Effects of Sulfur Application on the Quality of Fresh Waxy Maize
Abstract
:1. Introduction
2. Results
2.1. Grain Weight
2.2. Grain Component Content
2.3. Pasting Properties of Waxy Maize Flour and Starch
2.4. Thermal Properties of Waxy Maize Flour and Starch
2.5. Maximum Absorption Wavelength and Iodine Binding Capacity of Waxy Maize Starch
2.6. Correlation Analysis
2.6.1. Correlation Analysis of Grain Quality and Component Contents of Waxy Maize
2.6.2. Correlation Analysis of Starch Quality of Waxy Maize
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Grain Weight
4.3. Grain Component Content
4.4. Preparation of Waxy Maize Flour and Starch Samples
4.5. Pasting Property and Thermal Property of Waxy Maize Flour and Starch
4.6. Maximum Absorption Wavelength and Iodine Binding Capacity of Waxy Maize Starch
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Zhang, W.; Wang, H.; Gao, Y.; Ma, S.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Zheng, H.; et al. Effects of waterlogging at different stages on growth and ear quality of waxy maize. Agric. Manag. Water 2022, 266, 10760. [Google Scholar] [CrossRef]
- Hsieh, C.F.; Liu, W.; Whaley, J.K.; Shi, Y.C. Structure and functional properties of waxy starches. Food Hydrocoll. 2019, 94, 238–254. [Google Scholar] [CrossRef]
- Simla, S.; Lertrat, K.; Suriharn, K. Carbohydrate characters of six vegetable waxy corn varieties as affected by harvest time and storage duration. Asian J. Plant Sci. 2010, 9, 463. [Google Scholar] [CrossRef]
- Li, N.; Yang, Y.; Wang, L.; Zhou, C.; Jing, J.; Sun, X.; Tian, X. Combined effects of nitrogen and sulfur fertilization on maize growth, physiological traits, n and s uptake, and their diagnosis. Field Crops Res. 2019, 242, 107593. [Google Scholar] [CrossRef]
- Singh, M.V.; Saha, J.K. A review of the sulphur research activities of the IACR-AICRP micro-and secondary nutrients project. Sulphur Agric. 1995, 19, 35–47. [Google Scholar]
- Blake-Kalff, M.M.A.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 2000, 225, 95–107. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Wyngaard, N.; Divito, G.A.; Calvo, N.I.R.; Cabrera, M.L.; Echeverría, H.E. Diagnosis of sulfur availability for corn based on soil analysis. Biol. Fertil. Soils 2016, 52, 917–926. [Google Scholar] [CrossRef]
- Gallejones, P.; Castellón, A.; Del Prado, A.; Unamunzaga, O.; Aizpurua, A. Nitrogen and Sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat–rapeseed rotation under a humid mediterranean climate. Nutr. Cycl. Agroecosyst. 2012, 93, 337–355. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, X.; Liu, B.; Tao, L.; Yu, L.; Wang, Q.; Yang, Y.; Liu, J.; Wu, Y. Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method. J. Clean. Prod. 2019, 216, 542–551. [Google Scholar] [CrossRef]
- Pagani, A.; Echeverría, H.E. Performance of sulfur diagnostic methods for corn. Agron. J. 2011, 103, 413–421. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, X.; Zhou, Z.; Yu, L.; Liu, B.; Yang, Y.; Wu, Y. Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits. Field Crops Res. 2017, 212, 73–81. [Google Scholar] [CrossRef]
- Yue, K.; Li, L.; Xie, J.; Liu, Y.; Xie, J.; Anwar, S.; Fudjoe, S.K. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Front. Plant Sci. 2022, 12, 798119. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Cox, M.S.; Oglesby, C.; Dhillon, J.S. Revisiting the role of sulfur in crop production: A narrative review. J. Agric. Food Res. 2024, 15, 101013. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Wang, X.; Shi, Y.; Zhao, J.; Lu, D.; Lu, W. Effects of basic fertilizer ratio and nitrogen topdressing at jointing stage on flour thermal properties of waxy maize. Res. Crops 2014, 15, 571. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, G.; Lu, W.; Lu, D. Interactive effects of nitrogen and potassium on grain yield and quality of waxy maize. Plants 2022, 11, 2528. [Google Scholar] [CrossRef]
- Ahmad, R.; Dawar, K.; Iqbal, J.; Wahab, S. Effect of Sulfur on Nitrogen Use Efficiency and Yield of Maize Crop. Adv. Environ. Biol. 2016, 10, 85–91. [Google Scholar]
- Swify, S.; Avizienyte, D.; Mazeika, R.; Braziene, Z. Comparative study effect of urea-sulfur fertilizers on nitrogen uptake and maize productivity. Plants 2022, 11, 3020. [Google Scholar] [CrossRef]
- Lu, D.; Lu, W. Effects of protein removal on the physicochemical properties of waxy maize flours. Starch-Stärke 2012, 64, 874–881. [Google Scholar] [CrossRef]
- Yoshino, D.; McCalla, A.G. The effects of sulfur content on the properties of wheat gluten. Can. J. Biochem. 1966, 44, 339–346. [Google Scholar] [CrossRef]
- Cai, J.; Zang, F.; Xin, L.; Zhou, Q.; Wang, X.; Zhong, Y.; Huang, M.; Dai, T.; Jiang, D. Effects of cysteine and inorganic sulfur applications at different growth stages on grain protein and end-use quality in wheat. Foods 2022, 11, 3252. [Google Scholar] [CrossRef]
- Wang, H.; Li, D.; Ma, Q.; Wu, E.; Gao, L.; Yang, P.; Gao, J.; Feng, B. Nitrogen fertilizer affects starch synthesis to define non-waxy and waxy proso millet quality. Carbohydr. Polym. 2023, 302, 120423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, Q.; Xia, M.; Bai, W.; Wang, P.; Gao, X.; Li, J.; Feng, B.; Gao, J. Effects of nitrogen level on the physicochemical properties of tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) Starch. Int. J. Biol. Macromol. 2019, 129, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.Y.; Li, Z.K.; Li, E.P.; Wang, Y.Z.; Yuan, L.M.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Gu, J.F.; Yang, J.C. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels. J. Integr. Agric. 2022, 21, 1576–1592. [Google Scholar]
- Lu, D.L.; Jing, L.Q.; Wang, D.C.; Huang, Q.; Guo, H.F.; Zhao, J.R.; Lu, W.P. The starch pasting properties in different nitrogen topdressing treatments under spring and autumn season of waxy maize varieties. Acta. Ecol. Sin. 2010, 20, 549–555. [Google Scholar]
- Škarpa, P.; Antošovský, J.; Ryant, P.; Hammerschmiedt, T.; Kintl, A.; Brtnický, M. Using waste sulfur from biogas production in combination with nitrogen fertilization of maize (Zea mays L.) by foliar application. Plants 2021, 10, 2188. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Divito, G.A.; Fernández, L.A.; Echeverría, H.E. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J. Plant Nutr. 2017, 40, 1231–1242. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Z.; Fu, P.; Lu, W.; Lu, D. Effects of nitrogen rates on the physicochemical properties of waxy maize starch. Starch-Stärke 2019, 71, 1900146. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Ma, Q.; Wu, E.; Ivanistau, A.; Feng, B. Effect of nitrogen fertilizer on proso millet starch structure, pasting, and rheological properties. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Gao, L.; Bai, W.; Xia, M.; Wan, C.; Wang, M.; Wang, P.; Gao, X.; Gao, J. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int. J. Biol. Macromol. 2021, 179, 542–549. [Google Scholar] [CrossRef]
- Gao, L.; Wan, C.; Wang, J.; Wang, P.; Gao, X.; Eeckhout, M.; Gao, J. Relationship between nitrogen fertilizer and structural, pasting and rheological properties on common buckwheat starch. Food Chem. 2022, 389, 132664. [Google Scholar] [CrossRef]
- Yu, Z.; Juhasz, A.; Islam, S.; Diepeveen, D.; Zhang, J.; Wang, P.; Ma, W. Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Sci. Rep. 2018, 8, 2499. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cui, S.; Ying, F.; Nasar, J.; Wang, Y.; Gao, Q. Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. J. Cereal Sci. 2021, 99, 103189. [Google Scholar] [CrossRef]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J.-C. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant Sci. 2019, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yue, Y.; Wang, F. The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain. Agric. Syst. 2022, 196, 103330. [Google Scholar] [CrossRef]
- Castellari, M.P.; Poffenbarger, H.J.; Van Sanford, D.A. Sulfur fertilization effects on protein concentration and yield of wheat: A meta-analysis. Field Crops Res. 2023, 302, 109061. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Sadras, V.O.; Pagani, A.; Ciampitti, I.A. Co-limitation and stoichiometry capture the interacting effects of nitrogen and sulfur on maize yield and nutrient use efficiency. Eur. J. Agron. 2020, 113, 12597. [Google Scholar] [CrossRef]
- Ranjan, R.; Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 2019, 42, 1086–1113. [Google Scholar] [CrossRef]
- Zhao, F.J.; Salmon, S.E.; Withers, P.J.A.; Monaghan, J.M.; Evans, E.J.; Shewry, P.R.; McGrath, S.P. Variation in the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. J. Cereal Sci. 1999, 30, 19–31. [Google Scholar] [CrossRef]
- Liang, T.; Ding, H.; Wang, G.; Kang, J.; Pang, H.; Lv, J. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol. Environ. Saf. 2016, 124, 129–137. [Google Scholar] [CrossRef]
- Zaffagnini, M.; Bedhomme, M.; Marchand, C.H.; Morisse, S.; Trost, P.; Lemaire, S.D. Redox regulation in photosynthetic organisms: Focus on glutathionylation. Antioxid. Redox Signal. 2012, 16, 567–586. [Google Scholar] [CrossRef]
- Fatma, M.; Asgher, M.; Masood, A.; Khan, N.A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ. Exp. Bot. 2014, 107, 55–63. [Google Scholar] [CrossRef]
- Ullah, I.; Muhammad, D.; Mussarat, M. Effect of various nitrogen sources at various sulfur levels on maize–wheat yield and n/s uptake under different climatic conditions. J. Plant Growth Regul. 2023, 42, 2073–2087. [Google Scholar] [CrossRef]
- Limon-Ortega, A.; Ruiz-Torres, N.A.; Vazquez-Carrillo, G.; Baez-Perez, A. Environment and nitrogen influence on rainfed maize yield and quality. Crop Sci. 2016, 56, 1257–1264. [Google Scholar] [CrossRef]
- Rawat, J.; Pandey, N.; Saxena, J. Role of potassium in plant photosynthesis, transport, growth and yield. In Role of Potassium in Abiotic Stress; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Laps, S.; Sun, H.; Kamnesky, G.; Brik, A. Palladium-mediated direct disulfide bond formation in proteins containing s-acetamidomethyl-cysteine under aqueous conditions. Angew. Chem. 2019, 131, 5785–5789. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef] [PubMed]
- Bonnot, T.; Martre, P.; Hatte, V.; Dardevet, M.; Leroy, P.; Bénard, C.; Falagán, N.; Martin-Magniette, M.L.; Deborde, C.; Moing, A. Omics data reveal putative regulators of einkorn grain protein composition under sulfur deficiency. Plant Physiol. 2020, 183, 501–516. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Revisiting sulphur—The once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Yang, H.; Shi, Y.; Xu, R.; Lu, D.; Lu, W. Effects of shading after pollination on kernel filling and physicochemical quality traits of waxy maize. Crop J. 2016, 4, 235–245. [Google Scholar] [CrossRef]
- Lu, D.; Sun, X.; Yan, F.; Wang, X.; Xu, R.; Lu, W. Effects of high temperature during grain filling under control conditions on the physicochemical properties of waxy maize flour. Carbohydr. Pol. 2013, 98, 302–310. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting properties of starch and protein in selected cereals and quality of their food products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pooja, N.; Mal, S.S.; Paul, U.C.; Rahman, M.H.; Mazumder, N. An insight into the gelatinization properties influencing the modified starches used in food industry: A review. Food Bioprocess Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Yang, H.; Zhao, S.; Liu, Y.; Liu, R. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch. Food Chem. 2017, 214, 319–327. [Google Scholar] [CrossRef]
- Iturriaga, L.; Lopez, B.; Añon, M. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Res. Int. 2004, 37, 439–447. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, P. Starch gelatinization, retrogradation, and enzyme susceptibility of retrograded starch: Effect of amylopectin internal molecular structure. Food Chem. 2020, 316, 126036. [Google Scholar] [CrossRef]
- Li, W.; Shan, Y.; Xiao, X.; Zheng, J.; Luo, Q.; Ouyang, S.; Zhang, G. Effect of nitrogen and sulfur fertilization on accumulation characteristics and physicochemical properties of A- and B-wheat starch. J. Agric. Food Chem. 2013, 61, 2418–2425. [Google Scholar] [CrossRef]
- Yang, H.; Lu, D.; Shen, X.; Cai, X.; Lu, W. Heat stress at different grain filling stages affects fresh waxy maize grain yield and quality. Cereal Chem. 2015, 92, 258–264. [Google Scholar] [CrossRef]
- Lu, D.; Sun, X.; Yan, F.; Wang, X.; Xu, R.; Lu, W. Effects of heat stress at different grain-filling phases on the grain yield and quality of waxy maize. Cereal Chem. 2014, 91, 189–194. [Google Scholar] [CrossRef]
- Hansen, J.; Møller, I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- Lu, D.; Cai, X.; Lu, W. Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch. Starch-Stärke 2015, 67, 692–700. [Google Scholar] [CrossRef]
- Lu, D.; Lu, W. Effects of heat stress during grain filling on the functional properties of flour from fresh waxy maize. Cereal Chem. 2013, 90, 65–69. [Google Scholar] [CrossRef]
Variety | Treatment | Starch (mg g−1) | Soluble Sugar (mg g−1) | Protein (mg g−1) |
---|---|---|---|---|
JKN2000 | F0 | 559.6 c | 87.2 a | 89.8 c |
F1 | 571.4 b | 86.5 a | 91.9 bc | |
F2 | 584.0 a | 74.7 b | 97.2 abc | |
F3 | 586.7 a | 71.0 c | 103.1 a | |
SYN5 | F0 | 551.8 d | 84.2 a | 92.9 bc |
F1 | 562.3 c | 74.5 b | 89.2 c | |
F2 | 579.7 a | 60.2 d | 94.9 abc | |
F3 | 586.2 a | 59.7 d | 99.8 ab | |
F-value | ||||
V | 12.5 ** | 158.8 ** | 0.4 | |
T | 84.9 ** | 150.8 ** | 5.7 ** | |
V×T | 1.6 | 9.6 ** | 0.5 |
Variety | Treatment | Waxy Maize Flour | Starch | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PV (mPa·s) | TV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB (mPa·s) | Ptemp (°C) | PV (mPa·s) | TV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB (mPa·s) | Ptemp (°C) | ||
JKN2000 | F0 | 905.7 d | 866.0 d | 39.7 e | 1137.3 d | 271.3 b | 78.3 c | 1556.3 d | 732.7 c | 823.7 c | 819.0 d | 86.3 bc | 75.1 c |
F1 | 1092.0 c | 1000.7 c | 91.3 c | 1287.7 c | 287.0 b | 81.3 b | 1623.7 c | 712.0 d | 911.7 b | 805.0 d | 93.0 bc | 74.1 de | |
F2 | 1194.0 b | 1061.3 b | 132.7 b | 1382.3 b | 321.0 a | 78.1 c | 1697.3 b | 769.3 b | 928.0 b | 878.0 c | 108.7 a | 74.6 cd | |
F3 | 1556.7 a | 1249.3 a | 307.3 a | 1589.0 a | 339.7 a | 80.5 b | 1781.0 a | 777.7 b | 1003.3 a | 858.7c | 81.0 c | 74.0 e | |
SYN5 | F0 | 501.0 f | 494.0 f | 7.0 e | 671.7 f | 177.7 e | 81.2 b | 1418.3 e | 651.3 f | 767.0 d | 712.0 f | 60.7 d | 76.2 ab |
F1 | 582.7 e | 576.3 e | 6.3 e | 781.0 e | 204.7 d | 82.9 a | 1430.3 e | 673.7 e | 756.7 d | 754.7 e | 81.0 c | 75.9 b | |
F2 | 621.3 e | 615.0 e | 6.3 e | 794.3 e | 179.3 e | 80.8 | 1670.3 bc | 824.0 a | 846.3 c | 910.3 b | 86.3 bc | 75.9 b | |
F3 | 935.0 d | 860.3 d | 74.7 c | 1089.0 d | 228.7 c | 83.3 a | 1794.3 a | 843.3 a | 951.0 b | 939.7 a | 96.3 ab | 76.8 a | |
F-value | |||||||||||||
V | 1176.0 ** | 1377.9 ** | 386.8 ** | 1143.8 ** | 446.7 ** | 78.4 ** | 44.3 ** | 0.1 | 65.4 ** | 5.5 * | 12.7 ** | 151.3 ** | |
T | 225.8 ** | 205.4 ** | 150.5 ** | 143.0 ** | 23.7 ** | 23.7 ** | 116.0 ** | 176.7 ** | 54.2 ** | 235.3 ** | 10.0 ** | 4.0 * | |
V×T | 9.3 ** | 2.3 | 50.0 ** | 2.9 | 6.5 ** | 1.2 | 13.7 ** | 54.6 ** | 4.9 * | 80.1 ** | 8.8 ** | 7.3 ** |
Variety | Treatment | Waxy Maize Flour | Starch | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∆Hgel (J g−1) | To (°C) | Tp (°C) | Tc (°C) | ∆Hret (J g−1) | %R (%) | ∆Hgel (J g−1) | To (°C) | Tp (°C) | Tc (°C) | ∆Hret (J g−1) | %R (%) | ||
JKN2000 | F0 | 10.4 cd | 72.0 ab | 79.3 ab | 85.3 bc | 5.3 abc | 50.8 a | 19.7 cd | 65.0 d | 70.8 e | 83.2 abc | 8.1 a | 41.1 ab |
F1 | 8.8 d | 75.8 a | 79.9 a | 86.1 abc | 3.9 e | 44.3 b | 22.0 bc | 63.9 e | 69.8 f | 87.9 ab | 8.0 a | 36.8 b | |
F2 | 10.9 bc | 71.7 b | 76.3 c | 85.9 abc | 4.9 cd | 45.3 ab | 24.3 b | 65.6 c | 71.2 d | 79.1 bc | 8.0 a | 33.7 bc | |
F3 | 12.8 a | 74.9 ab | 80.7 a | 87.4 a | 4.5 de | 34.7 c | 22.0 bc | 64.8 d | 70.5 e | 74.5 c | 7.9 a | 36.5 b | |
SYN5 | F0 | 11.4 abc | 75.1 ab | 80.8 a | 87.1 ab | 5.8 a | 50.6 a | 17.8 d | 67.4 b | 73.0 c | 80.8 abc | 8.7 a | 49.2 a |
F1 | 10.8 bc | 72.9 ab | 78.0 b | 87.2 a | 5.3 abc | 49.0 ab | 22.0 bc | 67.0 b | 73.3 bc | 82.5 abc | 8.4 a | 38.3 b | |
F2 | 12.3 ab | 74.6 ab | 79.9 a | 86.3 abc | 5.6 ab | 45.4 ab | 29.8 a | 67.8 a | 73.5 b | 89.3 a | 7.9 a | 26.7 c | |
F3 | 13.0 a | 72.1 ab | 77.9 b | 85.2 c | 5.0 bcd | 38.0 c | 24.2 b | 65.7 c | 74.0 a | 81.8 abc | 8.0 a | 33.3 bc | |
F-value | |||||||||||||
V | 9.5 ** | 0.1 | 0.1 | 0.6 | 27.6 ** | 2.2 | 2.5 | 452.8 ** | 3500.7 ** | 1.7 | 1.5 | 0.1 | |
T | 12.3 ** | 0.4 | 5.0 | 0.4 | 10.0 ** | 20.6 ** | 14.4 ** | 45.3 ** | 63.3 ** | 2.8 | 0.7 | 9.2 ** | |
V×T | 0.9 | 4.0 | 17.8 ** | 5.3 * | 1.9 | 0.8 | 3.1 | 20.5 ** | 52.6 ** | 4.1 * | 0.4 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Liang, Y.; Wang, Y.; You, G.; Guo, J.; Lu, D.; Li, G. Effects of Sulfur Application on the Quality of Fresh Waxy Maize. Plants 2024, 13, 2677. https://doi.org/10.3390/plants13192677
Jiang C, Liang Y, Wang Y, You G, Guo J, Lu D, Li G. Effects of Sulfur Application on the Quality of Fresh Waxy Maize. Plants. 2024; 13(19):2677. https://doi.org/10.3390/plants13192677
Chicago/Turabian StyleJiang, Chenyang, Yuwen Liang, Yuru Wang, Genji You, Jian Guo, Dalei Lu, and Guanghao Li. 2024. "Effects of Sulfur Application on the Quality of Fresh Waxy Maize" Plants 13, no. 19: 2677. https://doi.org/10.3390/plants13192677
APA StyleJiang, C., Liang, Y., Wang, Y., You, G., Guo, J., Lu, D., & Li, G. (2024). Effects of Sulfur Application on the Quality of Fresh Waxy Maize. Plants, 13(19), 2677. https://doi.org/10.3390/plants13192677