gene Expression Complementation in Maize Hybrids upon Water Deficit Stress. Plant Physiol. 2017, 173, 1247–1257. [Google Scholar] [CrossRef]
- Hochholdinger, F.; Hoecker, N. Towards the Molecular Basis of Heterosis. Trends Plant Sci. 2007, 12, 427–432. [Google Scholar] [CrossRef]
- Groszmann, M.; Gonzalez-Bayon, R.; Lyons, R.L.; Greaves, I.K.; Kazan, K.; Peacock, W.J.; Dennis, E.S. Hormone-Regulated Defense and Stress Response Networks Contribute to Heterosis in Arabidopsis F1 Hybrids. Proc. Natl. Acad. Sci. USA 2015, 112, E6397–E6406. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics—Technologies to Relieve the Phenotyping Bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Lippman, Z.B.; Zamir, D. Heterosis: Revisiting the Magic. Trends Genet. 2007, 23, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-B. Understanding Crop Genetic Diversity under Modern Plant Breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef]
- Babiker, E.M.; Gordon, T.C.; Chao, S.; Newcomb, M.; Rouse, M.N.; Jin, Y.; Wanyera, R.; Acevedo, M.; Brown-Guedira, G.; Williamson, S.; et al. Mapping Resistance to the Ug99 Race Group of the Stem Rust Pathogen in a Spring Wheat Landrace. Theor. Appl. Genet. 2015, 128, 605–612. [Google Scholar] [CrossRef]
- Fu, Y.-B. Impact of Plant Breeding on Genetic Diversity of Agricultural Crops: Searching for Molecular Evidence. Plant Genet. Resour. 2006, 4, 71–78. [Google Scholar] [CrossRef]
- Mason-Gamer, R.J.; Weil, C.F.; Kellogg, E.A. Granule-Bound Starch Synthase: Structure, Function, and Phylogenetic Utility. Mol. Biol. Evol. 1998, 15, 1658–1673. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Denyer, K.; Martin, C.R. What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 1995, 107, 673–677. [Google Scholar] [CrossRef]
- Tran, Q.H.; Bui, N.H.; Kappel, C.; Dau, N.T.N.; Nguyen, L.T.; Tran, T.T.; Khanh, T.D.; Trung, K.H.; Lenhard, M.; Vi, S.L. Mapping-by-Sequencing via MutMap Identifies a Mutation in ZmCLE7 Underlying Fasciation in a Newly Developed EMS Mutant Population in an Elite Tropical Maize Inbred. Genes. 2020, 11, 281. [Google Scholar] [CrossRef]
- Till, B.J.; Reynolds, S.H.; Weil, C.; Springer, N.; Burtner, C.; Young, K.; Bowers, E.; Codomo, C.A.; Enns, L.C.; Odden, A.R.; et al. Discovery of Induced Point Mutations in Maize Genes by TILLING. BMC Plant Biol. 2004, 4, 12. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Ren, W.; Yang, Q.; Chai, Z.; Chen, R.; Wang, L.; Zhao, J.; Lang, Z.; Wang, H.; et al. Gene-Indexed Mutations in Maize. Mol. Plant 2018, 11, 496–504. [Google Scholar] [CrossRef]
- Mitsunaga, S.; Tashiro, T.; Yamaguchi, J. Identification and Characterization of Gibberellin-Insensitive Mutants Selected from among Dwarf Mutants of Rice. Theoret. Appl. Genet. 1994, 87, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Steffensen, D.M. Chromosome Aberrations Arising Spontaneously and Induced in Meiotic Cells at Low Levels of Radiation in Tradescantia. Nature 1964, 201, 205–206. [Google Scholar] [CrossRef]
- Stadler, L.J. Genetic Effects of X-Rays in Maize. Proc. Natl. Acad. Sci. USA 1928, 14, 69–75. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Huang, J.; Fu, H.; Zhou, L.; Furusawa, Y.; Shu, Q. Mutagenic Effect of Three Ion Beams on Rice and Identification of Heritable Mutations by Whole Genome Sequencing. Plants 2020, 9, 551. [Google Scholar] [CrossRef]
- Geras’kin, S.; Churyukin, R.; Volkova, P. Radiation Exposure of Barley Seeds Can Modify the Early Stages of Plants’ Development. J. Environ. Radioact. 2017, 177, 71–83. [Google Scholar] [CrossRef]
- Younis, A.E.; Hammouda, M.A.; Hegazi, A.T. Effect of X-Radiation of Soaked Cotton Seeds upon Growth, Fruiting and Yield. Plant Soil. 1962, 17, 131–133. [Google Scholar] [CrossRef]
- Breimer, L. Ionizing Radiation-Induced Mutagenesis. Br. J. Cancer 1988, 57, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.; Kolapo, K. Drought Resistance in Rice from Conventional to Molecular Breeding: A Review. Int. J. Mol. Sci. 2019, 20, 3519. [Google Scholar] [CrossRef]
- Brunner, H. Radiation Induced Mutations for Plant Selection. Appl. Radiat. Isot. 1995, 46, 589–594. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Zeng, D.; Cui, J.; Yin, Y.; Zhang, M.; Shan, S.; Liu, M.Y.; Cheng, D.; Lu, W.; Sun, Y. Proteomic Analysis in Different Development Stages on SP0 Generation of Rice Seeds after Space Flight. Life Sci. Space Res. 2020, 26, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Long, L.; Zhang, Y.; Xue, Y.; Liu, J.; Lin, X.; Liu, B. Spaceflight Induces Both Transient and Heritable Alterations in DNA Methylation and Gene Expression in Rice (Oryza Sativa L.). Mutat. Res./Fundam. Mol. Mech. Mutagen. 2009, 662, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Kong, F.; Sun, K.; Wang, T.; Guo, T. From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Front. Public Health 2021, 9, 768071. [Google Scholar] [CrossRef]
- Novarina, D.; Janssens, G.E.; Bokern, K.; Schut, T.; Van Oerle, N.C.; Kazemier, H.G.; Veenhoff, L.M.; Chang, M. A Genome-wide Screen Identifies Genes That Suppress the Accumulation of Spontaneous Mutations in Young and Aged Yeast Cells. Aging Cell 2020, 19, e13084. [Google Scholar] [CrossRef] [PubMed]
- Gecheff, K.I. Further Evidence for a High Position-Specific Effect in the Action of Chemical Mutagens on the Chromosomes of Barley. Theoret. Appl. Genet. 1991, 83, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Rai, P.K. EMS Induced Karyomorphological Variations in Maize (Zea Mays L.) Inbreds. Turk. J. Biol. 2007, 31, 187–195. [Google Scholar]
- Ahituv, N.; Erven, A.; Fuchs, H.; Guy, K.; Ashery–Padan, R.; Williams, T.; De Angelis, M.H.; Avraham, K.B.; Steel, K.P. An ENU-Induced Mutation in AP-2α Leads to Middle Earand Ocular Defects in Doarad Mice. Mamm. Genome 2004, 15, 424–432. [Google Scholar] [CrossRef]
- Greene, E.A.; Codomo, C.A.; Taylor, N.E.; Henikoff, J.G.; Till, B.J.; Reynolds, S.H.; Enns, L.C.; Burtner, C.; Johnson, J.E.; Odden, A.R.; et al. Spectrum of Chemically Induced Mutations From a Large-Scale Reverse-Genetic Screen in Arabidopsis. Genetics 2003, 164, 731–740. [Google Scholar] [CrossRef]
- Brockman, H.E.; de Serres, F.J.; Ong, T.; Katz, A.J.; Griffiths, J.F.; Stafford, R.S. Mutation Tests in Neurospora Crassa A Report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res./Rev. Genet. Toxicol. 1984, 133, 87–134. [Google Scholar] [CrossRef]
- Lethin, J.; Shakil, S.S.M.; Hassan, S.; Sirijovski, N.; Töpel, M.; Olsson, O.; Aronsson, H. Development and Characterization of an EMS-Mutagenized Wheat Population and Identification of Salt-Tolerant Wheat Lines. BMC Plant Biol. 2020, 20, 18. [Google Scholar] [CrossRef]
- Yu, R.; Niu, Y.; Wang, X.; Yang, K.; Han, X.; Liu, Z.; Qi, Z.; Yang, Y. Construction of a Density Mutant Collection in Bitter Gourd via New Germplasms Innovation and Gene Functional Study. Front. Plant Sci. 2022, 13, 1069750. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, S.G.; Tawar, P.N.; Suprasanna, P.; Dixit, G.B.; Prasad, D.T. EMS-Based In Vitro Mutagenesis and Mutant Screening for Smut Resistance with Agronomic Traits in Sugarcane. Sugar Tech. 2021, 23, 854–864. [Google Scholar] [CrossRef]
- Drummond, M.H.; Gordon, M.P.; Nester, E.W.; Chilton, M.-D. Foreign DNA of Bacterial Plasmid Origin Is Transcribed in Crown Gall Tumours. Nature 1977, 269, 535–536. [Google Scholar] [CrossRef]
- Nester, E.W. Agrobacterium: Nature’s Genetic Engineer. Front. Plant Sci. 2015, 5, 730. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, K.A.; Marks, M.D.; Christianson, M.L.; Quatrano, R.S. A Dwarf Mutant of Arabidopsis Generated by T-DNA Insertion Mutagenesis. Science 1989, 243, 1351–1354. [Google Scholar] [CrossRef]
- An, G.; Lee, S.; Kim, S.-H.; Kim, S.-R. Molecular Genetics Using T-DNA in Rice. Plant Cell Physiol. 2005, 46, 14–22. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, J.; Yoo, S.J.; Yoo, S.Y.; Roh, H.; Choi, J.-H.; Choi, M.S.; Chung, K.S.; Han, E.J.; Hong, S.M.; et al. Isolation of 151 Mutants That Have Developmental Defects from T-DNA Tagging. Plant Cell Physiol. 2007, 48, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Koncz, C.; Mayerhofer, R.; Koncz-Kalman, Z.; Nawrath, C.; Reiss, B.; Redei, G.P.; Schell, J. Isolation of a Gene Encoding a Novel Chloroplast Protein by T-DNA Tagging in Arabidopsis Thaliana. EMBO J. 1990, 9, 1337–1346. [Google Scholar] [CrossRef]
- Zubko, E.; Adams, C.J.; Macháèková, I.; Malbeck, J.; Scollan, C.; Meyer, P. Activation Tagging Identifies a Gene from Petunia Hybrida Responsible for the Production of Active Cytokinins in Plants. Plant J. 2002, 29, 797–808. [Google Scholar] [CrossRef]
- Lee, S.-C.; Kim, J.-Y.; Kim, S.-H.; Kim, S.-J.; Lee, K.; Han, S.-K.; Choi, H.-S.; Jeong, D.-H.; An, G.; Kim, S.-R. Trapping and Characterization of Cold-Responsive Genes from T-DNA Tagging Lines in Rice. Plant Sci. 2004, 166, 69–79. [Google Scholar] [CrossRef]
- Feldmann, K.A. T-DNA Insertion Mutagenesis in Arabidopsis: Mutational Spectrum. Plant J. 1991, 1, 71–82. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Lee, S.; Jung, K.-H.; Jun, S.-H.; Jeong, D.-H.; Lee, J.; Kim, C.; Jang, S.; Lee, S.; Yang, K.; et al. T-DNA Insertional Mutagenesis for Functional Genomics in Rice. Plant J. 2000, 22, 561–570. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y. Epigenetic Suppression of T-DNA Insertion Mutants in Arabidopsis. Mol. Plant 2013, 6, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Jupe, F.; Rivkin, A.C.; Michael, T.P.; Zander, M.; Motley, S.T.; Sandoval, J.P.; Slotkin, R.K.; Chen, H.; Castanon, R.; Nery, J.R.; et al. The Complex Architecture and Epigenomic Impact of Plant T-DNA Insertions. PLoS Genet. 2019, 15, e1007819. [Google Scholar] [CrossRef] [PubMed]
- Miyao, A.; Tanaka, K.; Murata, K.; Sawaki, H.; Takeda, S.; Abe, K.; Shinozuka, Y.; Onosato, K.; Hirochika, H. Target Site Specificity of the Tos17 Retrotransposon Shows a Preference for Insertion within Genes and against Insertion in Retrotransposon-Rich Regions of the Genome. Plant Cell 2003, 15, 1771–1780. [Google Scholar] [CrossRef]
- Hirochika, H. Retrotransposons of Rice: Their Regulation and Use for Genome Analysis. In Oryza: From Molecule to Plant; Sasaki, T., Moore, G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 231–240. ISBN 978-94-010-6446-0. [Google Scholar]
- Hirochika, H.; Sugimoto, K.; Otsuki, Y.; Tsugawa, H.; Kanda, M. Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture. Proc. Natl. Acad. Sci. USA 1996, 93, 7783–7788. [Google Scholar] [CrossRef] [PubMed]
- Imagawa, F.; Minagawa, H.; Nakayama, Y.; Kanno, K.; Hayakawa, T.; Kojima, S. Tos17 Insertion in NADH-Dependent Glutamate Synthase Genes Leads to an Increase in Grain Protein Content in Rice. J. Cereal Sci. 2018, 84, 38–43. [Google Scholar] [CrossRef]
- Jun, K.M.; Kim, J.S.; Chae, S.; Pahk, Y.-M.; Lee, G.-S.; Chung, J.-H.; Kim, Y.-K.; Nahm, B.H. Development of Tos17 Insertion Mutants from Korean Cultivars ‘Ilmibyeo’ and ‘Baegjinju1ho’ (Oryza Sativa L.). Appl. Biol. Chem. 2019, 62, 31. [Google Scholar] [CrossRef]
- Hirochika, H. Contribution of the Tos17 Retrotransposon to Rice Functional Genomics. Curr. Opin. Plant Biol. 2001, 4, 118–122. [Google Scholar] [CrossRef]
- Lin, C.; Lin, X.; Hu, L.; Yang, J.; Zhou, T.; Long, L.; Xu, C.; Xing, S.; Qi, B.; Dong, Y.; et al. Dramatic Genotypic Difference in, and Effect of Genetic Crossing on, Tissue Culture-Induced Mobility of Retrotransposon Tos17 in Rice. Plant Cell Rep. 2012, 31, 2057–2063. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Yang, Z.; Xu, C. Genetic Mapping of Quantitative Trait Loci in Crops. Crop J. 2017, 5, 175–184. [Google Scholar] [CrossRef]
- Yu, J.; Holland, J.B.; McMullen, M.D.; Buckler, E.S. Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics 2008, 178, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Poland, J.A.; Bradbury, P.J.; Buckler, E.S.; Nelson, R.J. Genome-Wide Nested Association Mapping of Quantitative Resistance to Northern Leaf Blight in Maize. Proc. Natl. Acad. Sci. USA 2011, 108, 6893–6898. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Bradbury, P.J.; Brown, P.J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckler, E.S. Genome-Wide Association Study of Leaf Architecture in the Maize Nested Association Mapping Population. Nat. Genet. 2011, 43, 159–162. [Google Scholar] [CrossRef]
- Kover, P.X.; Valdar, W.; Trakalo, J.; Scarcelli, N.; Ehrenreich, I.M.; Purugganan, M.D.; Durrant, C.; Mott, R. A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis Thaliana. PLoS Genet. 2009, 5, e1000551. [Google Scholar] [CrossRef]
- Huang, B.E.; George, A.W.; Forrest, K.L.; Kilian, A.; Hayden, M.J.; Morell, M.K.; Cavanagh, C.R. A Multiparent Advanced Generation Inter-cross Population for Genetic Analysis in Wheat. Plant Biotechnol. J. 2012, 10, 826–839. [Google Scholar] [CrossRef]
- Bandillo, N.; Raghavan, C.; Muyco, P.A.; Sevilla, M.A.L.; Lobina, I.T.; Dilla-Ermita, C.J.; Tung, C.-W.; McCouch, S.; Thomson, M.; Mauleon, R.; et al. Multi-Parent Advanced Generation Inter-Cross (MAGIC) Populations in Rice: Progress and Potential for Genetics Research and Breeding. Rice 2013, 6, 11. [Google Scholar] [CrossRef]
- Ramirez-Gonzalez, R.H.; Segovia, V.; Bird, N.; Fenwick, P.; Holdgate, S.; Berry, S.; Jack, P.; Caccamo, M.; Uauy, C. RNA - S Eq Bulked Segregant Analysis Enables the Identification of High-resolution Genetic Markers for Breeding in Hexaploid Wheat. Plant Biotechnol. J. 2015, 13, 613–624. [Google Scholar] [CrossRef]
- Zou, C.; Wang, P.; Xu, Y. Bulked Sample Analysis in Genetics, Genomics and Crop Improvement. Plant Biotechnol. J. 2016, 14, 1941–1955. [Google Scholar] [CrossRef]
- Takagi, H.; Uemura, A.; Yaegashi, H.; Tamiru, M.; Abe, A.; Mitsuoka, C.; Utsushi, H.; Natsume, S.; Kanzaki, H.; Matsumura, H.; et al. M Ut M Ap- G Ap: Whole-genome Resequencing of Mutant F 2 Progeny Bulk Combined with de Novo Assembly of Gap Regions Identifies the Rice Blast Resistance Gene Pii. New Phytol. 2013, 200, 276–283. [Google Scholar] [CrossRef]
- Unterseer, S.; Bauer, E.; Haberer, G.; Seidel, M.; Knaak, C.; Ouzunova, M.; Meitinger, T.; Strom, T.M.; Fries, R.; Pausch, H.; et al. A Powerful Tool for Genome Analysis in Maize: Development and Evaluation of the High Density 600 k SNP Genotyping Array. BMC Genom. 2014, 15, 823. [Google Scholar] [CrossRef] [PubMed]
- Kamara, N.; Jiao, Y.; Huang, W.; Cao, L.; Zhu, L.; Zhao, C.; Huang, X.; Shivute, F.N.; Liu, X.; Wu, J.; et al. Comparative Cytological and Transcriptome Analyses of Ny2 Mutant Delayed Degeneration of Tapetal Cells and Promotes Abnormal Microspore Development in Neo-Tetraploid Rice. Front. Plant Sci. 2023, 14, 1229870. [Google Scholar] [CrossRef] [PubMed]
- Kamara, N. An Uncharacterized Protein NY1 Targets EAT1 to Regulate Anther Tapetum Development in Polyploid Rice. BMC Plant Biol. 2022, 22, 582. [Google Scholar] [CrossRef] [PubMed]
- Kamara, N.; Jiao, Y.; Lu, Z.; Aloryi, K.D.; Wu, J.; Liu, X.; Shahid, M.Q. Cytological Observations and Bulked-Segregant Analysis Coupled Global Genome Sequencing Reveal Two Genes Associated with Pollen Fertility in Tetraploid Rice. Int. J. Mol. Sci. 2021, 22, 841. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Y.; Wei, X.; Li, C.; Wang, A.; Zhao, Q.; Li, W.; Guo, Y.; Deng, L.; Zhu, C.; et al. Genome-Wide Association Study of Flowering Time and Grain Yield Traits in a Worldwide Collection of Rice Germplasm. Nat. Genet. 2012, 44, 32–39. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Vieira, F.G.; Xiao, Y.; Li, Z.; Wang, J.; Nielsen, R.; Chu, C. The Power of Inbreeding: NGS-Based GWAS of Rice Reveals Convergent Evolution during Rice Domestication. Mol. Plant 2016, 9, 975–985. [Google Scholar] [CrossRef]
- Charlesworth, D. Balancing Selection and Its Effects on Sequences in Nearby Genome Regions. PLOS Genet. 2006, 2, e64. [Google Scholar] [CrossRef]
- Huihui, Y.; Qian, D.; Malachy, C.; Bin, Y.; Harkamal, W.; Chi, Z. Genome-wide Discovery of Natural Variation in pre-mRNA Splicing and Prioritising Causal Alternative Splicing to Salt Stress Response in Rice. New Phytol. 2021, 230, 1273–1287. [Google Scholar] [CrossRef]
- Josephs, E.B.; Stinchcombe, J.R.; Wright, S.I. What Can Genome-wide Association Studies Tell Us about the Evolutionary Forces Maintaining Genetic Variation for Quantitative Traits? New Phytol. 2017, 214, 21–33. [Google Scholar] [CrossRef]
- Yan, W.; Wang, B.; Chan, E.; Mitchell-Olds, T. Genetic Architecture and Adaptation of Flowering Time among Environments. New Phytol. 2021, 230, 1214–1227. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, H.; Yeh, C.; Yu, J.; Jeddeloh, J.A.; Nettleton, D.; Schnable, P.S. Extreme-phenotype Genome-wide Association Study (XP-GWAS): A Method for Identifying Trait-associated Variants by Sequencing Pools of Individuals Selected from a Diversity Panel. Plant J. 2015, 84, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhao, X.; Wang, X.; Hathorn, A.; Hunt, C.; Cruickshank, A.W.; Van Oosterom, E.J.; Godwin, I.D.; Mace, E.S.; Jordan, D.R. Large-scale GWAS in Sorghum Reveals Common Genetic Control of Grain Size among Cereals. Plant Biotechnol. J. 2020, 18, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E. Genome-Wide Association Studies. Nat. Rev. Methods Primer 2021, 1, 59. [Google Scholar] [CrossRef]
- Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and Manhattan Plots. J. Open Source Softw. 2018, 3, 1731. [Google Scholar] [CrossRef]
- Ros-Freixedes, R. The Contribution of Whole-Genome Sequence Data to Genome-Wide Association Studies in Livestock: Outcomes and Perspectives. Livest. Sci. 2024, 281, 105430. [Google Scholar] [CrossRef]
- Medini, D.; Donati, C.; Tettelin, H.; Masignani, V.; Rappuoli, R. The Microbial Pan-Genome. Curr. Opin. Genet. Dev. 2005, 15, 589–594. [Google Scholar] [CrossRef]
- Domingo-Sananes, M.R.; McInerney, J.O. Mechanisms That Shape Microbial Pangenomes. Trends Microbiol. 2021, 29, 493–503. [Google Scholar] [CrossRef]
- Schatz, M.C.; Maron, L.G.; Stein, J.C.; Wences, A.; Gurtowski, J.; Biggers, E.; Lee, H.; Kramer, M.; Antoniou, E.; Ghiban, E.; et al. Whole Genome de Novo Assemblies of Three Divergent Strains of Rice, Oryza sativa, Document Novel Gene Space of Aus and Indica. Genome Biol. 2014, 15, 506. [Google Scholar] [CrossRef]
- Montenegro, J.D.; Golicz, A.A.; Bayer, P.E.; Hurgobin, B.; Lee, H.; Chan, C.K.; Visendi, P.; Lai, K.; Doležel, J.; Batley, J.; et al. The Pangenome of Hexaploid Bread Wheat. Plant J. 2017, 90, 1007–1013. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Li, P.; Shen, Y.; Peng, H.; Liu, S.; Zhou, G.-A.; Zhang, H.; Liu, Z.; Shi, M.; et al. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020, 182, 162–176.e13. [Google Scholar] [CrossRef]
- Song, J.-M.; Guan, Z.; Hu, J.; Guo, C.; Yang, Z.; Wang, S.; Liu, D.; Wang, B.; Lu, S.; Zhou, R.; et al. Eight High-Quality Genomes Reveal Pan-Genome Architecture and Ecotype Differentiation of Brassica Napus. Nat. Plants 2020, 6, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.N.; Foerster, J.M.; Johnson, J.M.; Sekhon, R.S.; Muttoni, G.; Vaillancourt, B.; Peñagaricano, F.; Lindquist, E.; Pedraza, M.A.; Barry, K.; et al. Insights into the Maize Pan-Genome and Pan-Transcriptome. Plant Cell 2014, 26, 121–135. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Ma, J.; Jiang, W.; Jin, L.; Zhang, Z.; Guo, Y.; Zhang, J.; Sui, Y.; Zheng, L.; et al. De Novo Assembly of Soybean Wild Relatives for Pan-Genome Analysis of Diversity and Agronomic Traits. Nat. Biotechnol. 2014, 32, 1045–1052. [Google Scholar] [CrossRef]
- Daware, A.; Malik, A.; Srivastava, R.; Das, D.; Ellur, R.K.; Singh, A.K.; Tyagi, A.K.; Parida, S.K. Rice Pan-Genome Array (RPGA): An Efficient Genotyping Solution for Pan-Genome-Based Accelerated Crop Improvement in Rice. Front. Plant Sci. 2022, 113, 26–46. [Google Scholar] [CrossRef]
- Bayer, P.E.; Valliyodan, B.; Hu, H.; Marsh, J.I.; Yuan, Y.; Vuong, T.D.; Patil, G.; Song, Q.; Batley, J.; Varshney, R.K.; et al. Sequencing the USDA Core Soybean Collection Reveals Gene Loss during Domestication and Breeding. Plant Genome 2022, 15, e20109. [Google Scholar] [CrossRef] [PubMed]
- Yocca, A.E.; Lu, Z.; Schmitz, R.J.; Freeling, M.; Edger, P.P. Evolution of Conserved Noncoding Sequences in Arabidopsis Thaliana. Mol. Biol. Evol. 2021, 38, 2692–2703. [Google Scholar] [CrossRef]
- Domingo, J.L. Safety Assessment of GM Plants: An Updated Review of the Scientific Literature. Food Chem. Toxicol. 2016, 95, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Alhariri, A.; Behera, T.K.; Jat, G.S.; Devi, M.B.; Boopalakrishnan, G.; Hemeda, N.F.; Teleb, A.A.; Ismail, E.; Elkordy, A. Analysis of Genetic Diversity and Population Structure in Bitter Gourd (Momordica Charantia L.) Using Morphological and SSR Markers. Plants 2021, 10, 1860. [Google Scholar] [CrossRef]
- Tang, X.; Bao, W.; Zhang, W.; Cheng, Z. Identification of Chromosomes from Multiple Rice Genomes Using a Universal Molecular Cytogenetic Marker System. J. Integr. Plant Biol. 2007, 49, 953–960. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA Molecular Markers in Plant Breeding: Current Status and Recent Advancements in Genomic Selection and Genome Editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Smýkal, P.; Horáček, J.; Dostálová, R.; Hýbl, M. Variety Discrimination in Pea (Pisum Sativum L.) by Molecular, Biochemical and Morphological Markers. J. Appl. Genet. 2008, 49, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.; Przybylska, M.; Straus, D. “RFLP Subtraction”: A Method for Making Libraries of Polymorphic Markers. Proc. Natl. Acad. Sci. USA 1994, 91, 6113–6117. [Google Scholar] [CrossRef] [PubMed]
- Obiadalla-Ali, H.A.; Mohamed, N.E.M.; Khaled, A.G.A. Inbreeding, Outbreeding and RAPD Markers Studies of Faba Bean (Vicia Faba L.) Crop. J. Adv. Res. 2015, 6, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.J. Targeted Development of Informative Microsatellite (SSR) Markers. Nucleic Acids Res. 2001, 29, e44. [Google Scholar] [CrossRef]
- Verma, P.; Shah, N.; Bhatia, S. Development of an Expressed Gene Catalogue and Molecular Markers from the de Novo Assembly of Short Sequence Reads of the Lentil (L Ens. Culinaris M Edik.) Transcriptome. Plant Biotechnol. J. 2013, 11, 894–905. [Google Scholar] [CrossRef]
- Ali, S.; Müller, C.R.; Epplen, J.T. DNA Finger Printing by Oligonucleotide Probes Specific for Simple Repeats. Hum. Genet. 1986, 74, 239–243. [Google Scholar] [CrossRef]
- Litt, M.; Luty, J.A. A Hypervariable Microsatellite Revealed by In Vitro Amplification of a Dinucleotide Repeat within the Cardiac Muscle Actin Gene. Am. J. Hum. Genet. 1989, 44, 397–401. [Google Scholar] [CrossRef]
- Wang, Y.; Ghouri, F.; Kiran, A.; Shahid, M.; Wen, G.; Nie, F. Identification of SSR Markers and Putative Genes Associated with Chlorogenic Acid in Vaccinium Uliginosum through Transcriptome Analysis. Int. J. Agric. Biol. 2019, 22, 827–834. [Google Scholar]
- Ghouri, F.; Naeem, M.; Iqbal, M.; Allah, S.U.; Shahid, M.Q. An analysis of genetic association between yield and quality traits in segregating population of Oryza Sativa L. Appl. Ecol. Env. Res. 2020, 18, 5211–5224. [Google Scholar] [CrossRef]
- Tang, M.; Wang, T.; Zhang, X. A Review of SNP Heritability Estimation Methods. Brief. Bioinform. 2022, 23, bbac067. [Google Scholar] [CrossRef]
- Ganal, M.W.; Altmann, T.; Röder, M.S. SNP Identification in Crop Plants. Curr. Opin. Plant Biol. 2009, 12, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.J. High-Throughput SNP Genotyping to Accelerate Crop Improvement. Plant Breed. Biotech. 2014, 2, 195–212. [Google Scholar] [CrossRef]
- Edwards, D.; Batley, J. Plant Genome Sequencing: Applications for Crop Improvement. Plant Biotechnol. J. 2010, 8, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Cui, X.; Li, R.; Huang, P.; Zong, J.; Yao, D.; Li, G.; Zhang, D.; Yuan, Z. Development of Genome-wide Insertion/Deletion Markers in Rice Based on Graphic Pipeline Platform. J. Integr. Plant Biol. 2015, 57, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Jander, G.; Norris, S.R.; Rounsley, S.D.; Bush, D.F.; Levin, I.M.; Last, R.L. Arabidopsis Map-Based Cloning in the Post-Genome Era. Plant Physiol. 2002, 129, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.L.; David, D.; Heil, J.; Fan, Y.; Zhao, C.; Marth, G. Human Diallelic Insertion/Deletion Polymorphisms. Am. J. Human Genet. 2002, 71, 854–862. [Google Scholar] [CrossRef]
- Hyten, D.L.; Cannon, S.B.; Song, Q.; Weeks, N.; Fickus, E.W.; Shoemaker, R.C.; Specht, J.E.; Farmer, A.D.; May, G.D.; Cregan, P.B. High-Throughput SNP Discovery through Deep Resequencing of a Reduced Representation Library to Anchor and Orient Scaffolds in the Soybean Whole Genome Sequence. BMC Genom. 2010, 11, 38. [Google Scholar] [CrossRef]
- De Maio, N. The Cumulative Indel Model: Fast and Accurate Statistical Evolutionary Alignment. Syst. Biol. 2021, 70, 236–257. [Google Scholar] [CrossRef]
- Konieczny, A.; Ausubel, F.M. A Procedure for Mapping Arabidopsis Mutations Using Co-dominant Ecotype-specific PCR-based Markers. Plant J. 1993, 4, 403–410. [Google Scholar] [CrossRef]
- Minamiyama, Y.; Kinoshita, S.; Inaba, K.; Inoue, M. Development of a Cleaved Amplified Polymorphic Sequence (CAPS) Marker Linked to Pungency in Pepper. Plant Breed. 2005, 124, 288–291. [Google Scholar] [CrossRef]
- Tanaka, M.; Takahata, Y.; Nakayama, H.; Yoshinaga, M.; Kumagai, T.; Nakatani, M. Development of Cleaved Amplified Polymorphic Sequence (CAPS)-Based Markers for Identification of Sweetpotato Cultivars. Sci. Hortic. 2010, 123, 436–442. [Google Scholar] [CrossRef]
- Ujihara, T.; Taniguchi, F.; Tanaka, J.; Hayashi, N. Development of Expressed Sequence Tag (EST)-Based Cleaved Amplified Polymorphic Sequence (CAPS) Markers of Tea Plant and Their Application to Cultivar Identification. J. Agric. Food Chem. 2011, 59, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Paran, I.; Michelmore, R.W. Development of Reliable PCR-Based Markers Linked to Downy Mildew Resistance Genes in Lettuce. Theoret. Appl. Genet. 1993, 85, 985–993. [Google Scholar] [CrossRef]
- Quoc, N.B.; Trang, H.T.T.; Phuong, N.D.N.; Chau, N.N.B.; Jantasuriyarat, C. Development of a SCAR Marker Linked to Fungal Pathogenicity of Rice Blast Fungus Magnaporthe Oryzae. Int. Microbiol. 2021, 24, 149–156. [Google Scholar] [CrossRef]
- Ambreetha, S.; Balachandar, D. SCAR Marker: A Potential Tool for Authentication of Agriculturally Important Microorganisms. J. Basic. Microbiol. 2023, 63, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Quiros, C.F. Sequence-Related Amplified Polymorphism (SRAP), a New Marker System Based on a Simple PCR Reaction: Its Application to Mapping and Gene Tagging in Brassica: Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Benke, A.P.; Krishna, R.; Mahajan, V.; Ansari, W.A.; Gupta, A.J.; Khar, A.; Shelke, P.; Thangasamy, A.; Shabeer, T.P.A.; Singh, M.; et al. Genetic Diversity of Indian Garlic Core Germplasm Using Agro-Biochemical Traits and SRAP Markers. Saudi J. Biol. Sci. 2021, 28, 4833–4844. [Google Scholar] [CrossRef]
- Yi, L.; Dong, Z.; Lei, Y.; Zhao, J.; Xiong, Y.; Yang, J.; Xiong, Y.; Gou, W.; Ma, X. Genetic Diversity and Molecular Characterization of Worldwide Prairie Grass (Bromus catharticus Vahl) Accessions Using SRAP Markers. Agronomy 2021, 11, 2054. [Google Scholar] [CrossRef]
- Al Shaye, N.; Migdadi, H.; Charbaji, A.; Alsayegh, S.; Daoud, S.; AL-Anazi, W.; Alghamdi, S. Genetic Variation among Saudi Tomato (Solanum Lycopersicum L.) Landraces Studied Using SDS-PAGE and SRAP Markers. Saudi J. Biol. Sci. 2018, 25, 1007–1015. [Google Scholar] [CrossRef]
- Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. iPBS: A Universal Method for DNA Fingerprinting and Retrotransposon Isolation. Theor. Appl. Genet. 2010, 121, 1419–1430. [Google Scholar] [CrossRef]
- Nadeem, M.A. Deciphering the Genetic Diversity and Population Structure of Turkish Bread Wheat Germplasm Using iPBS-Retrotransposons Markers. Mol. Biol. Rep. 2021, 48, 6739–6748. [Google Scholar] [CrossRef] [PubMed]
- Demirel, U.; Tındaş, İ.; Yavuz, C.; Baloch, F.S.; Çalışkan, M.E. Assessing Genetic Diversity of Potato Genotypes Using Inter-PBS Retrotransposon Marker System. Plant Genet. Resour. 2018, 16, 137–145. [Google Scholar] [CrossRef]
- Baloch, F.S.; Altaf, M.T.; Bedir, M.; Nadeem, M.A.; Tatar, M.; Karaköy, T.; Aasim, M. iPBS-Retrotransposons Variations: DNA Fingerprinting and the Evaluation of Genetic Diversity and Population Structure in International Cowpea Germplasm. Genet. Resour. Crop Evol. 2023, 70, 1867–1877. [Google Scholar] [CrossRef]
- Milovanov, A.; Zvyagin, A.; Daniyarov, A.; Kalendar, R.; Troshin, L. Genetic Analysis of the Grapevine Genotypes of the Russian Vitis Ampelographic Collection Using iPBS Markers. Genetica 2019, 147, 91–101. [Google Scholar] [CrossRef]
- Ashraf, H.; Ghouri, F.; Zhong, M.; Cheema, S.A.; Haider, F.U.; Sun, L.; Ali, S.; Alshehri, M.A.; Fu, X.; Shahid, M.Q. Oryza Glumaepatula and Calcium Oxide Nanoparticles Enhanced Cr Stress Tolerance by Maintaining Antioxidant Defense, Chlorophyll and Gene Expression Levels in Rice. J. Environ. Manag. 2024, 368, 122239. [Google Scholar] [CrossRef] [PubMed]
- Crick, F.H. On Protein Synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138–163. [Google Scholar] [PubMed]
- Grapov, D.; Fahrmann, J.; Wanichthanarak, K.; Khoomrung, S. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine. OMICS A J. Integr. Biol. 2018, 22, 630–636. [Google Scholar] [CrossRef]
- Liang, Z.; Riaz, A.; Chachar, S.; Ding, Y.; Du, H.; Gu, X. Epigenetic Modifications of mRNA and DNA in Plants. Mol. Plant 2020, 13, 14–30. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Yang, H.; Hua, J. The TIR-NB-LRR Gene SNC1 Is Regulated at the Transcript Level by Multiple Factors. Mol. Plant-Microbe Interact. 2007, 20, 1449–1456. [Google Scholar] [CrossRef]
- Franco-Zorrilla, J.M.; Solano, R. Identification of Plant Transcription Factor Target Sequences. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2017, 1860, 21–30. [Google Scholar] [CrossRef]
- Smita, S.; Katiyar, A.; Chinnusamy, V.; Pandey, D.M.; Bansal, K.C. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice. Front. Plant Sci. 2015, 6, 1157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Rolish, M.E.; Yeo, G.; Tung, V.; Mawson, M.; Burge, C.B. Systematic Identification and Analysis of Exonic Splicing Silencers. Cell 2004, 119, 831–845. [Google Scholar] [CrossRef]
- Ito, T.; Sakai, H.; Meyerowitz, E.M. Whorl-Specific Expression of the SUPERMAN Gene of Arabidopsis Is Mediated by Cis Elements in the Transcribed Region. Curr. Biol. 2003, 13, 1524–1530. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, A.; Yue, Y.; Zhao, Y. uORFs: Important Cis-Regulatory Elements in Plants. Int. J. Mol. Sci. 2020, 21, 6238. [Google Scholar] [CrossRef] [PubMed]
- Halfon, M.S. Silencers, Enhancers, and the Multifunctional Regulatory Genome. Trends Genet. 2020, 36, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Bodo, R.; Andrea, E.; Gregor, S.; Elisabeth, F.; Dörte, M.; Susanne, R.; Klaus, T. Specific Expression of LATERAL SUPPRESSOR Is Controlled by an Evolutionarily Conserved 3′ Enhancer. Plant J. Cell Mol. Biol. 2011, 68, 400–412. [Google Scholar] [CrossRef]
- Busch, M.A.; Bomblies, K.; Weigel, D. Activation of a Floral Homeotic Gene in Arabidopsis. Science 1999, 285, 585–587. [Google Scholar] [CrossRef]
- Lin, B.-Y.; Shih, C.-J.; Hsieh, H.-Y.; Chen, H.-C.; Tu, S.-L. Phytochrome Coordinates with a hnRNP to Regulate Alternative Splicing via an Exonic Splicing Silencer. Plant Physiol. 2020, 182, 243–254. [Google Scholar] [CrossRef]
- Dehesh, K.; Bruce, W.B.; Quail, P.H. A Trans-Acting Factor That Binds to a GT-Motif in a Phytochrome Gene Promoter. Science 1990, 250, 1397–1399. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Z.; Li, W.; Li, H.; Lu, S.; Gan, Z.; Du, H.; Li, T.; Zhang, Y.; Kong, F.; et al. The Legume-Specific Transcription Factor E1 Controls Leaf Morphology in Soybean. BMC Plant Biol. 2021, 21, 531. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Z.; Xie, S.; Si, T.; Li, Y.; Zhu, J.-K. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiol. 2016, 171, 2744–2759. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Barah, P.; Suarez-Rodriguez, M.C.; Bressendorff, S.; Friis, P.; Costantino, P.; Bones, A.M.; Nielsen, H.B.; Mundy, J. Transcriptome Responses to Combinations of Stresses in Arabidopsis. Plant Physiol. 2013, 161, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
- Van Ruyskensvelde, V.; Van Breusegem, F.; Van Der Kelen, K. Post-Transcriptional Regulation of the Oxidative Stress Response in Plants. Free Radic. Biol. Med. 2018, 122, 181–192. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, B.; Shen, Y.; Wang, H.; Feng, Q.; Shi, H. The Arabidopsis RNA Binding Protein with K Homology Motifs, SHINY1, Interacts with the C-Terminal Domain Phosphatase-like 1 (CPL1) to Repress Stress-Inducible Gene Expression. PLoS Genet. 2013, 9, e1003625. [Google Scholar] [CrossRef]
- Mandal, S.S.; Chu, C.; Wada, T.; Handa, H.; Shatkin, A.J.; Reinberg, D. Functional Interactions of RNA-Capping Enzyme with Factors That Positively and Negatively Regulate Promoter Escape by RNA Polymerase II. Proc. Natl. Acad. Sci. USA 2004, 101, 7572–7577. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Zhao, Y.; Simon, S.A.; Huang, S.; Petsch, K.; Arikit, S.; Pillay, M.; Ji, L.; Xie, M.; Cao, X.; et al. Plant MicroRNAs Display Differential 3’ Truncation and Tailing Modifications That Are ARGONAUTE1 Dependent and Conserved Across Species. Plant Cell 2013, 25, 2417–2428. [Google Scholar] [CrossRef]
- Ambrosone, A.; Costa, A.; Leone, A.; Grillo, S. Beyond Transcription: RNA-Binding Proteins as Emerging Regulators of Plant Response to Environmental Constraints. Plant Sci. 2012, 182, 12–18. [Google Scholar] [CrossRef]
- Gendra, E.; Moreno, A.; Albà, M.M.; Pages, M. Interaction of the Plant Glycine-rich RNA-binding Protein MA16 with a Novel Nucleolar DEAD Box RNA Helicase Protein from Zea Mays. Plant J. 2004, 38, 875–886. [Google Scholar] [CrossRef]
- Lapointe, C.P.; Grosely, R.; Sokabe, M.; Alvarado, C.; Wang, J.; Montabana, E.; Villa, N.; Shin, B.-S.; Dever, T.E.; Fraser, C.S.; et al. eIF5B and eIF1A Reorient Initiator tRNA to Allow Ribosomal Subunit Joining. Nature 2022, 607, 185–190. [Google Scholar] [CrossRef]
- Bruns, A.N.; Li, S.; Mohannath, G.; Bisaro, D.M. Phosphorylation of Arabidopsis eIF 4E and eIF iso4E by Sn RK 1 Inhibits Translation. FEBS J. 2019, 286, 3778–3796. [Google Scholar] [CrossRef]
- Liu, X.; Kørner, C.J.; Hajdu, D.; Guo, T.; Ramonell, K.M.; Argueso, C.T.; Pajerowska-Mukhtar, K.M. Arabidopsis Thaliana AtGCN2 Kinase Is Involved in Disease Resistance against Pathogens with Diverse Life Styles. Int. J. Phytopathol. 2015, 4, 93–104. [Google Scholar] [CrossRef]
- Faus, I.; Zabalza, A.; Santiago, J.; Nebauer, S.G.; Royuela, M.; Serrano, R.; Gadea, J. Protein Kinase GCN2 Mediates Responses to Glyphosate in Arabidopsis. BMC Plant Biol. 2015, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Díaz, K.; Aquino-Luna, M.; Hernández-Lucero, E.; Nieto-Rivera, B.; Pulido-Torres, M.A.; Jorge-Pérez, J.H.; Gavilanes-Ruiz, M.; Dinkova, T.D. Arabidopsis Thaliana eIF4E1 and eIF(Iso)4E Participate in Cold Response and Promote Translation of Some Stress-Related mRNAs. Front. Plant Sci. 2021, 12, 698585. [Google Scholar] [CrossRef]
- Lageix, S.; Lanet, E.; Pouch-Pélissier, M.-N.; Espagnol, M.-C.; Robaglia, C.; Deragon, J.-M.; Pélissier, T. ArabidopsiseIF2α Kinase GCN2 Is Essential for Growth in Stress Conditions and Is Activated by Wounding. BMC Plant Biol. 2008, 8, 134. [Google Scholar] [CrossRef]
- Mascarenhas, C.; Edwards-Ingram, L.C.; Zeef, L.; Shenton, D.; Ashe, M.P.; Grant, C.M. Gcn4 Is Required for the Response to Peroxide Stress in the Yeast Saccharomyces Cerevisiae. Mol. Biol. Cell 2008, 19, 2995–3007. [Google Scholar] [CrossRef]
- Lucioli, A.; Tavazza, R.; Baima, S.; Fatyol, K.; Burgyan, J.; Tavazza, M. CRISPR-Cas9 Targeting of the eIF4E1 Gene Extends the Potato Virus Y Resistance Spectrum of the Solanum Tuberosum L. Cv. Desirée. Front. Microbiol. 2022, 13, 873930. [Google Scholar] [CrossRef] [PubMed]
- Yang, P. Editorial: Proteomics of Post-Translational Modifications in Plants. Front. Plant Sci. 2022, 13, 894314. [Google Scholar] [CrossRef]
- He, Y.; Zhou, J.; Meng, X. Phosphoregulation of Ca2+ Influx in Plant Immunity. Trends Plant Sci. 2019, 24, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Yu, M.; Liu, A.; Wang, X.; Li, Y.; Liu, J.; Schnoor, J.L.; Jiang, G. Glycosylation of Tetrabromobisphenol A in Pumpkin. Environ. Sci. Technol. 2019, 53, 8805–8812. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.; Gan, J.; Wang, W.; Zhang, H.; Liu, Y.; Wu, P. OsDGL1, a Homolog of an Oligosaccharyltransferase Complex Subunit, Is Involved in N-Glycosylation and Root Development in Rice. Plant Cell Physiol. 2013, 54, 129–137. [Google Scholar] [CrossRef]
- Trujillo, M.; Shirasu, K. Ubiquitination in Plant Immunity. Curr. Opin. Plant Biol. 2010, 13, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Wang, Y.; Tang, J.; Xue, P.; Li, C.; Liu, L.; Hu, B.; Yang, F.; Loake, G.J.; Chu, C. Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice. Plant Physiol. 2012, 158, 451–464. [Google Scholar] [CrossRef]
- Cheng, K.; Xu, Y.; Yang, C.; Ouellette, L.; Niu, L.; Zhou, X.; Chu, L.; Zhuang, F.; Liu, J.; Wu, H.; et al. Histone Tales: Lysine Methylation, a Protagonist in Arabidopsis Development. J. Exp. Bot. 2019, 71, erz435. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, J.K.; Prasad, M. Histone Acetylation Dynamics Regulating Plant Development and Stress Responses. Cell. Mol. Life Sci. 2021, 78, 4467–4486. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, X.; Wang, G.-L.; Ning, Y. Ubiquitination of Susceptibility Proteins Modulates Rice Broad-Spectrum Resistance. Trends Plant Sci. 2022, 27, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, W.; Wang, X. Post-translational Control of ABA Signalling: The Roles of Protein Phosphorylation and Ubiquitination. Plant Biotechnol. J. 2017, 15, 4–14. [Google Scholar] [CrossRef]
- Kang, J.S.; Frank, J.; Kang, C.H.; Kajiura, H.; Vikram, M.; Ueda, A.; Kim, S.; Bahk, J.D.; Triplett, B.; Fujiyama, K.; et al. Salt Tolerance of Arabidopsis Thaliana Requires Maturation of N-Glycosylated Proteins in the Golgi Apparatus. Proc. Natl. Acad. Sci. USA 2008, 105, 5933–5938. [Google Scholar] [CrossRef] [PubMed]
- Oberkofler, V.; Bäurle, I. Inducible Epigenome Editing Probes for the Role of Histone H3K4 Methylation in Arabidopsis Heat Stress Memory. Plant Physiol. 2022, 189, 703–714. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wu, K.; Schmidt, W. The Histone Deacetylase HDA19 Controls Root Cell Elongation and Modulates a Subset of Phosphate Starvation Responses in Arabidopsis. Sci. Rep. 2015, 5, 15708. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, A.; Cao, C.; Liu, Y. CRISPR Signal Conductor 2.0 for Redirecting Cellular Information Flow. Cell Discov. 2022, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ericson, M.; Fanjul, A.; Erion, D.M.; Paraskevopoulou, M.; Smith, E.N.; Cole, B.; Feaver, R.; Holub, C.; Gavva, N.; et al. Genome-Wide CRISPR Screening to Identify Drivers of TGF-β-Induced Liver Fibrosis in Human Hepatic Stellate Cells. ACS Chem. Biol. 2022, 17, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Nekrasov, V. Plant Genome Editing Made Easy: Targeted Mutagenesis in Model and Crop Plants Using the CRISPR/Cas System. Plant Methods 2013, 9, 39. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, G.; Liang, C.; Tian, Z. Omics-Based Interdisciplinarity Is Accelerating Plant Breeding. Curr. Opin. Plant Biol. 2022, 66, 102167. [Google Scholar] [CrossRef]
- Sivalingam, J.; Kenanov, D.; Han, H.; Nirmal, A.J.; Ng, W.H.; Lee, S.S.; Masilamani, J.; Phan, T.T.; Maurer-Stroh, S.; Kon, O.L. Multidimensional Genome-Wide Analyses Show Accurate FVIII Integration by ZFN in Primary Human Cells. Mol. Ther. 2016, 24, 607–619. [Google Scholar] [CrossRef]
- Joung, J.K.; Sander, J.D. TALENs: A Widely Applicable Technology for Targeted Genome Editing. Nat. Rev. Mol. Cell Biol. 2013, 14, 49–55. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Josa, S.; Seruggia, D.; Fernández, A.; Montoliu, L. Concepts and Tools for Gene Editing. Reprod. Fertil. Dev. 2017, 29, 1. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, C.; Huang, J.; Wang, K. A Simple and Efficient Method for CRISPR/Cas9-Induced Mutant Screening. J. Genet. Genom. 2017, 44, 207–213. [Google Scholar] [CrossRef]
- Jones, D.L.; Leroy, P.; Unoson, C.; Fange, D.; Ćurić, V.; Lawson, M.J.; Elf, J. Kinetics of dCas9 Target Search in Escherichia Coli. Science 2017, 357, 1420–1424. [Google Scholar] [CrossRef]
- Laughery, M.F.; Mayes, H.C.; Pedroza, I.K.; Wyrick, J.J. R-Loop Formation by dCas9 Is Mutagenic in Saccharomyces Cerevisiae. Nucleic Acids Res. 2019, 47, 2389–2401. [Google Scholar] [CrossRef] [PubMed]
- Wessels, H.-H.; Méndez-Mancilla, A.; Guo, X.; Legut, M.; Daniloski, Z.; Sanjana, N.E. Massively Parallel Cas13 Screens Reveal Principles for Guide RNA Design. Nat. Biotechnol. 2020, 38, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA Editing with CRISPR-Cas13. Science 2017, 358, 1019–1027. [Google Scholar] [CrossRef]
- Mahas, A.; Wang, Q.; Marsic, T.; Mahfouz, M.M. Development of Cas12a-Based Cell-Free Small-Molecule Biosensors via Allosteric Regulation of CRISPR Array Expression. Anal. Chem. 2022, 94, 4617–4626. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Macaluso, N.C.; Pizzano, B.L.M.; Cash, M.N.; Spacek, J.; Karasek, J.; Miller, M.R.; Lednicky, J.A.; Dinglasan, R.R.; Salemi, M.; et al. A Thermostable Cas12b from Brevibacillus Leverages One-Pot Discrimination of SARS-CoV-2 Variants of Concern. eBioMedicine 2022, 77, 103926. [Google Scholar] [CrossRef]
- Yan, M.; Li, J. The Evolving CRISPR Technology. Protein Cell 2019, 10, 783–786. [Google Scholar] [CrossRef]
- Genovese, P.; Schiroli, G.; Escobar, G.; Di Tomaso, T.; Firrito, C.; Calabria, A.; Moi, D.; Mazzieri, R.; Bonini, C.; Holmes, M.C.; et al. Targeted Genome Editing in Human Repopulating Haematopoietic Stem Cells. Nature 2014, 510, 235–240. [Google Scholar] [CrossRef]
- San Filippo, J.; Sung, P.; Klein, H. Mechanism of Eukaryotic Homologous Recombination. Annu. Rev. Biochem. 2008, 77, 229–257. [Google Scholar] [CrossRef]
- Chu, V.T.; Weber, T.; Wefers, B.; Wurst, W.; Sander, S.; Rajewsky, K.; Kühn, R. Increasing the Efficiency of Homology-Directed Repair for CRISPR-Cas9-Induced Precise Gene Editing in Mammalian Cells. Nat. Biotechnol. 2015, 33, 543–548. [Google Scholar] [CrossRef]
- Jeon, D.W.; Park, J.-R.; Jang, Y.-H.; Kim, E.-G.; Ryu, T.; Kim, K.-M. Safety Verification of Genetically Modified Rice Morphology, Hereditary Nature, and Quality. Environ. Sci. Eur. 2021, 33, 73. [Google Scholar] [CrossRef]
- Tripathi, L.; Ntui, V.O.; Tripathi, J.N. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing. Int. J. Mol. Sci. 2022, 23, 3619. [Google Scholar] [CrossRef] [PubMed]
- Chennakesavulu, K.; Singh, H.; Trivedi, P.K.; Jain, M.; Yadav, S.R. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-Tolerant Crop Plants. Plant Cell Rep. 2022, 41, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Nazir, R.; Mandal, S.; Mitra, S.; Ghorai, M.; Das, N.; Jha, N.K.; Majumder, M.; Pandey, D.K.; Dey, A. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated Genome-editing Toolkit to Enhance Salt Stress Tolerance in Rice and Wheat. Physiol. Plant. 2022, 174, e13642. [Google Scholar] [CrossRef]
- Nagalakshmi, U.; Meier, N.; Liu, J.-Y.; Voytas, D.F.; Dinesh-Kumar, S.P. High-Efficiency Multiplex Biallelic Heritable Editing in Arabidopsis Using an RNA Virus. Plant Physiol. 2022, 189, 1241–1245. [Google Scholar] [CrossRef]
- Bai, M.; Yuan, C.; Kuang, H.; Sun, Q.; Hu, X.; Cui, L.; Lin, W.; Peng, C.; Yue, P.; Song, S.; et al. Combination of Two Multiplex Genome-Edited Soybean Varieties Enables Customization of Protein Functional Properties. Mol. Plant 2022, 15, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.-B.; Xing, A.; Moon, B.P.; Koellhoffer, J.P.; Huang, L.; Ward, R.T.; Clifton, E.; Falco, S.C.; Cigan, A.M. Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiol. 2015, 169, 960–970. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, J.; Qi, X.; Cheng, B.; Liu, C.; Xie, C. Establishment of an Efficient Seed Fluorescence Reporter-assisted CRISPR/Cas9 Gene Editing in Maize. J. Integr. Plant Biol. 2021, 63, 1671–1680. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, W.; Ge, Q.; Liang, G.; Sun, L.; Wu, J.; Ghouri, F.; Shahid, M.Q.; Liu, X. Seed Development-Related Genes Contribute to High Yield Heterosis in Integrated Utilization of Elite Autotetraploid and Neo-Tetraploid Rice. Front. Plant Sci. 2024, 15, 1421207. [Google Scholar] [CrossRef]
- Chen, Y.; Shahid, M.Q.; Wu, J.; Deng, R.; Chen, Z.; Wang, L.; Liu, G.; Zhou, H.; Liu, X. Thermo-Sensitive Genic Male Sterile Lines of Neo-Tetraploid Rice Developed through Gene Editing Technology Revealed High Levels of Hybrid Vigor. Plants 2022, 11, 1390. [Google Scholar] [CrossRef]
- Li, S.; Lin, D.; Zhang, Y.; Deng, M.; Chen, Y.; Lv, B.; Li, B.; Lei, Y.; Wang, Y.; Zhao, L.; et al. Genome-Edited Powdery Mildew Resistance in Wheat without Growth Penalties. Nature 2022, 602, 455–460. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Z.; Wang, F.; Huang, Y.; Xin, Y.; Liang, S.; Li, B.; Si, H.; Sun, L.; Wang, Q.; et al. Development of an Efficient and Precise Adenine Base Editor (ABE) with Expanded Target Range in Allotetraploid Cotton (Gossypium Hirsutum). BMC Biol. 2022, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Hofvander, P.; Andreasson, E.; Andersson, M. Potato Trait Development Going Fast-Forward with Genome Editing. Trends Genet. 2022, 38, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Feng, Q.; Snouffer, A.; Zhang, B.; Rodríguez, G.R.; van der Knaap, E. Increasing Fruit Weight by Editing a Cis-Regulatory Element in Tomato KLUH Promoter Using CRISPR/Cas9. Front. Plant Sci. 2022, 13, 879642. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, H.; Wang, M.; Wu, M.; Khan, M.R.; Luo, A.; Deng, S.; Busquets, R.; He, G.; Deng, R. Label-Free Detection of Transgenic Crops Using an Isothermal Amplification Reporting CRISPR/Cas12 Assay. ACS Synth. Biol. 2022, 11, 317–324. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Katin-Grazzini, L.; Ding, J.; Gu, X.; Li, Y.; Gu, T.; Wang, R.; Lin, X.; Deng, Z.; et al. A Method for the Production and Expedient Screening of CRISPR/Cas9-Mediated Non-Transgenic Mutant Plants. Hortic. Res. 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Danilo, B.; Perrot, L.; Mara, K.; Botton, E.; Nogué, F.; Mazier, M. Efficient and Transgene-Free Gene Targeting Using Agrobacterium-Mediated Delivery of the CRISPR/Cas9 System in Tomato. Plant Cell Rep. 2019, 38, 459–462. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, Z.; Wang, N.; Xie, G.; Lu, J.; Yan, W.; Zhou, J.; Tang, X.; Deng, X.W. Construction of a Male Sterility System for Hybrid Rice Breeding and Seed Production Using a Nuclear Male Sterility Gene. Proc. Natl. Acad. Sci. USA 2016, 113, 14145–14150. [Google Scholar] [CrossRef]
- He, Y.; Zhu, M.; Wang, L.; Wu, J.; Wang, Q.; Wang, R.; Zhao, Y. Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Mol. Plant 2018, 11, 1210–1213. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Dai, X.; Zhang, D.; Zhao, Y. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiol. 2016, 171, 1794–1800. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. A Novel CRISPR/Cas9 System for Efficiently Generating Cas9-Free Multiplex Mutants in Arabidopsis. Abiotech 2020, 1, 6–14. [Google Scholar] [CrossRef]
- Tian, Y.; Shen, R.; Li, Z.; Yao, Q.; Zhang, X.; Zhong, D.; Tan, X.; Song, M.; Han, H.; Zhu, J.; et al. Efficient C-to-G Editing in Rice Using an Optimized Base Editor. Plant Biotechnol. J. 2022, 20, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, L.; Zhang, K.; Ran, Y. Progresses, Challenges, and Prospects of Genome Editing in Soybean (Glycine Max). Front. Plant Sci. 2020, 11, 571138. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yang, X.; Zhou, Y.; Zhang, Z.; Botella, J.R.; Zhu, J.-K. Manipulating Plant RNA-Silencing Pathways to Improve the Gene Editing Efficiency of CRISPR/Cas9 Systems. Genome Biol. 2018, 19, 149. [Google Scholar] [CrossRef]
- Aasim, M.; Ali, S.A.; Altaf, M.T.; Ali, A.; Nadeem, M.A.; Baloch, F.S. Artificial Neural Network and Decision Tree Facilitated Prediction and Validation of Cytokinin-Auxin Induced in Vitro Organogenesis of Sorghum (Sorghum Bicolor L.). Plant Cell Tiss. Organ. Cult. 2023, 153, 611–624. [Google Scholar] [CrossRef]
- Bai, G.; Ge, Y.; Hussain, W.; Baenziger, P.S.; Graef, G. A Multi-Sensor System for High Throughput Field Phenotyping in Soybean and Wheat Breeding. Comput. Electron. Agric. 2016, 128, 181–192. [Google Scholar] [CrossRef]
- Shakoor, N.; Lee, S.; Mockler, T.C. High Throughput Phenotyping to Accelerate Crop Breeding and Monitoring of Diseases in the Field. Curr. Opin. Plant Biol. 2017, 38, 184–192. [Google Scholar] [CrossRef]
- Sadeghi-Tehran, P.; Sabermanesh, K.; Virlet, N.; Hawkesford, M.J. Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering. Front. Plant Sci. 2017, 8, 252. [Google Scholar] [CrossRef]
- Abdalla, A.; Cen, H.; Wan, L.; Rashid, R.; Weng, H.; Zhou, W.; He, Y. Fine-Tuning Convolutional Neural Network with Transfer Learning for Semantic Segmentation of Ground-Level Oilseed Rape Images in a Field with High Weed Pressure. Comput. Electron. Agric. 2019, 167, 105091. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The Potential of Remote Sensing and Artificial Intelligence as Tools to Improve the Resilience of Agriculture Production Systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Nabwire, S.; Suh, H.-K.; Kim, M.S.; Baek, I.; Cho, B.-K. Review: Application of Artificial Intelligence in Phenomics. Sensors 2021, 21, 4363. [Google Scholar] [CrossRef]
- Koh, J.C.O.; Spangenberg, G.; Kant, S. Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping. Remote Sens. 2021, 13, 858. [Google Scholar] [CrossRef]
- Xu, C.; Jackson, S.A. Machine Learning and Complex Biological Data. Genome Biol. 2019, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Stigliani, A.; Vachon, G.; Carles, C.; Smaczniak, C.; Zubieta, C.; Kaufmann, K.; Parcy, F. Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants. Mol. Plant 2019, 12, 743–763. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and Deep Learning Meet Genome-Scale Metabolic Modeling. PLoS Comput. Biol. 2019, 15, e1007084. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J. De Novo Protein Structure Prediction by Big Data and Deep Learning. Biophys. J. 2017, 112, 55a. [Google Scholar] [CrossRef]
- Sharma, S.; Pinson, S.R.M.; Gealy, D.R.; Edwards, J.D. Genomic Prediction and QTL Mapping of Root System Architecture and Above-Ground Agronomic Traits in Rice (Oryza Sativa L.) with a Multitrait Index and Bayesian Networks. G3 (Bethesda) 2021, 11, jkab178. [Google Scholar] [CrossRef]
- Yoosefzadeh Najafabadi, M.; Hesami, M.; Eskandari, M. Machine Learning-Assisted Approaches in Modernized Plant Breeding Programs. Genes 2023, 14, 777. [Google Scholar] [CrossRef]
- Khan, M.H.U.; Wang, S.; Wang, J.; Ahmar, S.; Saeed, S.; Khan, S.U.; Xu, X.; Chen, H.; Bhat, J.A.; Feng, X. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding. Int. J. Mol. Sci. 2022, 23, 11156. [Google Scholar] [CrossRef]
- Artificial Intelligent Techniques for Wireless Communication and Networking, 1st ed.; Kanthavel, R.; Ananthajothi, K.; Balamurugan, S.; Ganesh, R.K. (Eds.) Wiley: Hoboken, NJ, USA, 2022; ISBN 978-1-119-82127-4. [Google Scholar]
- Song, P.; Wang, J.; Guo, X.; Yang, W.; Zhao, C. High-Throughput Phenotyping: Breaking through the Bottleneck in Future Crop Breeding. Crop J. 2021, 9, 633–645. [Google Scholar] [CrossRef]
- Sheikh, M.; Iqra, F.; Ambreen, H.; Pravin, K.A.; Ikra, M.; Chung, Y.S. Integrating Artificial Intelligence and High-Throughput Phenotyping for Crop Improvement. J. Integr. Agric. 2024, 23, 1787–1802. [Google Scholar] [CrossRef]
- Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Scarascia Mugnozza, G.; Moshelion, M.; Tuskan, G.A.; Keurentjes, J.J.B.; Altman, A. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. Trends Biotechnol. 2019, 37, 1217–1235. [Google Scholar] [CrossRef] [PubMed]
- Jasim, A.N.; Fourati, L.C.; Albahri, O.S. Evaluation of Unmanned Aerial Vehicles for Precision Agriculture Based on Integrated Fuzzy Decision-Making Approach. IEEE Access 2023, 11, 75037–75062. [Google Scholar] [CrossRef]
- Redhu, N.S.; Thakur, Z.; Yashveer, S.; Mor, P. Chapter 37—Artificial Intelligence: A Way Forward for Agricultural Sciences. In Bioinformatics in Agriculture; Sharma, P., Yadav, D., Gaur, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 641–668. ISBN 978-0-323-89778-5. [Google Scholar]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of Hyperspectral Imaging in Plant Phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Telikani, A.; Sarkar, A.; Du, B.; Shen, J. Machine Learning for UAV-Aided ITS: A Review with Comparative Study. In IEEE Transactions on Intelligent Transportation Systems; IEEE: Piscataway, NJ, USA, 2024; pp. 1–19. [Google Scholar] [CrossRef]
- Costa, L. Determining Leaf Nutrient Concentrations in Citrus Trees Using UAV Imagery and Machine Learning. Precis. Agric. 2022, 23, 854–875. [Google Scholar] [CrossRef]
- Zhang, C.; Marzougui, A.; Sankaran, S. High-Resolution Satellite Imagery Applications in Crop Phenotyping: An Overview. Comput. Electron. Agric. 2020, 175, 105584. [Google Scholar] [CrossRef]
- Guan, K.; Wu, J.; Kimball, J.S.; Anderson, M.C.; Frolking, S.; Li, B.; Hain, C.R.; Lobell, D.B. The Shared and Unique Values of Optical, Fluorescence, Thermal and Microwave Satellite Data for Estimating Large-Scale Crop Yields. Remote Sens. Environ. 2017, 199, 333–349. [Google Scholar] [CrossRef]
- Mahood, E.H.; Kruse, L.H.; Moghe, G.D. Machine Learning: A Powerful Tool for Gene Function Prediction in Plants. Appl. Plant Sci. 2020, 8, e11376. [Google Scholar] [CrossRef]
- Caudai, C.; Galizia, A.; Geraci, F.; Le Pera, L.; Morea, V.; Salerno, E.; Via, A.; Colombo, T. AI Applications in Functional Genomics. Comput. Struct. Biotechnol. J. 2021, 19, 5762–5790. [Google Scholar] [CrossRef]
- Dasari, C.M.; Amilpur, S.; Bhukya, R. Exploring Variable-Length Features (Motifs) for Predicting Binding Sites through Interpretable Deep Neural Networks. Eng. Appl. Artif. Intell. 2021, 106, 104485. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
ZFN | TALEN | CRISPR/Cas | |
---|---|---|---|
Combination mode | Protein–DNA | Protein–DNA | RNA–DNA |
Identification length | (9 or 12 bp) × 2 | (8–31 bp) × 2 | 20 bp + “NGG” |
Cutting elements | FokI Protein | FokI Protein | Cas Protein |
Composition | Zinc finger DNA binding domain + DNA cutting domain | N-terminal structural domain containing nuclear localization signal + Central structural domain of a typical tandem TALE repeat sequence + C-terminal structural domain with FokI | The commonly used Cas nuclease is Cas9 nuclease, which has two important nuclease structural domains RuvC and HNH. |
Advantages | Easy design and high sequence specificity | High sequence-specific binding ability, high efficiency, and easy design | Precise targeting, low cytotoxicity, low cost and easy operation, low off-target rate |
Disadvantages | Easy off-target, high cytotoxicity, high potential risk, low efficiency | High cytotoxicity, tedious assembly process, and high workload | PAM sequence must be present before the target site, low specificity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Lai, M.; Ghouri, F.; Nawaz, M.A.; Ali, F.; Baloch, F.S.; Nadeem, M.A.; Aasim, M.; Shahid, M.Q. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review. Plants 2024, 13, 2676. https://doi.org/10.3390/plants13192676
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review. Plants. 2024; 13(19):2676. https://doi.org/10.3390/plants13192676
Chicago/Turabian StyleSun, Lixia, Mingyu Lai, Fozia Ghouri, Muhammad Amjad Nawaz, Fawad Ali, Faheem Shehzad Baloch, Muhammad Azhar Nadeem, Muhammad Aasim, and Muhammad Qasim Shahid. 2024. "Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review" Plants 13, no. 19: 2676. https://doi.org/10.3390/plants13192676
APA StyleSun, L., Lai, M., Ghouri, F., Nawaz, M. A., Ali, F., Baloch, F. S., Nadeem, M. A., Aasim, M., & Shahid, M. Q. (2024). Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review. Plants, 13(19), 2676. https://doi.org/10.3390/plants13192676