Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plants
4.2. Insects
4.3. Experimental Protocol
4.4. Demographic Analyses
4.5. Population Projection
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charles, H.; Dukes, J.S. Impacts of Invasive Species on Ecosystem Services. In Biological Invasions; Springer: Berlin/Heidelberg, Germany, 2007; pp. 217–237. [Google Scholar]
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Catalán Ruescas, D.; Tabone, E.; Frandon, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest. Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest. Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Pellizzari, G.; Germain, J.-F. Scales (Hemiptera, Superfamily Coccoidea). Chapter 9.3. BioRisk 2010, 4, 475–510. [Google Scholar] [CrossRef]
- Miller, D.R.; Miller, G.L.; Watson, G.W. Invasive species of mealybugs (Hemiptera: Pseudococcidae). Proc. Entomol. Soc. Wash. 2002, 104, 825–836. [Google Scholar]
- Fand, B.B.; Tonnang, H.E.Z.; Kumar, M.; Bal, S.K.; Singh, N.P.; Rao, D.V.K.N.; Kamble, A.L.; Nangare, D.D.; Minhas, P.S. Predicting the impact of climate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using temperature-driven phenology model linked to GIS. Ecol. Model. 2014, 288, 62–78. [Google Scholar] [CrossRef]
- Wang, Y.; Watson, G.W.; Zhang, R. The potential distribution of an invasive mealybug Phenacoccus solenopsis and its threat to cotton in Asia. Agric. For. Entomol. 2010, 12, 403–416. [Google Scholar] [CrossRef]
- Tong, H.-J.; Ao, Y.; Li, Z.-H.; Wang, Y.; Jiang, M.-X. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: Current knowledge and future directions. J. Integr. Agric. 2019, 18, 758–770. [Google Scholar] [CrossRef]
- Waqas, M.S.; Shi, Z.; Yi, T.-C.; Xiao, R.; Shoaib, A.A.; Elabasy, A.S.; Jin, D.-C. Biology, ecology, and management of cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Pest. Manag. Sci. 2021, 77, 5321–5333. [Google Scholar] [CrossRef]
- El-Zahi Saber, E.-Z.; Safwat Abd El-Salam, A.; Samy Kamal Mohammad, K. The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new menace to cotton in Egypt and its chemical control. J. Plant Prot. Res. 2016, 56, 111–115. [Google Scholar] [CrossRef]
- Spodek, M.; Ben-Dov, Y.; Mondaca, L.; Protasov, A.; Erel, E.; Mendel, Z. The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in Israel: Pest status, host plants and natural enemies. Phytoparasitica 2018, 46, 45–55. [Google Scholar] [CrossRef]
- Katbeh Bader, A.; Al-Jboory, I.J. First record of cotton mealybug, Phenacoccus solenopsis Tinsley 1898 (Hemiptera: Pseudococcidae), from Saudi Arabia. EPPO Bull. 2020, 50, 557–560. [Google Scholar] [CrossRef]
- Aroua, K.; Kaydan, M.B.; Ercan, C.; Biche, M. First Record of Phenacoccus solenopsis Tinsley (Hemiptera: Coccoidea: Pseudococcidae) in Algeria. Entomol. News 2020, 129, 63–66. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.-A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of Leptinotarsa decemlineata. EFSA J. 2020, 18, e06359. [Google Scholar] [CrossRef] [PubMed]
- El Aalaoui, M.; Sbaghi, M. First record of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) and its seven parasitoids and five predators in Morocco. EPPO Bull. 2021, 51, 299–304. [Google Scholar] [CrossRef]
- Ricupero, M.; Biondi, A.; Russo, A.; Zappalà, L.; Mazzeo, G. The Cotton Mealybug Is Spreading along the Mediterranean: First Pest Detection in Italian Tomatoes. Insects 2021, 12, 675. [Google Scholar] [CrossRef] [PubMed]
- Abbes, K.; Harbi, A.; Wanassi, T.; Ricupero, M.; Mazzeo, G.; Russo, A.; Biondi, A.; Zappalà, L.; Chermiti, B. The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is spreading in North Africa: First report in Tunisia. Orient. Insects 2024, 58, 172–186. [Google Scholar] [CrossRef]
- Fand, B.B.; Suroshe, S.S. The invasive mealybug Phenacoccus solenopsis Tinsley, a threat to tropical and subtropical agricultural and horticultural production systems—A review. Crop Prot. 2015, 69, 34–43. [Google Scholar] [CrossRef]
- Ahmad, M.; Akhtar, S. Development of resistance to insecticides in the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Pakistan. Crop Prot. 2016, 88, 96–102. [Google Scholar] [CrossRef]
- Saddiq, B.; Shad, S.A.; Aslam, M.; Ijaz, M.; Abbas, N. Monitoring resistance of Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) to new chemical insecticides in Punjab, Pakistan. Crop Prot. 2015, 74, 24–29. [Google Scholar] [CrossRef]
- Nagrare, V.S.; Fand, B.B.; Chinna Babu Naik, V.; Naikwadi, B.; Deshmukh, V.; Sinh, D. Resistance development in Cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) to insecticides from Organophosphate, Thiadiazines and Thiourea derivatives. Int. J. Trop. Insect Sci. 2020, 40, 181–188. [Google Scholar] [CrossRef]
- Shankarganesh, K.; Ricupero, M.; Sabtharishi, S. Field evolved insecticide resistance in the cotton mealybug Phenacoccus solenopsis and its direct and indirect impacts on the endoparasitoid Aenasius arizonensis. Sci. Rep. 2022, 12, 16764. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.S. Study on cotton host plants of mealybug Phenacoccus solenopsis (Tinsley) and efficiency release the predator Chrysoperla carnea (Stephens) for its controlling on cotton plants in Egypt. J. Plant Prot. Pathol. 2018, 9, 247–252. [Google Scholar] [CrossRef]
- Rezk, M.; Hassan, A.-N.T.; El-Deeb, M.F.; Shaarawy, N.; Dewer, Y. The impact of insecticides on the cotton mealybug, Phenacoccus solenopsis (Tinsley): Efficacy on potato, a new record of host plant in Egypt. J. Plant Prot. Res. 2019, 59, 50–59. [Google Scholar] [CrossRef]
- Price, P.W. Insect Ecology; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Birch, L.C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 1948, 17, 15–26. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H.; You, M.S.; Atlihan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.J.; Fu, J.W.; Xu, Y.Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Sbaghi, M. Life cycle and population growth parameter analysis of the mealybug Phenacoccus solenopsis on three new host plants. Arthropod-Plant Interact. 2022, 16, 437–448. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Sbaghi, M. Life table parameters and predation potential of the coccinellid Hyperaspis trifurcata, feeding on the invasive cactus scale Dactylopius opuntiae. Int. J. Trop. Insect Sci. 2023, 43, 2021–2031. [Google Scholar] [CrossRef]
- Gharekhani, G.; Salekebrahimi, H.; Chi, H. Demography of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) reared on elicitor-treated tomato plants with an innovative comparison of projected population sizes and application of the multinomial theorem for population survival. Pest. Manag. Sci. 2023, 79, 4964–4976. [Google Scholar] [CrossRef]
- Bragard, C.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; Parnell, S.; Potting, R.; et al. Pest categorisation of Phenacoccus solenopsis. EFSA J. 2021, 19, e06801. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Lu, Y.; Zeng, L.; Xu, Y.; Liang, G. Effect of Host Plants on Honeydew Production of an Invasive Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). J. Insect Behav. 2013, 26, 191–199. [Google Scholar] [CrossRef]
- Plata, Á.; Gómez-Martínez, M.A.; Beitia, F.J.; Tena, A. Native ants facilitate the invasion by Delottococcus aberiae in Mediterranean citrus. J. Pest. Sci. 2024, 97, 255–267. [Google Scholar] [CrossRef]
- Arif, M.J.; Shahid, M.R.; Gogi, M.D.; Arshad, M.; Khan, M.A. Studies on biological parameters of an invasive mealybug, Phenacoccus solenopsis Tinsely (Pseudococcidae: Hemiptera) on different host plants under laboratory conditions. Acad. J. Entomol. 2013, 6, 55–60. [Google Scholar]
- Kedar, S.; Saini, R.; Ram, P. Suitability of different host plants for survival and development of solenopsis mealybug, Phenacoccus solenopsis Tinsley (Pseudococcidae: Hemiptera). J. Entomol. Res. 2013, 37, 47–50. [Google Scholar]
- Çalışkan, A.F.; Kaydan, M.B.; Muştu, M.; Ulusoy, M.R. Demographic parameters and biological features of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on four ornamental plants. Phytoparasitica 2016, 44, 75–82. [Google Scholar] [CrossRef]
- Dogar, A.M.; Ayyaz, M.; Abbas, N.; Shad, S.A.; Naeem, A. Effect of host plants on life history traits of Phenacoccus solenopsis (Homoptera: Pseudococcidae). Int. J. Trop. Insect Sci. 2018, 38, 387–393. [Google Scholar] [CrossRef]
- Younas, H.; Razaq, M.; Farooq, M.O.; Saeed, R. Host plants of Phenacoccus solenopsis (Tinsley) affect parasitism of Aenasius bambawalei (Hayat). Phytoparasitica 2022, 50, 669–681. [Google Scholar] [CrossRef]
- Nabil, H.A. Ecological studies on cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Sternorrhyncha: Coccoidea: Pseudococcidae) on eggplant at Sharkia Governorate, Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2017, 10, 195–206. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Abdelhalim Moharum, F.; Abd El-Ghany, N.M. The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new insect pest on tomato plants in Egypt. J. Plant Prot. Res. 2015, 55, 48–51. [Google Scholar] [CrossRef]
- Shahid, M.R.; Arif, M.J.; Gogi, M.D.; Javed, N. Host-plant-preference and mortality analysis of Phenacoccus solenopsis in association with biochemical traits of different plant species. Int. J. Agric. Biol. 2017, 19, 211–218. [Google Scholar] [CrossRef]
- Nagrare, V.S.; Naikwadi, B.; Deshmukh, V.; Kranthi, S. Biology and population growth parameters of the cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), on five host plant species. Anim. Biol. 2018, 68, 333–352. [Google Scholar] [CrossRef]
- Prasad, Y.G.; Prabhakar, M.; Sreedevi, G.; Ramachandra Rao, G.; Venkateswarlu, B. Effect of temperature on development, survival and reproduction of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Crop Prot. 2012, 39, 81–88. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Bradley, E.; Tibshirani, R.J. An introduction to the bootstrap. Monogr. Stat. Appl. Probab. 1993, 57, 158. [Google Scholar]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2023. Available online: http://140.120.197.173/Ecology/Download/TWOSEX-MSChart-setup.rar (accessed on 15 March 2024).
- Akköprü, E.P.; Atlıhan, R.; Okut, H.; Chi, H. Demographic Assessment of Plant Cultivar Resistance to Insect Pests: A Case Study of the Dusky-Veined Walnut Aphid (Hemiptera: Callaphididae) on Five Walnut Cultivars. J. Econ. Entomol. 2015, 108, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TIMING-MSChart: A Computer Program for the Population Projection Based on Age-Stage, Two-Sex Life Table. 2023. Available online: http://140.120.197.173/Ecology/Download/TIMING-MSChart-exe.rar (accessed on 3 May 2024).
- Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 1982, 119, 803–823. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.-Y. Age-Stage, Two-Sex Life Tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Fisher, R.A.S. The Genetical Theory of Natural Selection; Clarendon Press: Oxford, UK. [CrossRef]
- Huang, Y.B.; Chi, H. The age-stage, two-sex life table with an offspring sex ratio dependent on female age. J. Agric. For. 2011, 60, 337–345. [Google Scholar]
- Tuan, S.-J.; Lee, C.-C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest. Manag. Sci. 2014, 70, 805–813, Erratum in Pest. Manag. Sci. 2014, 7, 1936. [Google Scholar] [CrossRef]
Developmental Duration (Days) | Host Plants | ||
---|---|---|---|
Tomato | Potato | Eggplant | |
Egg incubation | 1 ± 0.00 a (n = 50) | 1 ± 0.00 a (n = 50) | 1 ± 0.00 a (n = 50) |
First-instar nymph | |||
Female | 4.8837 ± 0.1323 c (n = 27) | 5.5897 ± 0.1132 b (n = 28) | 6.1818 ± 0.1216 a (n = 23) |
Male | 4.7142 ± 0.3619 b (n = 23) | 5.3636 ± 0.1511 b (n = 22) | 6.50 ± 0.4320 a (n = 27) |
Second-instar nymph | |||
Female | 4.7441 ± 0.1870 a (n = 26) | 4.8461 ± 0.1835 a (n = 26) | 4.7045 ± 0.1564 a (n = 23) |
Male | 5.2857 ± 0.4755 b (n = 23) | 6.5454 ± 0.4103 a (n = 22) | 5.1666 ± 0.4819 b (n = 27) |
Third-instar | |||
Female nymph | 6.3023 ± 0.2688 b (n = 26) | 6.2820 ± 0.2084 b (n = 26) | 7.0909± 0.2417 a (n = 22) |
Male pupa | 6.7142 ± 0.4751 a (n = 23) | 7.0909 ± 0.5436 a (n = 22) | 4.50 ± 0.2249 b (n = 27) |
Total pre-adult | |||
Female | 16.9302 ± 0.3591 b (n = 26) | 17.7179 ± 0.2493 b (n = 26) | 18.9772 ± 0.2868 a (n = 22) |
Male | 17.7142 ± 0.8108 b (n = 23) | 20.0000 ± 0.1899 a (n = 22) | 17.1666 ± 0.6044 b (n = 27) |
Adult longevity | |||
Female | 21.0697 ± 0.3421 b (n = 26) | 19.8205 ± 0.1197 c (n = 26) | 24.1590 ± 0.5029 a (n = 22) |
Male | 3.1428 ± 0.1437 b (n = 23) | 3.1818 ± 0.2248 b (n = 22) | 6.5000 ± 0.3457 a (n = 27) |
Total life cycle | |||
Female | 38.0000 ± 0.4319 b (n = 26) | 37.5384 ± 0.2466 b (n = 26) | 43.1363 ± 0.5683 a (n = 22) |
Male | 20.8571 ± 0.8877 b (n = 23) | 23.1818 ± 0.3234 a (n = 22) | 23.6666 ± 0.7670 a (n = 27) |
Parameters | Host Plants | ||
---|---|---|---|
Tomato | Potato | Eggplant | |
APOP (days) | 6.3953 ± 0.2162 b | 5.2051± 0.1964 c | 10.0909 ± 0.5255 a |
TPOP (days) | 23.3256 ± 0.405 b | 22.9222 ± 0.3091 b | 29.0682 ± 0.5807 a |
Fecundity (eggs) | 155.6046 ± 11.9904 c | 244.9230 ± 9.7554 b | 276.5000 ± 10.7814 a |
Oviposition (days) | 12.7209 ± 0.2469 b | 13.6410 ± 0.1725 a | 10.8409 ± 0.1109 c |
Parameters | Host Plants | ||
---|---|---|---|
Tomato | Potato | Eggplant | |
R0 | 133.82 ± 12.7829 c | 191.04 ± 16.23395 b | 243.32 ± 15.83068 a |
r | 0.1731 ± 0.00424 b | 0.1860 ± 0.0039 a | 0.1696 ± 0.00364 b |
λ | 1.1889 ± 0.005042 a | 1.2044 ± 0.00469 b | 1.1848 ± 0.00431 a |
T | 28.2854 ± 0.4532 b | 28.2371 ± 0.3660 b | 32.3899 ± 0.5958 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbes, K.; Harbi, A.; Guerrieri, E.; Chermiti, B. Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley. Plants 2024, 13, 1381. https://doi.org/10.3390/plants13101381
Abbes K, Harbi A, Guerrieri E, Chermiti B. Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley. Plants. 2024; 13(10):1381. https://doi.org/10.3390/plants13101381
Chicago/Turabian StyleAbbes, Khaled, Ahlem Harbi, Emilio Guerrieri, and Brahim Chermiti. 2024. "Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley" Plants 13, no. 10: 1381. https://doi.org/10.3390/plants13101381
APA StyleAbbes, K., Harbi, A., Guerrieri, E., & Chermiti, B. (2024). Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus solenopsis Tinsley. Plants, 13(10), 1381. https://doi.org/10.3390/plants13101381