Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields
2.2. Fatty Acid Profile and Bioactive Compounds
2.3. Oxidative Stability (OSI) of Oils
3. Materials and Methods
3.1. Materials and Cold Pressing Oil Processing
3.2. Pressurized Solvent Extraction
3.3. Characterization of the Oils
3.3.1. Fatty Acids, Phytosterols and Tocopherols Analysis by GC/MS
3.3.2. Determination of Total Phenolic Content and DPPH Assay
3.3.3. UHPLC-ESI-MS Profile of Phenolic Compounds
3.3.4. Oxidative Stability Analysis by Rancimat
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INC—International Nut & Dried Fruit. Nuts & Dried Fruits Statistical Yearbook 2022/2023; INC: Reus, Spain, 2023. [Google Scholar]
- Kromhout, D.; Spaaij, C.J.K.; De Goede, J.; Weggemans, R.M.; Brug, J.; Geleijnse, J.M.; Van Goudoever, J.B.; Hoes, A.W.; Hopman, M.T.E.; Iestra, J.A.; et al. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef] [PubMed]
- USDA—U.S. Department of Agriculture; U.S. Departament of Health and Human Services. Dietary Guidelines for Americans 2020–2025; USDA: Washington, DC, USA, 2020.
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Duarte, G.B.S.; Reis, B.Z.; Cozzolino, S.M.F. Brazil nuts: Nutritional composition, health benefits and safety aspects. Food Res. Int. 2017, 100, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.V.; Corrêa, N.C.F.; Carvalho, R.N.; Costa, C.E.F.; Lannes, S.C.S. Yield, nutritional quality, and thermal-oxidative stability of Brazil nut oil (Bertolletia excelsa H.B.K) obtained by supercritical extraction. J. Food Eng. 2013, 117, 499–504. [Google Scholar] [CrossRef]
- da Fonseca, F.L.; Rover, O.J.; Wadt, L.H.d.O.; Cartaxo, C.B.d.C. Sustainability indicators of the Brazil nut tree management. Rev. Bras. Ciênc. Ambient. 2021, 56, 551–563. [Google Scholar] [CrossRef]
- Kainer, K.A.; Wadt, L.H.O.; Staudhammer, C.L. The evolving role of Bertholletia excelsa in Amazonia: Contributing to local livelihoods and forest conservation. Desenvolv. Meio Ambiente 2018, 48, 477–497. [Google Scholar] [CrossRef]
- Zanqui, A.B.; da Silva, C.M.; Ressutte, J.B.; de Morais, D.R.; Santos, J.M.; Eberlin, M.N.; Cardozo-Filho, L.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Brazil nut oil extraction using subcritical N-propane: Advantages and chemical composition. J. Braz. Chem. Soc. 2020, 31, 603–612. [Google Scholar] [CrossRef]
- Freitas, S.P.; Freitas-Silva, O.; de Miranda, I.C.; Coelho, M.A.Z. Extração e fracionamento simultâneo do óleo da castanha-do-Brasil com etanol. Food Sci. Technol. 2007, 27, 14–18. [Google Scholar] [CrossRef]
- Derewiaka, D.; Wołosiak, R.; Bot, P.J.; Szwed, E. Physicochemical properties and composition of lipid fraction of selected edible nuts. Paquistan J. Bot. 2014, 46, 337–343. [Google Scholar]
- Luo, X.J.; Liu, J.; Luo, Y.; Zhang, X.L.; Wu, J.P.; Lin, Z.; Chen, S.J.; Mai, B.X.; Yang, Z.Y. Polybrominated diphenyl ethers (PBDEs) in free-range domestic fowl from an e-waste recycling site in South China: Levels, profile and human dietary exposure. Environ. Int. 2009, 35, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Rojas, W.V.; Hernández, D.M.; Cano, M.P.; Reali, T.F. Extraction and Analytical Characterization of Phenolic Compounds from Brazil Nut (Bertholletia excelsa) Skin Industrial by-Product. Trends Sci. 2023, 20, 5457. [Google Scholar] [CrossRef]
- Takeuchi, K.P.; Egea, M.B. Bioactive Compounds of the Brazil Nut (Bertholletia excelsa Bonpl.): Nutritional and Health Aspects. In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H., Bapat, V., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2020; pp. 207–221. [Google Scholar]
- da Costa, P.A.; Ballus, C.A.; Teixeira-Filho, J.; Godoy, H.T. Phytosterols and tocopherols content of pulps and nuts of Brazilian fruits. Food Res. Int. 2010, 43, 1603–1606. [Google Scholar] [CrossRef]
- Chunhieng, T.; Hafidi, A.; Pioch, D.; Bronchier, J.; Montet, D. Detailed Study of Brazil Nut (Bertholletia excelsa) Oil Micro-Compounds: Phospholipids, Tocopherols and Sterols. J. Braz. Chem. Soc. 2008, 19, 1374–1380. [Google Scholar] [CrossRef]
- Santos, O.V.; Correa, N.C.F.; Soares, F.A.S.M.; Gioielli, L.A.; Costa, C.E.F.; Lannes, S.C.S. Chemical evaluation and thermal behavior of Brazil nut oil obtained by different extraction processes. Food Res. Int. 2012, 47, 253–258. [Google Scholar] [CrossRef]
- Jaski, J.M.; Abrantes, K.K.B.; Zanqui, A.B.; Stevanato, N.; da Silva, C.; Barão, C.E.; Bonfim-Rocha, L.; Cardozo-Filho, L. Simultaneous extraction of sunflower oil and active compounds from olive leaves using pressurized propane. Curr. Res. Food Sci. 2022, 5, 531–544. [Google Scholar] [CrossRef]
- Cravotto, C.; Fabiano-Tixier, A.-S.; Claux, O.; Abert-Vian, M.; Tabasso, S.; Cravotto, G.; Chemat, F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022, 11, 3412. [Google Scholar] [CrossRef]
- López-Hortas, L.; Rodríguez, P.; Díaz-Reinoso, B.; Gaspar, M.C.; de Sousa, H.C.; Braga, M.E.M.; Domínguez, H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J. Supercrit. Fluids 2022, 188, 105652. [Google Scholar] [CrossRef]
- de Almeida-Couto, J.M.F.; Abrantes, K.K.B.; Barão, C.E.; Wisniewski, A.; da Silva, C.; Cabral, V.F.; Cardozo-Filho, L. Pressurized mixture of CO2 and propane for enhanced extraction of non-edible vegetable oil. J. Supercrit. Fluids 2021, 171, 105171. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Özcan, M.M.; Al Juhaimi, F.; Uslu, N. The effect of heat treatment on phenolic compounds and fatty acid composition of Brazilian nut and hazelnut. J. Food Sci. Technol. 2018, 55, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Trentini, C.P.; Santos, K.A.; da Silva, E.A.; Garcia, V.A.D.S.; Cardozo-Filho, L.; da Silva, C. Oil extraction from macauba pulp using compressed propane. J. Supercrit. Fluids 2017, 126, 72–78. [Google Scholar] [CrossRef]
- Hamdan, S.; Daood, H.G.; Toth-Markus, M.; Illés, V. Extraction of cardamom oil by supercritical carbon dioxide and sub-critical propane. J. Supercrit. Fluids 2008, 44, 25–30. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Oxidative stability of tree nut oils. J. Agric. Food Chem. 2008, 56, 4751–4759. [Google Scholar] [CrossRef] [PubMed]
- Siger, A.; Górnás, P. Free tocopherols and tocotrienols in 82 plant species’ oil: Chemotaxonomicrelation as demonstrated by PCA and HCA. Food Res. Int. 2023, 164, 1–9. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Lipid class compositions, tocopherols and sterols of tree nut oils extracted with different solvents. J. Food Lipids 2008, 15, 81–96. [Google Scholar] [CrossRef]
- Vasquez, W.V.; Hernández, D.M.; del Hierro, J.N.; Martin, D.; Cano, M.P.; Fornari, T. Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. J. Supercrit. Fluids 2021, 171, 105188. [Google Scholar] [CrossRef]
- Lomascolo, A.; Odinot, E.; Villeneuve, P.; Lecomte, J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: A review. Biotechnol. Biofuels Bioprod. 2023, 16, 173. [Google Scholar] [CrossRef]
- Santos, K.A.; Bariccatti, R.A.; Cardozo-Filho, L.; Schneider, R.; Palú, F.; Da Silva, C.; Da Silva, E.A. Extraction of crambe seed oil using subcritical propane: Kinetics, characterization and modeling. J. Supercrit. Fluids 2015, 104, 54–61. [Google Scholar] [CrossRef]
- John, J.A.; Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2010, 2, 196–209. [Google Scholar] [CrossRef]
- Koffi, E.; Sea, T.; Dodehe, Y.; Soro, S. Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. J. Anim. Plant Sci. 2010, 5, 550–558. [Google Scholar]
- Gomes, S.; Torres, A.G. Optimized extraction of polyphenolic antioxidant compounds from Brazil nut (Bertholletia excelsa) cake and evaluation of the polyphenol profile by HPLC. J. Sci. Food Agric. 2016, 96, 2805–2814. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.M.; Zanqui, A.B.; Gohara, A.K.; De Souza, A.H.P.; Cardozo-Filho, L.; Visentainer, J.V.; Rovigatti Chiavelli, L.U.; Bittencourt, P.R.S.; Da Silva, E.A.; Matsushita, M. Compressed n-propane extraction of lipids and bioactive compounds from Perilla (Perilla frutescens). J. Supercrit. Fluids 2015, 102, 1–8. [Google Scholar] [CrossRef]
- Maldonade, I.R.; Lozada, M.I.O.; Oliveira, L.D.L.; Amaro, G.B. Estabilidade Oxidativa de óleos de Sementes de Cucurbitáceas; EMBRAPA Hortaliças: Brasília, Brazil, 2019. [Google Scholar]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. P-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef] [PubMed]
- Maestri, D.; Cittadini, M.C.; Bodoira, R.; Martínez, M. Tree Nut Oils: Chemical Profiles, Extraction, Stability, and Quality Concerns. Eur. J. Lipid Sci. Technol. 2020, 122, 1900450. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Ghazani, S.M.; Corazza, M.L.; Marangoni, A.G.; Ribani, R.H. Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. J. Supercrit. Fluids 2018, 133, 122–132. [Google Scholar] [CrossRef]
- Piva, G.S.; Weschenfelder, E.F.; Franceschi, E.; Cansian, R.L.; Paroul, N.; Steffens, C. Linseed (Linum usitatissimum) Oil Extraction Using Different Solvents. Food Technol. Biotechnol. 2018, 56, 366–372. [Google Scholar] [CrossRef]
- Cuco, R.P.; Massa, T.B.; Postaue, N.; Cardozo-Filho, L.; da Silva, C. Oil extraction from structured bed of pumpkin seeds and peel using compressed propane as solvent. J. Supercrit. Fluids 2019, 152, 104568. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Rosa, M. Lamuela-Raventós: Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Pattnaik, M.; Mishra, H.N. Oxidative stability of ternary blends of vegetable oils: A chemometric approach. LWT 2021, 142, 111018. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A guide for its bootstrap SISVAR: A guide for its bootstrap procedures in multiple comparisons. Ciênc. Agrotecnol. 2014, 38, 109–112. [Google Scholar] [CrossRef]
Run | Code | Solvent | Matrix | Time (min) a | T (°C) | P (MPa) | Oil Yield (wt%) |
---|---|---|---|---|---|---|---|
1 | OPF[p1] | n-propane | BNSDFO | 50 | 40 | 8 | 13.7 |
2 | OPF[p2] | 40 | 4 | 13.8 | |||
3 | OPF[p3] | 40 | 2 | 13.7 ± 0.3 b | |||
4 | OPF[m] | CO2 + n-propane * | BNSDFO | 100 | 40 | 12 | 2.2 |
5 | BNKO | Cold pressing | BNKO ** | 31.3 ± 3.0 b |
Fatty Acid (%) | [M+] (%) | Fragment Ions (m/z) * | BNKO | OPF[p1] | OPF[p2] | OPF[p3] | OPF[m] |
---|---|---|---|---|---|---|---|
Palmitic (C16:0) | 270 | 74, 87, 55, 75, 57, 143, 69, 59, 83, 227 | 15.2 ± 0.0 b | 14.7 ± 0.2 b | 14.6 ± 0.0 b | 14.8 ± 0.1 b | 16.07 ± 0.0 a |
Palmitoleic (C16:1) | 268 | 55, 69, 74, 83, 87, 67, 84, 81, 97, 96 | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a | 0.3 ± 0.0 a |
Stearic (C18:0) | 298 | 74, 87, 55, 75, 57, 143, 69, 83, 59, 255 | 13.3 ± 0.1 a | 12.3 ± 0.0 c | 12.4 ± 0.0 a,b | 12.3 ± 0.0 c | 11.7 ± 0.0 d |
Oleic (C18:1) | 296 | 55, 69, 74, 83, 97, 84, 87, 96, 67, 81 | 31.3 ± 0.0 a | 30.0 ± 0.2 a | 30.3 ± 0.1 a | 30.2 ± 0.1 a | 30.2 ± 0.1 a |
Linoleic (C18:2) | 294 | 67, 81, 55, 95, 68, 82, 79, 96, 69, 109 | 39.4 ± 0.1 b | 42.3 ± 0.0 a | 42.2 ± 0.1 a | 42.0 ± 0.1 a | 41.3 ± 0.1 a |
Linolenic (C18:3) | 292 | 79, 67, 95, 93, 55, 80, 81, 108, 107, 77 | 0.1 ± 0.0 b | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a |
Heneicosanoic (C21:0) | 326 | 74, 87, 55, 57, 75, 69, 143, 83, 59, 97 | 0.3 ± 0.0 b | 0.3 ± 0.1 a,b | 0.2 ± 0.0 a | 0.2 ± 0.0 b | 0.3 ± 0.0 b |
SFA | 28.9 a | 27.3 c | 27.2 c | 27.4 b,c | 28.0 b | ||
MUFA | 31.6 a | 30.3 a | 30.6 a | 30.5 a | 30.5 a | ||
PUFA | 39.5 b | 42.5 a | 42.3 a | 42.1 a | 41.4 a | ||
Bioactive compounds (mg 100 g−1 oil) | |||||||
Squalene | 410 | 69, 81, 95, 68, 67, 121, 93 | 392.60 ± 3.46 b | 343.56 ± 2.32 c | 345.88 ± 4.35 c | 354.88 ± 1.14 c | 1007.44 ± 3.96 a |
(β+γ)-tocopherol | 488 | 488, 223, 73, 222, 489, 224 | 16.62 ± 0.10 a | 16.48 ± 0.15 a | 16.88 ± 0.09 a | 14.42 ± 1.20 b | 16.30 ± 0.25 a |
β-Sitosterol | 486 | 129, 73, 57, 357, 95, 75, 81, 396 | 36 ± 2.57 b | 40 ± 1.87 a | 40 ± 0.55 a | 40 ± 3.05 a | 41 ± 0.69 a |
Phenolics | DPPH | |
---|---|---|
mg EAG 100 g−1 Oil | (µmol 100 g−1 Oil) | |
BNKO | 8.23 a ± 0.84 | 366.15 a ± 24.69 |
OPF[p1] | 5.14 b ± 0.49 | 199.03 b ± 1.45 |
OPF[p2] | 5.60 b ± 0.24 | 197.94 b ± 2.13 |
OPF[p3] | 5.82 b ± 0.25 | 198.30 b ± 4.64 |
OPF[m] | 5.74 b ± 0.13 | 197.45 b ± 2.58 |
Number | Class | Compound Annotation | Chemical Formula | [M−H]− Measured | Fragments | Occurrence | ||||
---|---|---|---|---|---|---|---|---|---|---|
BNKO | OPF | |||||||||
OPF[p1] | OPF[p2] | OPF[p3] | OPF[m] | |||||||
Phenolic acids | ||||||||||
1 | Hydroxybenzoic acid | Gallic acid | C7H6O5 | 169 | 79.02, 69.03, 51.02, 41.04, | + | + | + | + | + |
2 | Hydroxybenzoic acid | Gallic acid derivative | - | 274 | 125.02, 169.01 | + | − | − | − | − |
3 | Hydroxybenzoic acid | 4-Hydroxybenzoic acid | C7H6O3 | 137.03 | 106.64, 93.03 | + | + | + | + | + |
4 | Hydroxybenzoic acid | Ellagic acid | C14H6O8 | 301 | 257, 283, 285, 229, 184.92, 134.92 | + | + | + | + | + |
5 | Hydroxycinnamic acids | p-Coumaric acid | C9H8O3 | 164.05 | 119.05, 91.05 | − | − | + | + | − |
6 | Hydroxycinnamic acids | Ferulic acid | C10H10O4 | 193 | 133.1, 161, 177.1 | + | + | + | + | + |
7 | Dihydroxybenzoic acid | Protocatechuic acid | C7H6O4 | 153 | - | + | − | + | + | − |
8 | Dihydroxybenzoic acid | Protocatechuic acid derivative | - | 329 | 153.04, 109.03, 124.03 | + | + | + | + | + |
9 | Dihydroxybenzoic acid | Vanillic acid | C8H8O4 | 167.03 | 152.01, 108.02 | + | + | − | − | + |
10 | Dihydroxybenzoic acid | Ellagic acid derivative | - | 447 | 301, 257, 229 | − | − | + | + | + |
11 | Dihydroxybenzoic acid | Vanillic acid derivative | - | 329 | 167 | + | + | + | + | − |
12 | α-Ketopropionic acid | Pyruvic acid | C3H4O3 | 87.06 | 59.01 | + | − | + | + | + |
13 | Ketoaldonic Acid | Ascorbic acid | C6H8O6 | 175.03 | 147.2, 87.00, 69.03 | − | + | − | − | + |
14 | Dicarboxylic Acid | Succinic acid | C4H6O4 | 117.02 | 72.91 | + | + | + | + | + |
15 | Phenolic Aldehyde | Vanillin | C8H8O3 | 151.05 | 137.05, 123.05, 109.0, 81.0 | + | + | + | + | + |
Flavanoids | ||||||||||
16 | Flavanol | Catechin | C15H14O6 | 289.1 | 136.8, 150.7, 160.8 | + | + | + | + | + |
17 | Flavanol | Epicatechin | C15H14O6 | 279 | 109.01, 121.01, 123.03, 125.01, 137.00 | + | + | + | + | + |
18 | Flavanol | Catechin gallate | C22H18O10 | 441.03 | 109.01, 125.00, 168.98, 289.03 | + | + | + | + | + |
19 | Flavanol | Epicatechin gallate | C22H18O10 | 441.19 | 109.08, 125, 168.98, 151.10, 203.14, 245.16, 289.16 | + | + | + | + | + |
20 | Flavanol | Epigallocatechin 3-Ogallate | C22H18O11 | 457.3 | 305.6, 169.1, 125.02 | + | + | − | − | + |
21 | Flavonol | Quercetin | C15H10O7 | 300.9 | 179, 151 | + | + | + | + | + |
22 | Flavonol | Myricetin-3-O-rhamnoside | C21H20O12 | 463 | 317 | − | + | − | − | + |
23 | Flavonol | Taxifolin (dihydroquercetin) | C15H12O7 | 303.05 | 285.05, 179.00, 125.03 | + | + | + | + | + |
24 | Organic Acid | Citric acid | C6H7O7 | 191 | 111, 173 | + | + | + | + | + |
OXS (h) | |
---|---|
BNKO | 8.7 ± 0.02 |
OPF[p1] | 12.1 ± 0.34 |
OPF[p2] | 12.4 ± 0.24 |
OPF[p3] | 6.5 ± 0.14 |
OPF[m] | 12.3 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa Abrantes, K.K.; Colombo Pimentel, T.; da Silva, C.; Santos Junior, O.d.O.; Barão, C.E.; Cardozo-Filho, L. Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability. Plants 2024, 13, 2678. https://doi.org/10.3390/plants13192678
Barbosa Abrantes KK, Colombo Pimentel T, da Silva C, Santos Junior OdO, Barão CE, Cardozo-Filho L. Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability. Plants. 2024; 13(19):2678. https://doi.org/10.3390/plants13192678
Chicago/Turabian StyleBarbosa Abrantes, Karen Keli, Tatiana Colombo Pimentel, Camila da Silva, Oscar de Oliveira Santos Junior, Carlos Eduardo Barão, and Lucio Cardozo-Filho. 2024. "Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability" Plants 13, no. 19: 2678. https://doi.org/10.3390/plants13192678
APA StyleBarbosa Abrantes, K. K., Colombo Pimentel, T., da Silva, C., Santos Junior, O. d. O., Barão, C. E., & Cardozo-Filho, L. (2024). Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability. Plants, 13(19), 2678. https://doi.org/10.3390/plants13192678