Combined Application of Leguminous Green Manure and Straw Determined Grain Yield and Nutrient Use Efficiency in Wheat–Maize–Sunflower Rotations System in Northwest China
Abstract
:1. Introduction
2. Results
2.1. Yield and Yield Components
2.2. Nutrient Use Efficiency, Nutrient Uptake and Nutrient Harvest Index
2.3. Grain Yield in Relation to Nutrient Use Efficiency and the Nutrient Harvest Index
2.4. Economic Benefits
3. Discussion
3.1. Impacts of the Combined Application of Leguminous Green Manure and Straw on Crop Yields
3.2. Grain Yield in Relationship to Nutrient Use Efficiency and Nutrient Harvest Index
3.3. Implications for Agricultural Sustainable Development
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Field Management
4.4. Determination of N, P and K Uptake by Crops
4.5. Sampling and Laboratory Measurements
4.6. Data Calculations
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Zhang, X.Y.; Xu, W.; Liu, X.J.; Li, Y.; Wei, J.; Gao, M.; Bim, J.; Lu, X.H.; Wang, Z.; et al. Challenges for global sustainable nitrogen management in agricultural systems. J. Agric. Food Chem. 2020, 68, 3354–3361. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.Y.; Schulte–Uebbing, L.; De Vries, W.; Zou, T.; Davidson, E.A. Sustanable nitrogen management index: Definition, global assessment and potential improvements. Front. Agric. Sci. Eng. 2022, 9, 356–365. [Google Scholar]
- Zhao, Z.G.; Qin, X.; Wang, E.L.; Carberry, P.; Zhang, Y.H.; Zhou, S.L.; Zhang, X.Y.; Hu, C.S.; Wang, Z.M. Modelling to increase the eco–efficiency of a wheat–maize double cropping system. Agric. Ecosyst. Environ. 2015, 210, 36–46. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Statistics Yearbook; Chinese Statistics Press: Beijing, China, 2020. (In Chinese)
- Ministry of Agriculture of China. China Agriculture Yearbook; Chinese Agricultural Press: Beijing, China, 2014; pp. 802–817.
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.P.; Jiang, R.F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol. Sin. 2008, 45, 915–924, (In Chinese with English Abstract). [Google Scholar]
- Santillano-Cázares, J.; Núñez-Ramírez, F.; Ruíz-Alvarado, C.; Cárdenas-Castañeda, M.E.; Ortiz-Monasterio, I. Assessment of fertilizer management strategies aiming to increase nitrogen use efficiency of wheat grown under conservation agriculture. Agronomy 2018, 8, 304. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Y.X.; Al–Kaisi, M.; Yang, J.; Chen, Y.Q.; Sui, P. Effects of seven diversified crop rotations on selected soil health indicators and wheat productivity. Agronomy 2020, 10, 235. [Google Scholar] [CrossRef]
- Hu, Z.H.; Zhao, Q.; Zhang, X.J.; Ning, X.G.; Liang, H.; Cao, W.D. Winter green manure decreases subsoil nitrate accumulation and increases N use efficiencies of maize production in North China Plain. Plants 2023, 12, 311. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.W.; Wang, X.Q.; Ma, S.T.; Zhang, K.; Zhang, X.Q.; Zhao, J.; Zang, H.D.; Yang, Y.D.; Zeng, Z. Evaluation of crop productivity, water and nitrogen use, and carbon footprint of summer peanut-winter wheat cropping systems in the North China Plain. Food Energy Secur. 2022, 11, e401. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J. Diversified crop rotation: An approach for sustainable agriculture production. Adv. Agric. 2021, 2021, 8924087. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jia, L.; Chen, Q.Q.; Zhang, H.J.; Deng, J.J.; Lu, J.Y.; Xu, L.; Li, H.X.; Hu, F.; Jiao, J.G. Adaptive evaluation for agricultural sustainability of different fertilizer management options for a green manure-maize rotation system: Impacts on crop yield, soil biochemical properties and organic carbon fractions. Sci. Total Environ. 2024, 908, 168170. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.; Gul, H.; Wang, J.; Yasin, H.S.; Qin, R.; Khalid, M.H.B.; Naeem, M.; Feng, L.Y.; Iqbal, N.; Gitari, H. Land productivity and water use efficiency of maize–soybean strip intercropping systems in semi–arid areas: A case study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Győrffy, B.; Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long–term experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Beri, V. Effect of crop residue management on the yields of different crops and on soil properties. Biol. Wastes 1989, 27, 15–27. [Google Scholar] [CrossRef]
- Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effects of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar]
- Ma, D.K.; Yin, L.; Ju, W.L.; Li, X.K.; Liu, X.X.; Deng, X.P.; Wang, S.W. Meta–analysis of green manure effects on soil properties and crop yield in northern China. Field Crop. Res. 2021, 266, 108146. [Google Scholar] [CrossRef]
- Wang, X.Y.; Duan, Y.; Zhang, J.; Ciampitti, I.A.; Cui, J.W.; Qiu, S.J.; Xu, X.P.; Zhao, S.C.; He, P. Response of potato yield, soil chemical and microbial properties to different rotation sequences of green manure–potato cropping in North China. Soil Tillage Res. 2022, 217, 105273. [Google Scholar] [CrossRef]
- Xing, Y.; Yu, R.P.; An, R.; Yang, N.; Wu, J.P.; Ma, H.Y.; Li, L. Two pathways drive enhanced nitrogen acquisition via a complementarity effect in long–term intercropping. Field Crop. Res. 2023, 293, 108854. [Google Scholar] [CrossRef]
- Vaziritabar, Y.; Frei, M.; Yan, F.; Vaziritabar, Y.; Honermeier, B. Enhancing nitrogen use efficiency and plant productivity in long–term precrop/crop rotation and fertilization management. Field Crop. Res. 2024, 306, 109210. [Google Scholar] [CrossRef]
- Peralta–Antonio, N.; Watthier, M.; Silva Santos, R.H. Green manure and mineral fertilizer in sequential cropping: Effect on dry matter, yield, accumulation and recovery efficiency of nutrients. Commun. Soil Sci. Plant Anal. 2021, 52, 322–337. [Google Scholar] [CrossRef]
- Chang, K.; Feng, H.X.; Xing, J.H.; Wang, X.P.; Yao, R.J.; Xing, X.G. High salinity prolongs water processes required for soil structure stability during drying–wetting cycles. Soil Sci. Soc. Am. J. 2024. [CrossRef]
- Yu, R.; Zhang, H.Y.; Chang, F.D.; Song, J.S.; Wang, J.; Wang, X.Q.; Kan, Z.R.; Zhao, N.; Li, X.H.; Ma, J.; et al. Mixed sowing of Feed rape and Vicia villosa can substitute nitrogen fertilizer to improve soil multifunctionality in the Hetao irrigation District. Catena 2024, 235, 107617. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.C.; Ma, W.Q.; Huang, C.D.; Dou, Z.X. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Cui, Z.L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.S.; Zhang, F.S. Integrated soil–crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, J.; Li, X.H.; Ma, J.; Cao, J.F.; Liu, H.J.; Wang, X.Q.; Bai, L.F.; Wang, Z.G. Limited Advantages of Green Manure Planting on Soil Nutrients and Productivity in Intensive Agriculture: A Case Study of Wheat–Maize–Sunflower Rotation in Hetao Irrigation District. Agronomy 2023, 14, 100. [Google Scholar] [CrossRef]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No–till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A.; Barbieri, G. Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur. J. Agron. 2005, 23, 254–264. [Google Scholar] [CrossRef]
- Chaudhury, J.; Mandal, U.K.; Sharma, K.L.; Ghosh, H.; Mandal, B. Assessing soil quality under long-term rice-based cropping system. Commun. Soil Sci. Plant Anal. 2005, 36, 1141–1161. [Google Scholar] [CrossRef]
- Sárvári, M.; Pepó, P. Effect of production factors on maize yield and yield stability. Cereal Res. Commun. 2014, 42, 710–720. [Google Scholar] [CrossRef]
- Irin, I.J. Green manure for soil salinity reclamation-A comprehensive review. J. Agric. Food Environ. JAFE 2022, 3, 5–14. [Google Scholar]
- Zhang, D.B.; Yao, Z.Y.; Chen, J.; Yao, P.W.; Zhao, N.; He, W.X.; Li, Y.Y.; Zhang, S.Q.; Zhai, B.N.; Wang, Z.H.; et al. Improving soil aggregation, aggregate-associated C and N, and enzyme activities by green manure crops in the Loess Plateau of China. Eur. J. Soil Sci. 2019, 70, 1267–1279. [Google Scholar]
- Li, Y.; Guan, K.Y.; Yu, A.; Peng, B.; Zhao, L.; Li, B.; Peng, J. Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the US. Field Crop. Res. 2019, 234, 55–65. [Google Scholar] [CrossRef]
- Li, T.; Gao, J.S.; Bai, L.Y.; Wang, Y.A.; Huang, J.; Kumar, M.; Zeng, X.B. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil. Soil Tillage Res. 2019, 195, 104428. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Albaladejo, J.; Almagro, M.; Martínez-Mena, M. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil Tillage Res. 2015, 153, 66–75. [Google Scholar] [CrossRef]
- Partey, S.T.; Quashie-Sam, S.J.; Thevathasan, N.V.; Gordon, A.M. Decomposition and nutrient release patterns of the leaf biomass of the wild sunflower (Tithonia diversifolia): A comparative study with four leguminous agroforestry species. Agrofor. Syst. 2011, 81, 123–134. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Anderson, R.L.; Bowman, R.A.; Aiken, R.M.; Vigil, M.F.; Benjamin, J.G. Winter wheat and proso millet yield reduction due to sunflower in rotation. J. Prod. Agric. 1999, 12, 193–197. [Google Scholar] [CrossRef]
- Kussul, N.; Deininger, K.; Shumilo, L.; Lavreniuk, M.; Ali, D.A.; Nivievskyi, O. Biophysical impact of sunflower crop rotation on agricultural fields. Sustainability 2022, 14, 3965. [Google Scholar] [CrossRef]
- Thomson, J. (Ed.) LGM Crops: The Impact and the Potential; CSIRO Publishing: Clayton South, Australia, 2006. [Google Scholar]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Droppelmann, K.J.; Snapp, S.S.; Waddington, S.R. Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa. Food Secur. 2017, 9, 133–150. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Snapp, S.S.; Chikowo, R. Grain legumes increase yield stability in maize based cropping systems. Crop Sci. 2019, 59, 1222–1235. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.; Liao, Y.L.; Lu, Y.H.; Nie, J.; Cao, W.D. Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake. Crop Sci. 2019, 59, 749–759. [Google Scholar] [CrossRef]
- Palm, C.A. Contribution of agroforestry trees to nutrient requirements of intercropped plants. In Agroforestry: Science, Policy and Practice: Selected Papers from the Agroforestry Sessions of the IUFRO 20th World Congress, Tampere, Finland, 6–12 August 1995; Springer: Dordrecht, The Netherlands, 1995; pp. 105–124. [Google Scholar]
- Mazzoncini, M.; Sapkota, T.B.; Barberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Ciaccia, C.; Ceglie, F.; Tittarelli, F.; Antichi, D.; Carlesi, S.; Testani, E.; Canali, S. Green manure and compost effects on NP dynamics in Mediterranean organic stockless systems. J. Soil Sci. Plant Nutr. 2017, 17, 751–769. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Falconnier, G.N.; Affholder, F.; Leroux, L.; Autfray, P.; Muller, B.; Auzoux, S.; Ripoche, A. Can green manure contribute to sustainable intensification of rainfed rice production in Madagascar? Field Crop. Res. 2022, 289, 108711. [Google Scholar] [CrossRef]
- Handayanto, E.; Giller, K.E.; Cadisch, G. Regulating N release from legume tree prunings by mixing residues of different quality. Soil Biol. Biochem. 1997, 29, 1417–1426. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, B.; Timsina, J. Crop residue management for nutrient cycling and improving soil productivity in rice–based cropping systems in the tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Ladha, J.K.; Rao, A.N.; Raman, A.K.; Padre, A.T.; Dobermann, A.; Gathala, M.; Noor, S. Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint. Glob. Chang. Biol. 2016, 22, 1054–1074. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Kallenbach, C.; Grandy, A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 241–252. [Google Scholar] [CrossRef]
- Zhang, Z.G.; An, J.; Xiong, S.W.; Li, X.F.; Xin, M.H.; Wang, J.; Han, Y.C.; Wang, G.P.; Feng, L.; Lei, Y.P.; et al. Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake. Field Crop. Res. 2022, 279, 108470. [Google Scholar] [CrossRef]
- Fageria, N.K.; Melo, L.C.; Ferreira, E.; Oliveira, J.P.; Knupp, A.M. Dry matter, grain yield, and yield components of dry bean as influenced by nitrogen fertilization and rhizobia. Commun. Soil Sci. Plant Anal. 2014, 45, 111–125. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Heinemann, A.B. Nitrogen uptake and use efficiency in rice. In Nutrient Use Efficiency: From Basics to Advances; Springer: New Delhi, India, 2015; pp. 285–296. [Google Scholar]
- Snyder, E.M.; Karsten, H.D.; Curran, W.S.; Malcolm, G.M.; Hyde, J.A. Green manure comparison between winter wheat and corn: Weeds, yields, and economics. Agron. J. 2016, 108, 2015–2025. [Google Scholar] [CrossRef]
- Zotarelli, L.; Zatorre, N.P.; Boddey, R.M.; Urquiaga, S.; Jantalia, C.P.; Franchini, J.C.; Alves, B.J.R. Influence of no-tillage and frequency of a green manure legume in crop rotations for balancing N outputs and preserving soil organic C stocks. Field Crop. Res. 2012, 132, 185–195. [Google Scholar] [CrossRef]
- Song, Z.W.; Gao, H.J.; Zhu, P.; Chang, P.; Deng, A.X.; Zheng, C.Y.; Mannaf, M.D.; Islam, M.D.; Zhang, W.J. Organic amendments increase corn yield by enhancing soil resilience to climate change. Crop J. 2015, 3, 110–117. [Google Scholar] [CrossRef]
- Oyetunji, O.; Bolan, N.; Hancock, G. A comprehensive review on enhancing nutrient use efficiency and productivity of broadacre (arable) crops with the combined utilization of compost and fertilizers. J. Environ. Manag. 2022, 317, 115395. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Langholtz, M.; Davison, B.H.; Jager, H.I.; Eaton, L.; Baskaran, L.M.; Davis, M.; Brandt, C.C. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Sci. Total Environ. 2021, 758, 143602. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Zhang, D.B.; Yao, P.W.; Zhao, N.; Li, Y.Y.; Zhang, S.Q.; Zhai, B.N.; Huang, D.L.; Ma, A.S.; Zuo, Y.J.; et al. Optimizing the synthetic nitrogen rate to balance residual nitrate and crop yield in a leguminous green-manured wheat cropping system. Sci. Total Environ. 2018, 631, 1234–1242. [Google Scholar] [CrossRef]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Waqas, M.A.; Smith, P.; Wang, X.H.; Ashraf, M.N.; Noor, M.A.; Amou, M.; Shi, S.W.; Zhu, Y.C.; Li, J.L.; Wan, Y.F.; et al. The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. J. Clean. Prod. 2020, 268, 121922. [Google Scholar] [CrossRef]
Rotation Cycle | Treatment | Wheat | Maize | Sunflower |
---|---|---|---|---|
Cycle 1 (2015–2017) | CK | 1.77 ± 0.21 a | 0.61 ± 0.10 a | 0.15 ± 0.04 a |
Straw | 1.80 ± 0.10 a | 0.63 ± 0.20 a | 0.17 ± 0.01 a | |
Straw + LGM | 1.80 ± 0.10 a | 0.64 ± 0.10 a | 0.20 ± 0.05 a | |
Cycle 2 (2018–2020) | CK | 5.53 ± 0.78 a | 1.63 ± 0.65 a | 0.17 ± 0.06 a |
Straw | 1.77 ± 2.97 b | 0.50 ± 0.87 a | 0.17 ± 0.12 a | |
Straw + LGM | 5.67 ± 1.00 a | 1.80 ± 0.50 a | 0.27 ± 0.06 a | |
Cycle 3 (2021–2023) | CK | 2.00 ± 0.10 b | 1.10 ± 0.10 b | 0.37 ± 0.21 a |
Straw | 2.30 ± 0.10 a | 1.13 ± 0.15 b | 0.67 ± 0.15 a | |
Straw + LGM | 2.27 ± 0.06 a | 1.53 ± 0.15 a | 0.40 ± 0.00 a |
Rotation Cycles | Treatments | Wheat | Maize | Sunflower | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Spike Number (m−2) | Grain Number (Spike−1) | 1000-Grain Weight (g) | Ear Number (m−2) | Kernel Number (Ear−1) | 100-Kernel Weight (g) | Head Number (m−2) | Seed Setting Rate (%) | 1000-Seed Weight (g) | ||
Cycle 1 (2015–2017) | CK | 719.9 ± 2.7 a | 34.7 ± 1.2 a | 53.9 ± 1.8 a | 7.4 ± 0.3 a | 41 ± 0.9 b | 35.1 ± 0.7 a | 3.01 ± 0.02 a | 88.7 ± 3.4 a | 177.1 ± 9 a |
Straw | 705 ± 27.8 a | 33.1 ± 1.7 a | 54.3 ± 0.9 a | 7.4 ± 0.1 a | 43 ± 0.9 a | 36.9 ± 0.3 a | 3.02 ± 0.02 a | 88.7 ± 3.9 a | 180.8 ± 0.8 a | |
Straw + LGM | 716.7 ± 4.4 a | 33.5 ± 0.6 a | 51.3 ± 2.7 a | 7.3 ± 0.2 a | 41 ± 0.9 b | 35.1 ± 0.7 a | 3.08 ± 0.08 a | 90.2 ± 4 a | 190.3 ± 5.3 a | |
Cycle 2 (2015–2017) | CK | 727.9 ± 4.1 a | 36.4 ± 1.9 a | 46.8 ± 0.7 a | 7.2 ± 0.3 a | 42.5 ± 0.9 a | 33.4 ± 0.2 b | 3.00 ± 0.12 a | 83.6 ± 0.5 a | 234.2 ± 12.3 a |
Straw | 694.2 ± 28.6 b | 34.4 ± 1.3 a | 43 ± 1.7 a | 7.3 ± 0.1 a | 40.4 ± 0.3 a | 36.6 ± 0.6 a | 2.93 ± 0.08 a | 83.6 ± 1.8 a | 240.9 ± 1.2 a | |
Straw + LGM | 719.1 ± 11.6 a | 34.9 ± 0.6 a | 46.7 ± 1.5 a | 7.4 ± 0.1 a | 42.1 ± 0.3 a | 35.8 ± 0.8 a | 2.9 ± 0.04 a | 82.4 ± 1.1 a | 235.9 ± 3.5 a | |
Cycle 3 (2015–2017) | CK | 723.8 ± 19 a | 35.4 ± 1.6 b | 49.6 ± 2.2 a | 7.1 ± 0.1 a | 37.9 ± 1.1 a | 32.8 ± 0.5 b | 2.63 ± 0.03 a | 41.9 ± 2.3 b | 274.1 ± 5.6 a |
Straw | 701.9 ± 40.8 a | 38.7 ± 0.9 ab | 50.4 ± 0.4 a | 7 ± 0.1 a | 38.2 ± 1.2 a | 33.4 ± 0.5 ab | 2.48 ± 0.03 a | 53.9 ± 3.4 a | 273.7 ± 2.5 a | |
Straw + LGM | 711.3 ± 18.5 a | 41.2 ± 1.3 a | 51.2 ± 2.5 a | 7.2 ± 0.2 a | 39.3 ± 1.7 a | 34.8 ± 0.3 a | 2.61 ± 0.02 a | 44.9 ± 1.6 ab | 269.3 ± 1.7 a | |
Cycle | * | * | ns | * | * | * | * | * | * | |
Treatment | ns | ns | ns | ns | ns | * | ns | ns | ns | |
C × T | ns | ns | ns | ns | ns | * | ns | ns | ns |
Wheat | Maize | Sunflower | |
---|---|---|---|
CK | 0.95 ± 0.03 a | 0.83 ± 0.06 b | 0.62 ± 0.04 b |
Straw | 0.91 ± 0.01 a | 0.86 ± 0.01 b | 0.74 ± 0.07 a |
Straw + LGM | 0.93 ± 0.01 a | 0.91 ± 0.02 a | 0.61 ± 0.03 b |
Rotation Cycle | Spring Wheat | Maize | Sunflower | ||||||
---|---|---|---|---|---|---|---|---|---|
CK | Straw | Straw + LGM | CK | Straw | Straw + LGM | CK | Straw | Straw + LGM | |
Cost (USD ha−2) | |||||||||
1380.1 | 1485.1 | 1915.6 | 1445.5 | 1550.5 | 1876 | 1445.5 | 1550.5 | 1876 | |
Gross income (USD ha−2) | |||||||||
Cycle1 (2015–2017) | 3037.4 ± 84.1 | 3068.8 ± 51.3 | 3064.3 ± 75.6 | 4483.5 ± 117.8 | 4545.2 ± 630.6 | 4574.6 ± 67.5 | 3091.2 ± 29.8 | 3133.2 ± 67.0 | 3217.2 ± 49.2 |
Cycle 2 (2018–2020) | 2943.4 ± 118.3 | 2965.8 ± 75.3 | 2992.6 ± 167.0 | 5083.7 ± 596.8 | 4818.2 ± 308.6 | 5433.1 ± 230.6 | 3019.5 ± 130.2 | 3171.8 ± 118.7 | 3252.5 ± 76.5 |
Cycle 3 (2021–2023) | 2907.5 ± 124.9 b | 3234.6 ± 34.7 a | 3203.2 ± 160.8 a | 4924.9 ± 119.8 b | 5005 ± 203.6 b | 5904.1 ± 454.9 a | 2612.7 ± 228.8 b | 3238.8 ± 298.6 a | 2660.8 ± 124.1 b |
Net income (USD ha−2) | |||||||||
Cycle1 (2015–2017) | 1657.4 ± 84.1 a | 1583.7 ± 51.3 a | 1148.7 ± 75.6 b | 3038 ± 117.8 a | 2994.8 ± 630.1 a | 2698.7 ± 67.5 a | 1645.7 ± 29.8 a | 1582.7 ± 67.0 a | 1341.2 ± 49.2 b |
Cycle 2 (2018–2020) | 1563.3 ± 118.3 a | 1480.7 ± 75.3 a | 1077.1 ± 167.0 b | 3638.2 ± 596.8 a | 3267.8 ± 308.6 a | 3557.2 ± 230.6 a | 1574.1 ± 130.2 ab | 1621.4 ± 118.7 a | 1376.5 ± 76.5 b |
Cycle 3 (2021–2023) | 1527.4 ± 124.9 a | 1749.5 ± 34.7 a | 1287.6 ± 160.8 b | 3479.5 ± 119.8 a | 3454.5 ± 203.6 a | 4028.1 ± 454.9 a | 1167.2 ± 228.8 b | 1688.3 ± 298.6 a | 784.9 ± 124.1 b |
N | P | K | |
---|---|---|---|
LGM | 3.8 ± 0.08 | 0.35 ± 0.02 | 3.03 ± 0.06 |
Wheat | 0.61 ± 0.02 | 0.15 ± 0.01 | 1.37 ± 0.04 |
Maize | 0.65 ± 0.01 | 0.11 ± 0.01 | 1.62 ± 0.03 |
Sunflower | 0.69 ± 0.01 | 0.11 ± 0.01 | 2.33 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Bai, L.; Han, D.; Yao, Z.; Liu, X.; Hao, Y.; Chen, Z.; Zhang, X.; Zhang, D.; Jin, X.; et al. Combined Application of Leguminous Green Manure and Straw Determined Grain Yield and Nutrient Use Efficiency in Wheat–Maize–Sunflower Rotations System in Northwest China. Plants 2024, 13, 1358. https://doi.org/10.3390/plants13101358
Zhao N, Bai L, Han D, Yao Z, Liu X, Hao Y, Chen Z, Zhang X, Zhang D, Jin X, et al. Combined Application of Leguminous Green Manure and Straw Determined Grain Yield and Nutrient Use Efficiency in Wheat–Maize–Sunflower Rotations System in Northwest China. Plants. 2024; 13(10):1358. https://doi.org/10.3390/plants13101358
Chicago/Turabian StyleZhao, Na, Lanfang Bai, Dongxun Han, Zhiyuan Yao, Xiaodong Liu, Yaru Hao, Zhipeng Chen, Xiaohong Zhang, Dongrui Zhang, Xiaoling Jin, and et al. 2024. "Combined Application of Leguminous Green Manure and Straw Determined Grain Yield and Nutrient Use Efficiency in Wheat–Maize–Sunflower Rotations System in Northwest China" Plants 13, no. 10: 1358. https://doi.org/10.3390/plants13101358
APA StyleZhao, N., Bai, L., Han, D., Yao, Z., Liu, X., Hao, Y., Chen, Z., Zhang, X., Zhang, D., Jin, X., & Wang, Z. (2024). Combined Application of Leguminous Green Manure and Straw Determined Grain Yield and Nutrient Use Efficiency in Wheat–Maize–Sunflower Rotations System in Northwest China. Plants, 13(10), 1358. https://doi.org/10.3390/plants13101358