The Potential of Two Phytoseiid Mites as Predators of the Grape Erineum Mite, Colomerus vitis
Abstract
:1. Introduction
2. Results
2.1. Developmental Time and Survival of Immature Stages
2.2. Adult Longevity
2.3. Reproduction
2.4. Predation of P. plumifer and E. scutalis
2.5. Population Growth Parameters
2.6. Sex Ratio
3. Discussion
4. Materials and Methods
4.1. Stock Culture of Predators
4.2. Stock Cultures of Prey
4.3. Experimental Set-Up
4.4. Pollen Collection
4.5. Effects of Diet on Life History Parameters of P. plumifer and E. scutalis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome. Compendium of Plant Genomes; Cantu, D., Walker, M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Al-Azzazy, M.M. Biological performance of the predatory mite Neoseiulus barkeri Hughes (Phytoseiidae): A candidate for controlling of three mite species infesting grape trees. Vitis 2021, 60, 11–20. [Google Scholar] [CrossRef]
- Carew, M.E.; Goodisman, M.A.; Hoffmann, A.A. Species status and population genetic structure of grapevine eriophyoid mites. Entomol. Exp. Et Appl. 2004, 111, 87–96. [Google Scholar] [CrossRef]
- Javadi Khederi, S.; Khanjani, M.; Fayaz, B.A. Resistance of three grapevine cultivars to Grape Erineum Mite, Colomerus vitis (Acari: Eriophyidae), in field conditions. Persian. J. Acarol. 2014, 3, 63–75. [Google Scholar]
- Javadi Khederi, S.; Khanjani, M.; Gholami, M.; de Lillo, E. Sources of resistance to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in grapevine cultivars. Syst. Appl. Acarol. 2018, 23, 405–425. [Google Scholar] [CrossRef]
- Javadi Khederi, S.; Khanjani, M.; Gholami, M.; de Lillo, E. Impact of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on the development of plants of grapevine cultivars of Iran. Exp. Appl. Acarol. 2018, 74, 347–363. [Google Scholar] [CrossRef]
- Bahirai, F.; Jafari, S.; Lotfollahi, P.; Shakarami, J. Eriophyoidea (Acari: Trombidiformes) of the Lorestan Province and first record of Aceria querci (Garnam, 1883) outside of the USA. Persian. J. Acarol. 2021, 10, 111–119. [Google Scholar]
- Cooper, M.; Hobbs, M.; Strode, B.; Varela, L. Grape erineum mite: Postharvest sulfur use reduces subsequent leaf blistering. Calif. Agric. 2020, 74, 94–100. [Google Scholar] [CrossRef]
- Malagnini, V.; de Lillo, E.; Saldarelli, P.; Beber, R.; Duso, C.; Raiola, A.; Zanotelli, L.; Valenzano, D.; Giampetruzzi, A.; Morelli, M.; et al. Transmission of grapevine Pinot gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch. Virol. 2016, 161, 2595–2599. [Google Scholar] [CrossRef]
- Muneret, L.; Thiéry, D.; Joubard, B.; Rusch, A. Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. J. Appl. Ecol. 2018, 55, 1516–1525. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic. Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticides induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Rincón, R.A.; Rodríguez, D.; Coy-Barrera, E. Botanicals Against Tetranychus urticae Koch Under Laboratory Conditions: A Survey of Alternatives for Controlling Pest Mites. Plants 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzazy, M.M.; Alhewairini, S.S. Effect of temperature and humidity on development, reproduction, and predation rate of Amblyseius swirskii (Phytoseiidae) fed on Phyllocoptruta oleivora (Eriophyidae) and Eutetranychus orientalis (Tetranychidae). Int. J. Acarol. 2020, 46, 304–312. [Google Scholar] [CrossRef]
- Al-Azzazy, M.M.; Alhewairini, S.S. A life table analysis to evalu ate biological control of four mite species associated with olive trees using the predatory mite Phytoseius plumifer (Acari: Phytoseiidae) in Saudi Arabia. Pak. J. Agric. Sci. 2020, 57, 299–305. [Google Scholar] [CrossRef]
- Abou Jawdah, Y.; Ezzeddine, N.; Fardoun, A.; Kharroubi, S.; Sobh, H.; Atamian, H.S.; Skinner, M.; Parker, B. Biological Control of Three Major Cucumber and Pepper Pests: Whiteflies, Thrips, and Spider Mites, in High Plastic Tunnels Using Two Local Phytoseiid Mites. Plants 2024, 13, 889. [Google Scholar] [CrossRef] [PubMed]
- Gerson, U.; Smiley, R.L.; Ochoa, R. Mites. (Acari) for Pest Control; Blackwell Publishing: Oxford, UK, 2003; p. 537. [Google Scholar] [CrossRef]
- McMurtry, J.A.; Moraes, G.J.D.; Sourassou, N.F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol. 2013, 18, 297–320. [Google Scholar] [CrossRef]
- Tixier, S.; Baldassar, A.; Duso, C.; Kreiter, S. Phytoseiidae in European grape (Vitis vinifera L.): Bio-ecological aspects and keys to species (Acari: Mesostigmata). Zootaxa 2013, 3721, 101–142. [Google Scholar] [CrossRef] [PubMed]
- Knapp, M.; Houten, Y.; Baal, E.; Groot, T. Use of predatory mites in commercial biocontrol: Current status and future prospects. Acarologia 2018, 58, 72–82. [Google Scholar] [CrossRef]
- Eini, N.; Jafari, S.; Fathipour, Y.; Prager, S. Experienced generation-dependent functional and numerical responses of Neoseiulus californicus (Acari: Phytoseiidae) long-term reared on thorn apple pollen. Acarologia. 2023, 63, 539–552. [Google Scholar] [CrossRef]
- Nadimi, A.; Kamali, K.; Arbabi, M.; Abdoli, F. Selectivity of three miticides to spider mite predator, Phytoseius plumifer (Acari: Phytoseiidae) under laboratory conditions. Agric. Sci. China 2009, 8, 326–331. [Google Scholar] [CrossRef]
- Jafari, S. Phytoseiid Mites of the Lorestan Province and Determining the Predation Efficiency of Neoseiulus barkeri (Phytoseiidae). Ph.D. Thesis, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran, 2010; p. 192. [Google Scholar]
- Khodayari, S.; Fathipour, Y.; Kamali, K. Life history parameters of Phytoseius plumifer (Acari: Phytoseiidae) fed on corn pollen. Acarologia 2013, 53, 185–189. [Google Scholar] [CrossRef]
- Louni, M.; Jafari, S.; Shakarami, J. Life table parameters of Phytoseius plumifer (Phytoseiidae) fed on Rhyncaphytoptus ficifoliae (Diptilomiopidae) under laboratory conditions. Syst. Appl. Acarol. 2014, 19, 275–282. [Google Scholar] [CrossRef]
- Khodayari, S.; Fathipour, Y.; Sedaratian, A. Prey stage preference, switching and mutual interference of Phytoseius plumifer (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 2016, 21, 347–355. [Google Scholar] [CrossRef]
- Bounfour, M.; McMurtry, J. Biology and ecology of Euseius scutalis (Athias-Henriot) (Acarina: Phytoseiidae). Hilgardia 1987, 55, 1–23. [Google Scholar] [CrossRef]
- Kasap, İ.; Şekeroğlu, E. Life history of Euseius scutalis feeding on citrus red mite Panonychus citri at various temperatures. BiolControl 2004, 49, 645–654. [Google Scholar] [CrossRef]
- Nomikou, M.; Janssen, A.; Schraag, R.; Sabelis, M.W. Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp. Appl. Acarol. 2001, 25, 271–291. [Google Scholar] [CrossRef] [PubMed]
- Momen, F.M.; Abdel-Khalek, A. Influence of diet on biology and life- table parameters of the predacious mite Euseius scutalis (A. H.) (Acari: Phytoseiidae). Arch. Phytopathol. 2008, 41, 418–430. [Google Scholar] [CrossRef]
- Al-Shammery, K.A. Different biological aspects of the predaceous mite Euseius scutalis (Acari: Gamasida: Phytoseiidae) and the effects due to feeding in three tetranychid mite species in Hail, Saudi Arabia. Asian J. biol. Sci. 2010, 8, 77–81. [Google Scholar] [CrossRef]
- Maoz, Y.; Gal, S.; Argov, Y.; Domeratzky, S.; Melamed, E.; Gan-Mor, S.; Palevsky, E. Efficacy of indigenous predatory mites (Acari: Phytoseiidae) against the citrus rust mite Phyllocoptruta oleivora (Acari: Eriophyidae): Augmentation and conservation biological control in Israeli citrus orchards. Exp. Appl. Acarol. 2014, 63, 295–312. [Google Scholar] [CrossRef]
- Stathakis, T.I.; Kapaxidi, E.V.; Papadoulis, G.T.; Papanikolaou, N.E. Predation by Euseius scutalis (Acari: Phytoseiidae) on Tetranychus urticae and Eutetranychus orientalis (Acari: Tetranychidae): Effect of prey density and developmental stage. Syst. Appl. Acarol. 2021, 26, 1940–1951. [Google Scholar] [CrossRef]
- Xin, T.; Zhang, Z. Suitability of pollen as an alternative food source for different developmental stages of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) to facilitate predation on whitefly eggs. Acarologia 2021, 61, 790–801. [Google Scholar] [CrossRef]
- Shishehbor, P.; Rahmani Piyani, A.; Riahi, E. Effects of different pollen diets in comparison to a natural prey, Tetranychus turkestani (Acari: Tetranychidae), on development, survival, and reproduction of Euseius scutalis (Acari: Phytoseiidae). Syst. Appl. Acarol. 2022, 27, 2111–2122. [Google Scholar] [CrossRef]
- Coll, M.; Guershon, M. Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annu. Rev. Entomol. 2002, 47, 267–297. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, S.; Leman, A.; Messelink, G.J. Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Exp. Appl. Acarol. 2017, 73, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.V.A.; Venzon, M.; Bittencourt, M.C.D.; Rodriguez-Cruz, F.A.; Pallini, A.; Janssen, A. Alternative food promotes broad mite control on chilli pepper plants. BioControl 2015, 60, 817–825. [Google Scholar] [CrossRef]
- Metwally, A.M.; Abou-Awad, B.A.; Al-Azzazy, M.M. Life table and prey consumption of the predatory mite Neoseiulus cydnodactylon Shehata and Zaher (Acari: Phytoseiidae) with three mite species as prey. J. Plant. Dis. Prot. 2005, 112, 276–286. Available online: https://www.jstor.org/stable/45154911 (accessed on 1 January 2023).
- Moghadasi, M.; Hajizadeh, J.; Saboori, A.; Nowzari, J. Biology of Phytoseius plumifer (Canestrini & Fanzago) (Acari: Phytoseiidae) feeding on Tetranychus urticae Koch (Acari: Tetranychidae). In Conference: 14th National and 2nd International Conference of Biology; At Tarbiat Modares University: Tehran, Iran, 2006. [Google Scholar]
- Shakarami, J.; Bazgir, F. Effect of temperature on life table parameters of Phytoseius plumifer (Phytoseiidae) fed on Eotetranychus hirsti (Tetranychidae). Syst. Appl. Acarol. 2017, 22, 410–422. [Google Scholar] [CrossRef]
- Abou-Elella, G.M.; Saber, S.A.; El-Sawi, S.A. Biological aspects and life tables of the predacious mites, Typhlodromips swirskii (Athias-Henriot) and Euseius scutalis (Athias-Henriot) feeding on two scale insect species and plant pollen. Arch. Phytopathol. 2013, 46, 1717–1725. [Google Scholar] [CrossRef]
- Al-Shammery, K.A. Plant pollen as an alternative food source for rearing Euseius scutalis (Acari: Phytoseiidae) in Hail, Saudi Arabia. J. Entomol. 2011, 8, 365–374. [Google Scholar] [CrossRef]
- Muñoz-Cárdenas, K.; Fuentes, L.S.; Cantor, R.F.; Rodríguez, C.D.; Janssen, A.; Sabelis, M.W. Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Exp. Appl. Acarol. 2014, 62, 19–32. [Google Scholar] [CrossRef]
- Vervaet, L.; Parapurath, G.; De Vis, R.; Leeuwen, T.V.; De Clercq, B. Potential of two omnivorous iolinid mites as predators of the tomato russet mite, Aculops lycopersici. J. Pest. Sci. 2022, 95, 1671–1680. [Google Scholar] [CrossRef]
- Hamedi, N.; Fathipour, Y.; Saber, M. Sublethal effects of abamectin on the biological performance of the predatory mite, Phytoseius plumifer (Acari: Phytoseiidae). Exp. Appl. Acarol. 2011, 53, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Kouhjani-Gorji, M.; Fathipour, Y.; Kamali, K. Life table parameters of Phytoseius plumifer (Phytoseiidae) fed on two-spotted spider mite at different constant temperatures. Int. J. Acarol. 2012, 38, 377–385. [Google Scholar] [CrossRef]
- Saleh, E.B.Y.; Mostafa, M.A.; Desuky, W.M.H.; El-Kawas, H.M.G. Thermal Units of the Predatory Mite, Euseius scutalis (Athisa-Henriot) (Acari: Phytoseiidae) Fed on Crawlers of Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Egypt. J. Biol. Pest Control 2015, 25, 663–667. [Google Scholar]
- Samaras, K.; Pappas, M.L.; Pekas, A.; Wäckers, F.; Broufas, G.B. Benefits of a balanced diet? Mixing prey with pollen is advantageous for the phytoseiid predator Amblydromalus limonicus. Biol. Control 2021, 155, 104531. [Google Scholar] [CrossRef]
- Rasmy, H.; Elbanhawy, E.M. The Phytoseiidae mite Phytoseius plumifer as a predator of the Eriophyid mite Aceria ficus (Acarina). Entomophaga 1974, 19, 427–430. [Google Scholar] [CrossRef]
- Bouras, S.L.; Papadoulis, G.T. Influence of selected fruit tree pollen on life history of Euseius stipulates (Acari: Phytoseiidae). Exp. Appl. Acarol. 2005, 36, 1–14. [Google Scholar] [CrossRef]
- Jiale, L.V.; Yang, K.; Wang, E.; Xuenong, X.U. Prey diet quality affects predation, oviposition and conversion rate of the predatory mite Neoseiulus barkeri (Acari: Phytoseiidae). Syst. Appl. Acarol. 2016, 21, 279–287. [Google Scholar] [CrossRef]
- Chant, D.A.; McMurtry, J.A. Illustrated Keys and Diagnoses for the Genera and Subgenera of the Phytoseiidae of the World; Indira Publishing House: West Bloomfield, MI, USA, 2007. [Google Scholar]
Predator Species | Diet | Sex | Egg | Larva | Protonymph | Deutonymph | Overall Developmental Time |
---|---|---|---|---|---|---|---|
Phytoseius plumifer | Date palm pollen. | Female | 2.31 ± 0.22 a | 1.05 ± 0.18 a | 1.39 ± 0.14 a | 1.62 ± 0.16 a | 6.37 ± 0.65 a |
Male | 2.25 ± 0.18 a | 1.17 ± 0.12 a | 1.31 ± 0.12 a | 1.52 ± 0.14 a | 6.25 ± 0.60 a | ||
mixed stages of C. vitis | Female | 2.38 ± 0.18 a | 1.05 ± 0.20 a | 1.30 ± 0.18 a | 1.56 ± 0.14 a | 6.29 ± 0.47 a | |
Male | 2.35 ± 0.16 a | 1.02 ± 0.10 a | 1.24 ± 0.11 a | 1.53 ± 0.12 a | 6.14 ± 0.52 a | ||
mixed stages of C. vitis + date palm pollen | Female | 2.30 ± 0.14 a | 1.10 ± 0.04 a | 1.29 ± 0.05 a | 1.47 ± 0.05 a | 6.16 ± 0.45 a | |
Male | 2.30 ± 0.13 a | 1.08 ± 0.05 a | 1.25 ± 0.04 a | 1.43 ± 0.04 a | 6.06 ± 0.52 a | ||
Euseius scutalis | Date palm pollen | Female | 2.36 ± 0.25 a | 1.25 ± 0.20 a | 2.26 ± 0.28 a | 2.57 ± 0.18 a | 8.44 ± 0.72 a |
Male | 2.32 ± 0.22 a | 1.22 ± 0.18 a | 2.23 ± 0.20 a | 2.84 ± 0.16 a | 8.25 ± 0.62 a | ||
mixed stages of C. vitis | Female | 2.32 ± 0.15 a | 1.23 ± 0.17 a | 1.64 ± 0.18 b | 1.91 ± 0.12 b | 7.10 ± 0.52 b | |
Male | 2.30 ± 0.12 a | 1.22 ± 0.15 a | 1.62 ± 0.16 b | 1.85 ± 0.08 b | 6.99 ± 0.66 b | ||
mixed stages of C. vitis + date palm pollen | Female | 2.30 ± 0.18 a | 1.21 ± 0.09 a | 1.51 ± 0.09 b | 1.67 ± 0.05 b | 6.69 ± 0.64 b | |
Male | 2.28 ± 0.14 a | 1.23 ± 0.07 a | 1.50 ± 0.11 b | 1.64 ± 0.07 b | 6.65 ± 0.71 b |
Predator Species | Diet | Stage Specific Survival (% ± SE) | Survival to Adulthood (% ± SE) | |||
---|---|---|---|---|---|---|
Egg | Larva | Protonymph | Deutonymph | |||
Phytoseiu splumifer | Date palm pollen | 93.25 ± 3.89 | 91.25 ± 4.12 | 91.08 ± 4.54 | 90.91 ± 4.19 | 90.14 ± 4.12 |
C. vitis | 94.54 ± 4.11 | 96.30 ± 3.96 | 95.16 ± 3.28 | 93.52 ± 3.85 | 92.23 ± 3.43 | |
C. vitis + pollen | 97.35 ± 3.81 | 98.54 ± 3.35 | 97.10 ± 3.49 | 94.29 ± 3.18 | 94.12 ± 3.81 | |
Euseius scutalis | Date palm pollen | 92.24 ± 3.60 | 90.60 ± 4.87 | 89.42 ± 4.74 | 90.17 ± 3.61 | 90.37 ± 4.15 |
C. vitis | 93.97 ± 4.51 | 92.67 ± 4.45 | 92.25 ± 3.45 | 91.05 ± 3.53 | 91.80 ± 3.25 | |
C. vitis + Pollen | 95.64 ± 3.78 | 94.30 ± 3.61 | 93.85 ± 3.56 | 92.14 ± 4.23 | 91.15 ± 2.89 |
Predator Species | Diet | Pre Oviposition | Oviposition | Post Oviposition | Longevity | Life Span | ||
---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | |||||
Phytoseius plumifer | Date palm pollen | 2.85 ± 0.18 a | 21.16 ± 0.1.24 a | 4.47 ± 0.24 a | 28.48 ± 1.16 a | 26.89 ± 1.25 a | 34.85 ± 1.35 a | 33.14 ± 1.88 a |
mixed stages of C. vitis | 2.79 ± 0.19 a | 25.96 ± 0.79 b | 4.38 ± 0.30 a | 33.13 ± 0.96 b | 31.53 ± 1.82 b | 39.42 ± 1.46 b | 37.42 ± 1.42 b | |
mixed stages of C. vitis + date palm pollen | 2.21 ± 0.14 b | 26.87 ± 0.92 b | 4.35 ± 0.38 a | 33.43 ± 1.04 b | 32.27 ± 0.1.14 b | 39.59 ± 1.36 b | 38.43 ± 1.69 b | |
Euseius scutalis | Date palm pollen | 4.37 ± 0.31 a | 16.58 ± 0.95 a | 3.16 ± 0.34 a | 24.11 ± 0.98 a | 19.47 ± 2.34 a | 32.55 ± 1.31 a | 27.72 ± 2.51 a |
mixed stages of C. vitis | 3.30 ± 0.24 a | 21.12 ± 1.06 b | 3.88 ± 0.46 a | 28.30 ± 1.14 b | 25.95 ± 0.98 b | 35.40 ± 1.44 b | 32.94 ± 1.70 b | |
mixed stages of C. vitis + date palm pollen | 2.45 ± 0.16 c | 22.49 ± 0.83 b | 4.02 ± 0.20 a | 28.96 ± 1.26 c | 27.43 ± 0.1.05 c | 35.65 ± 1.33 c | 34.08 ± 1.51 c |
Diet | Phytoseius plumifer | Euseius scutalis | ||
---|---|---|---|---|
Total Fecundity ± SD | Daily Fecundity | Total Fecundity ± SD | Daily Fecundity | |
Date palm pollen | 35.48 ± 1.12 Aa | 1.67 ± 0.08 | 24.55 ± 1.07 Ab | 1.48 ± 0.04 |
C. vitis | 53.94 ± 1.28 Bb | 2.07 ± 0.06 | 40.09 ± 1.22 Bc | 1.89 ± 0.09 |
C. vitis + Pollen | 56.81 ± 1.30 Bd | 2.11 ± 0.09 | 44.16 ± 1.35 Be | 1.96 ± 0.05 |
Predatory Stage | Sex | P. plumifer | E. scutalis | ||
---|---|---|---|---|---|
No. of Attacked Mite Individuals | |||||
Total Average Mean ± SD | Daily Rate, Mean ± SD | Total Average, Mean ± SD | Daily Rate, Mean ± SD | ||
Protonymph | Female | 43.84 ± 1.68 | 33.72 ± 1.52 | 37.34 ± 2.43 | 22.76 ± 1.64 |
Male | 38.55 ± 2.12 | 31.08 ± 2.04 | 36.27 ± 2.50 | 22.38 ± 1.20 | |
Deutonymph | Female | 63.02 ± 2.45 | 40.39 ± 2.30 | 59.28 ± 3.16 | 31.03 ± 2.36 |
Male | 58.00 ± 1.89 | 37.90 ± 2.11 | 58.14 ± 2.70 | 31.42 ± 1.85 | |
Pre-oviposition | Female | 241.48 ± 3.15 | 86.55 ± 2.07 | 239.44 ± 3.65 | 72.55 ± 2.25 |
Oviposition | Female | 2931.40 ± 16.62 a | 112.91 ± 4.53 a | 1994.52 ± 12.40 b | 94.43 ± 4.16 b |
Post-oviposition | Female | 245.89 ± 2.30 | 56.13 ± 2.26 | 165.52 ± 3.35 | 42.66 ± 2.51 |
Longevity | Female | 3418.77 ± 14.50 a | 103.19 ± 3.08 a | 2355.87 ± 15.85 b | 83.24 ± 3.49 b |
Male | 2845.36 ± 12.53 | 90.24 ± 3.60 | 1882.93 ± 14.14 | 72.56 ± 4.14 | |
Life span | Female | 3525.63 ± 16.47 a | 89.43 ± 3.14 a | 2452.49 ± 10.53 b | 69.27 ± 3.30 b |
Male | 2941.91 ± 12.90 | 78.61 ± 2.82 | 1977.34 ± 13.57 | 60.02 ± 3.14 |
Predatory Stage | Sex | P. plumifer | E. scutalis | ||
---|---|---|---|---|---|
No. of Attacked Mite Individuals | |||||
Total Average, Mean ± SD | Daily Rate, Mean ± SD | Total Average, Mean ± SD | Daily Rate, Mean ± SD | ||
Protonymph | Female | 22.86 ± 1.21 | 17.72 ± 0.96 | 19.85 ± 0.71 | 13.14 ± 0.64 |
Male | 22.47 ± 1.06 | 17.97 ± 0.80 | 18.61 ± 0.75 | 12.40 ± 0.87 | |
Deutonymph | Female | 33.88 ± 1.12 | 23.04 ± 1.91 | 26.75 ± 1.18 | 16.01 ± 1.05 |
Male | 32.72 ± 1.36 | 22.88 ± 1.25 | 20.81 ± 0.98 | 12.68 ± 0.90 | |
Pre-oviposition | Female | 143.07 ± 2.11 | 64.73 ± 1.16 | 129.55 ± 1.23 | 52.87 ± 1.08 |
Oviposition | Female | 1769.43 ± 10.42 a | 65.85 ± 1.41 a | 1037.83 ± 3.52 b | 46.14 ± 3.16 b |
Post-oviposition | Female | 139.50 ± 2.09 | 32.06 ± 0.96 | 80.27 ± 1.46 | 19.96 ± 0.84 |
Longevity | Female | 2052.00 ± 11.34 a | 61.38 ± 2.59 a | 1247.65 ± 16.25 b | 43.08 ± 2.14 b |
Male | 1439.65 ± 13.68 | 44.61 ± 1.83 | 1003.23 ± 10.72 b | 36.56 ± 2.30 b | |
Life span | Female | 2108.74 ± 14.23 a | 53.26 ± 1.17 a | 1294.25 ± 14.95 | 36.30 ± 2.48 b |
Male | 1494.84 ± 10.89 | 38.89 ± 1.34 | 1042.65 ± 7.84 b | 30.59 ± 2.27 |
Parameters | C. vitis | C. vitis + Pollen | Date Palm Pollen | |||
---|---|---|---|---|---|---|
P. plumifer | E. scutalis | P. plumifer | E. scutalis | P. plumifer | E. scutalis | |
Net reproduction rate (Ro) | 27.65 | 24.31 | 29.12 | 26.82 | 20.46 | 19.10 |
Mean generation time (T) (days) | 18.57 | 19.65 | 17.21 | 18.72 | 22.36 | 25.48 |
Intrinsic rate of increase (rm) | 0.242 | 0.211 | 0.251 | 0.229 | 0.194 | 0.175 |
Finite rate of increase (λ) | 1.246 | 1.212 | 1.377 | 1.285 | 1.194 | 1.186 |
Sex ratio | 0.76 | 0.73 | 0.73 | 0.70 | 0.60 | 0.53 |
(f = 23; m = 7) | (f = 22; m = 8) | (f = 22; m = 8) | (f = 21; m = 9) | (f = 18; m = 12) | (f = 16; m = 14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Azzazy, M.M.; Alhewairini, S.S. The Potential of Two Phytoseiid Mites as Predators of the Grape Erineum Mite, Colomerus vitis. Plants 2024, 13, 1953. https://doi.org/10.3390/plants13141953
Al-Azzazy MM, Alhewairini SS. The Potential of Two Phytoseiid Mites as Predators of the Grape Erineum Mite, Colomerus vitis. Plants. 2024; 13(14):1953. https://doi.org/10.3390/plants13141953
Chicago/Turabian StyleAl-Azzazy, Mahmoud M., and Saleh S. Alhewairini. 2024. "The Potential of Two Phytoseiid Mites as Predators of the Grape Erineum Mite, Colomerus vitis" Plants 13, no. 14: 1953. https://doi.org/10.3390/plants13141953
APA StyleAl-Azzazy, M. M., & Alhewairini, S. S. (2024). The Potential of Two Phytoseiid Mites as Predators of the Grape Erineum Mite, Colomerus vitis. Plants, 13(14), 1953. https://doi.org/10.3390/plants13141953