Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae)
Abstract
:1. Introduction
2. Results
2.1. Plant Growth Measurements of Fungal Endophytic Plants
2.2. Lygus lineolaris Mortality Following Direct Exposure to Fungal Spores
2.3. Detection and Validation of Endophytic Fungal Species in Treated Plants
2.4. Survival and Development of Lygus lineolaris Nymphs on Fungal Endophytic Plants
2.5. Olfactometer Studies Using Lygus lineolaris Adults Towards Endophytic Cotton Squares
2.6. Performance of Fungal Endophytes against Tarnished Plant Bugs and Bollworms under Field Conditions
3. Discussion
4. Materials and Methods
4.1. Fungal Endophytes
4.2. Spore Culturing and Seed Preparation
4.3. Detection and Validation of Endophytic Fungal Species in Treated Plants
4.4. Lygus lineolaris Mortality Following Direct Exposure to Fungal Spores
4.5. Survival and Development of Lygus lineolaris Nymphs on Fungal Endophytic Plants
4.6. Olfactometer Studies Using Lygus lineolaris Adults Towards Endophytic Cotton Squares
4.7. Field Planting, Yield Measurements, and Performance of Fungal Endophytes against Tarnished Plant Bugs and Bollworms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Company, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Puri, A.; Padda, K.P.; Chanway, C.P. Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol. Fertil. Soils. 2016, 52, 119–125. [Google Scholar] [CrossRef]
- Kumar, K.K.; Dara, S.K. Fungal and bacterial endophytes as microbial control agents for plant-parasitic nematodes. Inter. J. Environ. Res. Public Health 2021, 18, 4269. [Google Scholar] [CrossRef]
- Suryanarayanan, T.S. Endophyte research: Going beyond isolation and metabolite documentation. Fungal Ecol. 2013, 6, 561–568. [Google Scholar] [CrossRef]
- Smith, R.J.; Pekrul, S.; Grula, E.A. Requirement for sequential enzymatic activities for penetration of the integument of the corn earworm (Heliothis zea). J. Invert. Pathol. 1981, 38, 335–344. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Afolabi, O.G.; Hussain, M.; Qasim, M.; Wang, L. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol. Res. 2018, 217, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Mantzoukas, S.; Eliopoulos, P.A. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef]
- Posada, F.; Aime, M.C.; Peterson, S.W.; Rehner, S.A.; Vega, F.E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 2007, 111, 748–757. [Google Scholar] [CrossRef]
- Fürnkranz, M.; Lukesch, B.; Müller, H.; Huss, H.; Grube, M.; Berg, G. Microbial diversity inside pumpkins: Microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb. Ecol. 2012, 63, 418–428. [Google Scholar] [CrossRef]
- Jaber, L.R.; Enkerli, J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol. Control 2016, 103, 187–195. [Google Scholar] [CrossRef]
- Jaber, L.R.; Enkerli, J. Fungal entomopathogens as endophytes: Can they promote plant growth? Biocontrol Sci. Technol. 2017, 27, 28–41. [Google Scholar] [CrossRef]
- Lugtenberg, B.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, 194. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef] [PubMed]
- Akutse, K.S.; Fiaboe, K.K.; Van den Berg, J.; Ekesi, S.; Maniania, N.K. Effects of endophyte colonization of Vicia faba (Fabaceae) plants on the life–history of leafminer parasitoids Phaedrotoma scabriventris (Hymenoptera: Braconidae) and Diglyphus isaea (Hymenoptera: Eulophidae). PLoS ONE 2014, 9, e109965. [Google Scholar] [CrossRef] [PubMed]
- Saikkonen, K.; Gundel, P.E.; Helander, M. Chemical ecology mediated by fungal endophytes in grasses. J. Chem. Ecol. 2013, 39, 962–968. [Google Scholar] [CrossRef] [PubMed]
- White, J.F., Jr.; Belanger, F.A.; Meyer, W.I.; Sullivan, R.F.; Bischoff, J.F.; Lewis, E.A. Minireview article: Clavicipitalean fungal epibionts and endophytes-development of symbiotic interactions with plants. Symbiosis 2002, 33, 3. [Google Scholar]
- Hu, S.; Bidochka, M.J. Root colonization by endophytic insect-pathogenic fungi. J. Appl. Microbiol. 2021, 130, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Lewis, L.C. Ecology and evolution of fungal endophytes, and their roles against insects. In Insect-Fungal Associations: Ecology and Evolution; Oxford University Press: New York, NY, USA, 2005; Volume 3, pp. 74–96. [Google Scholar]
- Reddy, N.P.; Khan, A.P.; Devi, U.K.; Sharma, H.C.; Reineke, A. Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae). J. Asia-Pacific Entomol. 2009, 12, 221–226. [Google Scholar] [CrossRef]
- Lopez, C.D.; Zhu-Salzman, K.; Ek-Ramos, M.J.; Sword, G.A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 2014, 9, e103891. [Google Scholar]
- Lopez, D.C.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Leckie, B.M.; Ownley, B.H.; Pereira, R.M.; Klingeman, W.E.; Jones, C.J.; Gwinn, K.D. Mycelia and spent fermentation broth of Beauveria bassiana incorporated into synthetic diets affect mortality, growth, and development of larval Helicoverpa zea (Lepidoptera: Noctuidae). Biocontrol Sci. Technol. 2008, 18, 697–710. [Google Scholar] [CrossRef]
- Menjivar, R.D.; Cabrera, J.A.; Kranz, J.; Sikora, R.A. Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly Trialeurodes vaporariorum (Westwood) infection on tomato. Plant Soil 2012, 352, 233–241. [Google Scholar] [CrossRef]
- Akutse, K.S.; Maniania, N.K.; Fiaboe, K.K.; Van den Berg, J.; Ekesi, S.J. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013, 6, 293–301. [Google Scholar] [CrossRef]
- Newcombe, G.; Shipunov, A.; Eigenbrode, S.D.; Raghavendra, A.K.; Ding, H.; Anderson, C.L.; Menjivar, R.; Crawford, M.; Schwarzländer, M. Endophytes influence protection and growth of an invasive plant. Commun. Integr. Biol. 2009, 2, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Dey, P.; Satpathy, S.; Satya, P.; Mahapatra, B.S. Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica 2013, 41, 17–21. [Google Scholar] [CrossRef]
- Thakur, A.; Kaur, S.; Kaur, A.; Singh, V. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol. 2013, 42, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Starr, J.L.; Krumm, J.L.; Sword, G.A. The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiol. Ecol. 2016, 92, fiw158. [Google Scholar] [CrossRef]
- Zhou, W.; Wheeler, T.A.; Starr, J.L.; Valencia, C.U.; Sword, G.A. A fungal endophyte defensive symbiosis affects plant-nematode interactions in cotton. Plant Soil 2018, 422, 251–266. [Google Scholar] [CrossRef]
- Gurulingappa, P.; Sword, G.A.; Murdoch, G.; McGee, P.A. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol. Control 2010, 55, 34–41. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Munoz-Ledesma, F.J.; Santiago-Alvarez, C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol. 2009, 38, 723–730. [Google Scholar] [CrossRef]
- Sword, G.A.; Tessnow, A.; Ek-Ramos, M.J. Endophytic fungi alter sucking bug responses to cotton reproductive structures. Insect Sci. 2017, 24, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Glover, J.P.; Gore, J.; Crow, W.D.; Reddy, G.V.P. Biology, ecology, and pest management of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) in southern row crops. Insects 2021, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Nishi, O.; Sushida, H.; Higashi, Y.; Iida, Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 2021, 12, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ. 2016, 566, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Portilla, M.; Snodgrass, G.; Luttrell, R. Effects of morning and night applications of Beauveria. bassiana strains NI8 and GHA against the tarnished plant bug in cotton. In Proceedings of the Beltwide Cotton Conference, New Orleans, LA, USA, 5–8 January 2014; pp. 729–734. [Google Scholar]
- Gad, A.A.; Nada, M.S. Effect of entomopathogenic fungi Beauveria bassiana on the cellular immunity and biochemistry of green bug Nezara viridula L. J. Biopest. 2020, 13, 135–144. [Google Scholar] [CrossRef]
- Lopes, R.B.; Laumann, R.A.; Blassioli-Moraes, M.C.; Borges, M.; Faria, M. The fungistatic and fungicidal effects of volatiles from metathoracic glands of soybean-attacking stink bugs (Heteroptera: Pentatomidae) on the entomopathogen Beauveria bassiana. J. Invertebr. Pathol. 2015, 132, 77–85. [Google Scholar] [CrossRef]
- Sosa-Gómez, D.R.; Moscardi, F. Laboratory and field studies on the infection of stink bugs, Nezara viridula, Piezodorus guildinii, and Euschistus heros (Hemiptera: Pentatomidae) with Metarhizium anisopliae and Beauveria bassiana in Brazil. J. Invertebr. Pathol. 1998, 71, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Clay, K.; Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1744. [Google Scholar] [CrossRef]
- Faeth, S.H. Are endophytic fungi defensive plant mutualists? Oikos 2002, 98, 25–36. [Google Scholar] [CrossRef]
- Bernays, E.A. Plant sterols and host-plant affiliations of herbivores. Insect-Plant Interact. (1992) 2017, 22, 53–66. [Google Scholar]
- Jallow, M.F.; Dugassa-Gobena, D.; Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod Plant Interact. 2008, 2, 53–62. [Google Scholar] [CrossRef]
- Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect. 2003, 5, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, V.R.; Suryanarayanan, T.S.; Nataraja, K.N.; Prasad, S.R.; Oelmüller, R.; Shaanker, R.U. Fungal endophyte-mediated crop improvement: The way ahead. Front. Plant Sci. 2020, 11, 561007. [Google Scholar] [CrossRef] [PubMed]
- Gehring, C.A.; Sthultz, C.M.; Flores-Rentería, L.; Whipple, A.V.; Whitham, T.G. Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl. Acad. Sci. USA 2017, 114, 11169–11174. [Google Scholar] [CrossRef]
- Lau, J.A.; Lennon, J.T.; Heath, K.D. Trees harness the power of microbes to survive climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 11009–11011. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.C.; Suh, C.P.; Perez, J.; Lesne, P.; Wilson, C.; Kramer, Z.; Madamba, C.; Sword, G.A. Sampling volatile organic compounds from individual cotton leaves to test effects of fungal endophyte treatments. Southwest. Entomol. 2021, 46, 299–304. [Google Scholar] [CrossRef]
- Ek-Ramos, M.J.; Zhou, W.; Valencia, C.U.; Antwi, J.B.; Kalns, L.L.; Morgan, G.D.; Kerns, D.L.; Sword, G.A. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS ONE 2013, 8, e66049. [Google Scholar] [CrossRef]
- McGuire, M.R.; Leland, J.E.; Dara, S.; Park, Y.H.; Ulloa, M. Effect of different isolates of Beauveria bassiana on field populations of Lygus hesperus. Biol. Control 2006, 38, 390–396. [Google Scholar] [CrossRef]
- Portilla, M.; Jones, W.; Perera, O.; Seiter, N.; Greene, J.; Luttrell, R. Estimation of median lethal concentration of three isolates of Beauveria bassiana for control of Megacopta cribraria (Heteroptera: Plataspidae) bioassayed on solid Lygus spp. diet. Insects 2016, 7, 31. [Google Scholar] [CrossRef]
- Glover, J.P.; Nufer, M.I.; Perera, O.P.; Portilla, M.; George, J. Entomopathogenicity of Ascomycete fungus Cordyceps militaris on the cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae). J. Fungi. 2023, 9, 614. [Google Scholar] [CrossRef]
- Gurulingappa, P.; McGee, P.A.; Sword, G. Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop. Prot. 2011, 30, 349–353. [Google Scholar] [CrossRef]
- Perera, O.P.; Little, N.S.; Abdelgaffar, H.; Jurat-Fuentes, J.L.; Reddy, G.V. Genetic knockouts indicate that the ABCC2 protein in the bollworm Helicoverpa zea is not a major receptor for the Cry1Ac insecticidal protein. Genes 2021, 12, 1522. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Beerli, P.; Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA 2001, 98, 4563–4568. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Catchot, A.L.; Crow, W.D.; Dodds, D.; Gore, J.; Musser, F.R.; Irby, T.; Cook, D.R.; Layton, M.B.; Larson, E. Insect Control Guide for Agronomic Crops; Insect Control Guide Committee; Mississippi State University Extension Service Publication: Starkville, MS, USA, 2020; Volume 104, p. 2471. [Google Scholar]
Growth Parameters | Fungal Endophytes | F-Value | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
TAMU 490 | GHA | NI-8 | JG-1 | SPE-120 | AMF | Control | |||
% germination | 80 | 77.5 | 95 | 75 | 70 | 82.5 | 77.5 | 1.44 | 0.19 |
True leaf count | 3.6 ± 0.13 | 3.5 ± 0.11 | 3.6 ± 0.12 | 3.3 ± 0.15 | 3.5 ± 0.15 | 3.2 ± 0.15 | 3.2 ± 0.14 | 1.21 | 0.31 |
Square count | 3.2 ± 0.18 bc | 3.0 ± 0.23 bc | 3.9 ± 0.20 ab | 2.8 ± 0.19 c | 4.2 ± 0.20 a | 3.2 ± 0.19 abc | 2.4 ± 0.24 c | 6.64 | <0.0001 |
Plant height (cm) | 20.8 ± 0.86 b | 26.9 ± 0.52 a | 27.0 ± 0.66 a | 25.2 ± 0.48 a | 25.4 ± 0.31 a | 27.1 ± 0.53 a | 25.5 ± 0.53 a | 11.92 | <0.0001 |
Root dry weight (gm) | 6.8 ± 0.50 | 6.8 ± 0.71 | 7.5 ± 0.47 | 6.1 ± 0.43 | 7.0 ± 0.55 | 6.8 ± 0.51 | 5.4 ± 0.46 | 1.66 | 0.14 |
Stem dry weight (gm) | 23.6 ± 1.00 b | 21.6 ± 1.70 bc | 26.6 ± 1.48 ab | 23.4 ± 0.77 b | 17.3 ± 1.08 c | 30.5 ± 1.98 a | 17.3 ± 1.11 c | 12.10 | <0.0001 |
Whole plant dry weight (gm) | 30.4 ± 1.02 bc | 28.4 ± 1.83 bcd | 34.1 ± 1.71 ab | 29.5 ± 0.73 bc | 24.3 ± 1.33 cd | 37.3 ± 2.31 a | 22.7 ± 1.23 d | 11.12 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, J.; Glover, J.P.; Perera, O.P.; Reddy, G.V.P. Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae). Plants 2024, 13, 2012. https://doi.org/10.3390/plants13152012
George J, Glover JP, Perera OP, Reddy GVP. Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae). Plants. 2024; 13(15):2012. https://doi.org/10.3390/plants13152012
Chicago/Turabian StyleGeorge, Justin, James P. Glover, Omaththage P. Perera, and Gadi V. P. Reddy. 2024. "Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae)" Plants 13, no. 15: 2012. https://doi.org/10.3390/plants13152012
APA StyleGeorge, J., Glover, J. P., Perera, O. P., & Reddy, G. V. P. (2024). Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae). Plants, 13(15), 2012. https://doi.org/10.3390/plants13152012