Weed Role for Pollinator in the Agroecosystem: Plant–Insect Interactions and Agronomic Strategies for Biodiversity Conservation
Abstract
:1. Introduction
2. Pollinator Biodiversity and Reward
3. Generalization or Specialization?
4. Weed Pollination Strategies
5. Insect-Pollinated Weeds as Indicators of Biodiversity and Agroecosystem Health
6. Long-Term Plant–Animal Biodiversity Sustainability
7. Conclusions
Funding
Conflicts of Interest
References
- Sutherland, S. What makes a weed: Life story traits of native and exotic plants in the USA. Oecologia 2004, 141, 24–39. [Google Scholar] [CrossRef]
- Bretagnolle, V.; Gaba, S. Weeds for bees? A review. Agron. Sustain. Dev. 2015, 35, 891–909. [Google Scholar] [CrossRef]
- Aarssen, L.W. Why are most selfing annuals? A new hypothesis for the fitness benefit of selfing. Oikos 2000, 89, 606–612. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Irwin, R.E.; Flanagan, R.J.; Karron, J.D. Ecology and evolution of plant–pollinator interactions. Ann. Bot. 2009, 103, 1355–1363. [Google Scholar] [CrossRef]
- Bawa, K.S. Pollination, seed dispersal and diversification of angiosperms. Trends Ecol. Evol. 1995, 10, 311–312. [Google Scholar] [CrossRef]
- Culley, T.M.; Weller, S.G.; Sakai, A.K. The evolution of wind pollination in angiosperms. Trends Ecol. Evol. 2002, 7, 361–369. [Google Scholar] [CrossRef]
- Ne’eman, G.; Jürgens, A.; Newstro-Lloyd, L.; Potts, S.G.; Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 2010, 85, 435–451. [Google Scholar] [CrossRef]
- Bronstain, J.L.; Alarcón, R.; Geber, M. The evolution of plant-insect mutualisms. New Phytol. 2006, 172, 412–425. [Google Scholar] [CrossRef]
- Stephens, R.E.; Gallagher, R.V.; Dun, L.; Cornwell, W.; Sauquet, H. Insect pollination for most of angiosperm evolutionary history. New Phytol. 2003, 240, 880–891. [Google Scholar] [CrossRef]
- Abrahamczyk, S.; Struck, J.H.; Weigend, M. The best of two worlds: Ecology and evolution of ambophilous plants. Biol. Rev. 2023, 98, 391–420. [Google Scholar] [CrossRef]
- Holsinger, K.E. Mass-action models of plant mating systems: The evolutionary stability of mixed mating systems. Am. Nat. 1991, 138, 606–622. [Google Scholar] [CrossRef]
- Hermanutz, L. Outcrossing in the weed, Solanum ptycanthum (Solanaceae): A comparison of agrestal and ruderal populations. Am. J. Bot. 1991, 78, 638–646. [Google Scholar] [CrossRef]
- Hao, K.; Tian, Z.X.; Wang, Z.C.; Huang, S.Q. Pollen grain size associated with pollinator feeding strategy. Proc. R. Soc. Lond. B Biol. Sci. 2020, 287, 20201191. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.; Barrett, S.C.H. A comparative analysis of pollen limitation in flowering plants. Biol. J. Linn. Soc. 2000, 69, 503–520. [Google Scholar] [CrossRef]
- Preston, C.; Powles, S.B. Evolution of herbicide resistance in weeds: Initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity 2002, 88, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Conner, A.J.; Glare, T.R.; Nap, J.P. The release of genetically modified crops into the environment: Part II. Overview of ecological risk assessment. Plant J. 2003, 33, 19–46. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.H.; Nelson, I.L.; Hopkins, G.W.; Hamlett, B.J.; Memmott, J. Pollinators webs, plant communities and the conservation of rare plants: Arable weeds as a case study. J. App. Ecol. 2006, 43, 246–257. [Google Scholar] [CrossRef]
- Benvenuti, S. Weed dynamics in the Mediterranean urban ecosystem: Ecology, biodiversity and management. Weed Res. 2004, 5, 341–354. [Google Scholar] [CrossRef]
- Krenn, H.W.; Plant, J.D.; Szucsich, N.U. Mouthparts of flower visiting insect. Arthropod Struct. Dev. 2005, 34, 1–40. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M.; Vesprini, J.L. Nectar biodiversity: A short review. Plant Syst. Evol. 2003, 238, 7–21. [Google Scholar] [CrossRef]
- Jürgens, A. Comparative floral morphometrics in day-flowering, night-flowering and self-pollinated Caryophylloideae (Agrostemma, Dianthus, Saponaria, Silene, and Vaccaria). Plant Syst.Evol 2006, 257, 233–250. [Google Scholar] [CrossRef]
- Albre, J.; Quilichini, A.; Gibernau, M. Pollination ecology of Arum italicum (Araceae). Bot. J. Linn. Soc. 2003, 141, 205–214. [Google Scholar] [CrossRef]
- Kephart, S.; Theiss, K. Pollinator-mediated isolation in sympatric milkweeds (Asclepias): Do floral morphology and insects behavior influence species boundaries? New Phytol. 2003, 161, 265–277. [Google Scholar] [CrossRef]
- Benvenuti, S. Soil texture involvement in wildflower strip ecosystem services delivery in Mediterranean agro-environment. Eur. J. Agron. 2023, 145, 126793. [Google Scholar] [CrossRef]
- Brys, R.; Jacquemyn, H. 2011 Variation in the functioning of autonomous self-pollination, pollinator services and floral traits in three Centaurium species. Ann. Bot. 2011, 107, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Mazzoncini, M.; Cioni, P.L.; Flamini, G. Wildflower-pollinator interactions: Which phytochemicals are involved? Basic Appl. Ecol. 2020, 45, 62–75. [Google Scholar] [CrossRef]
- Haaland, C.; Gyllin, M. Butterflies and bumblebees in greenways and sown wildflower strips in southern Sweden. J. Insect Conserv. 2010, 14, 125–132. [Google Scholar] [CrossRef]
- Larson, D.L.; Royer, R.A.; Royer, M.R. Insect visitation and pollen deposition in an invaded prairie plant community. Biol. Conserv. 2006, 130, 148–159. [Google Scholar] [CrossRef]
- Newman, D.A.; Thomson, J.D. Interactions among nectar robbing, floral herbivory, and ant protection in Linaria vulgaris. Oikos 2005, 110, 497–506. [Google Scholar] [CrossRef]
- Kawaano, S.; Odaki, M.; Yamaoka, R.; Odatanabe, M.; Takeuchi, M.; Kawano, N. Pollination biology of Oenotera (Onagraceae). The interplay between floral UV absorbancy patterns and floral volatiles as signals to nocturnal insects. Plant Spec. Biol. 1995, 10, 31–35. [Google Scholar] [CrossRef]
- Young, H.J. Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am. J. Bot. 2002, 89, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Kay, Q.O.N.; Lack, A.J.; Bamber, F.C.; Davies, C.R. Differences between sexes in floral morphology, nectar production and insect visit in a dioecious species, Silene dioica. New Phytol. 1984, 98, 515–519. [Google Scholar] [CrossRef]
- Folke, S.H.; Delph, L.F. Environmental and physiological effects on pistillate flower production in Silene noctiflora L. (Caryophyllaceae). Int. J. Plant Sci. 1997, 158, 501–509. [Google Scholar] [CrossRef]
- Beattie, A.J. Pollination mechanism in Viola. New Phytol. 1971, 70, 343–346. [Google Scholar] [CrossRef]
- Petanidou, T.; Lamborn, E. A land for flowers and bees: Studying pollination ecology in Mediterranean communities. Plant Biosyst. 2005, 139, 279–294. [Google Scholar] [CrossRef]
- Rasheed, S.A.; Harder, L.D. Economic motivation for plant species preferences of pollen-collecting bumble bees. Ecol. Entomol. 1997, 22, 209–219. [Google Scholar] [CrossRef]
- Thomas, S.G.; Frankin-Tong, E.F. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 2004, 429, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Dafni, A. Autumnal and winter pollination adaptations under Mediterranean conditions. Bocconea 1996, 5, 171–181. [Google Scholar]
- Petanidou, T.; Vokou, D. Pollination ecology of Labiatae in a phryganic (East Mediterranean) ecosystem. Am. J. Bot. 1993, 80, 892–899. [Google Scholar] [CrossRef]
- Levin, D.A.; Anderson, W.W. Competition for pollinators between simultaneous flowering species. Am. Nat. 1970, 104, 455–467. [Google Scholar] [CrossRef]
- Westwood, J.H.; Tominaga, T.; Weller, S.C. Characterization and breakdown of self-incompatibility in field bindweed (Convolvulus arvensis L.). J. Hered. 1997, 88, 459–465. [Google Scholar] [CrossRef]
- Motten, A.F. Determinants of outcrossing rate in a predominantly self-fertilizing weed, Datura stramonium (Solanaceae). Am. J. Bot. 1992, 79, 419–427. [Google Scholar] [CrossRef]
- Larson, B.; Kevan, P.; Inouye, D. Flies and flowers: Taxonomic diversity of anthophiles and pollinators. Canad. Entomol. 2001, 133, 439–465. [Google Scholar] [CrossRef]
- Kearns, C.A.; Inouye, D.W.; Waser, N.M. Endangered mutualisms: The Conservation of Plant-Pollinator Interactions. Ann. Rev. Ecol. Syst. 1998, 29, 83–112. [Google Scholar] [CrossRef]
- Jennersten, O. Flower visitation and pollination efficiency of some North European butterfly. Oecologia 1984, 63, 80–89. [Google Scholar] [CrossRef]
- Sakai, S. A review of brood-site pollination mutualism: Plants providing breeding sites for their pollinators. J. Plant Res. 2002, 115, 161–168. [Google Scholar] [CrossRef]
- Bosch, J.; Retana, J.; Cerdá, X. Flowering phenology, floral traits and pollinator composition on a herbaceous Mediterranean plant community. Oecologia 1997, 101, 583–591. [Google Scholar] [CrossRef]
- Beattie, A.J.; Turnbull, C.L.; Knox, R.B.; Williams, E.G. Ant inhibition of pollen function: A possible reason why ant pollination is rare. Am. J. Bot. 1984, 71, 421–426. [Google Scholar] [CrossRef]
- Junker, R.; Chung, A.Y.C.; Blüthgen, N. Interaction between flowers, ants and pollinators: Additional evidence for floral repellence against ants. Ecol. Res. 2007, 22, 665–670. [Google Scholar] [CrossRef]
- Stout, J.C.; Allen, J.A.; Goulson, D. Nectar robbing, forager efficiency and seed set: Bumblebees foraging on the self incompatible plant Linaria vulgaris (Scrophulariaceae). Acta Oecol. 2000, 21, 277–283. [Google Scholar] [CrossRef]
- Maloof, J.E.; Inouye, D.W. Is nectar robbers’ cheaters or mutualists? Ecology 2000, 81, 2651–2661. [Google Scholar] [CrossRef]
- Bourgeois, B.; Munoz, F.; Fried, G.; Mahaut, L.; Armengot, L.; Denelle, P.; Storkey, J.; Gaba, S.; Violle, C. What makes a weed a weed? A large-scale evaluation of arable weeds through a functional lens. Am. J. Bot. 2019, 106, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Storkey, J.; Westbury, D.B. Managing arable weeds for biodiversity. Pest Manag. Sci. 2007, 63, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.D.; Steiner, K.E. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 2000, 15, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Q. Debates enrich our understanding of pollination biology. Trends Ecol. Evol. 2006, 21, 233–234. [Google Scholar] [CrossRef]
- Sutcliffe, O.L.; Kay, Q.O.N. Changes in the arable flora of central southern England since the 1960s. Biol. Conserv. 2000, 93, 1–8. [Google Scholar] [CrossRef]
- Aigner, P.A. Optimality modelling and fitness trade-offs: When should plants become pollinator specialist? Oikos 2001, 95, 177–184. [Google Scholar] [CrossRef]
- Giurfa, M.; Dafni, A.; Neal, P.R. Floral symmetry and its role in plant-pollinator systems. Inter. J. Plant Sci. 1999, 160 (Suppl. S6), 541–550. [Google Scholar] [CrossRef] [PubMed]
- Nilson, L.A. Deep flowers for long tongues. Trends Ecol. Evol. 1998, 13, 259–260. [Google Scholar] [CrossRef]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Ann. Rev. Ecol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Konzmann, S.; Kluth, M.; Karadana, D.; Lunau, K. Pollinator effectiveness of a specialist bee exploiting a generalist plant-tracking pollen transfer by Heriades truncorum with quantum dots. Apidologie 2020, 51, 201–211. [Google Scholar] [CrossRef]
- Klumpers, S.G.; Stang, M.; Klinkhamer, P.G. Foraging efficiency and size matching in a plant–pollinator community: The importance of sugar content and tongue length. Ecol. Lett. 2019, 22, 469–479. [Google Scholar] [CrossRef]
- Armbruster, W.S. Evolution of floral form: Electrostatic forces, pollination, and adaptative compromise. New Phytol. 2001, 152, 181–183. [Google Scholar] [CrossRef]
- Fenner, M. The phenology of growth and reproduction in plants. Perspect. Plant Ecol. Evol. Syst. 1998, 1, 78–91. [Google Scholar] [CrossRef]
- Herrera, C.M. Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 1995, 76, 221–228. [Google Scholar] [CrossRef]
- Blionis, G.J.; Vokou, D. Pollination ecology of Campanula species on Mt Olympus, Greece. Ecography 2001, 24, 287–297. [Google Scholar] [CrossRef]
- Elzinga, J.A.; Atlan, A.; Biere, A.; Gigord, L.; Weis, A.E.; Bernasconi, G. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 2007, 22, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.L.; Delph, L.F. Prior selfing and gynomonoecy in Silene noctiflora L. (Caryophyllaceae): Opportunities for enhanced outcrossing and reproductive assurance. Int. J. Plant Sci. 2005, 166, 475–480. [Google Scholar] [CrossRef]
- Barthelmess, E.L.; Richards, C.M.; McCauley, D.E. Relative effects of nocturnal vs diurnal pollinators and distance on gene flow in small Silene alba populations. New Phytol. 2006, 169, 689–698. [Google Scholar] [CrossRef]
- Corbet, A.A. Nectar sugar content: Estimating standing crop and secretion in the field. Apidologie 2003, 34, 1–10. [Google Scholar] [CrossRef]
- Dupont, Y.L.; Hansen, D.M.; Rasmussen, J.T.; Olsen, J.M. Evolutionary changes in nectar sugar composition with switches bird and insect pollination: The Canarian bird-flower element revisited. Funct. Ecol. 2004, 18, 670–676. [Google Scholar] [CrossRef]
- Petanidou, T.; Van Laere, A.; Ellis, W.N.; Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 2006, 115, 155–169. [Google Scholar] [CrossRef]
- Gardener, M.C.; Gillman, P.M. The taste of nectar—A neglected area of pollination ecology. Oikos 2002, 98, 552–557. [Google Scholar] [CrossRef]
- Gardener, M.C.; Gillman, P.M. The effects of soil fertilizer on amino acids in the floral nectar of corncockle, Agrostemma githago (Caryophyllaceae). Oikos 2001, 92, 101–106. [Google Scholar] [CrossRef]
- Gange, A.C.; Smith, A.K. Arbuscolar mycorrhyzal fungi influence visitation rates of pollinating insects. Ecol. Entomol. 2005, 30, 600–606. [Google Scholar] [CrossRef]
- Adler, L.S. The ecological significance of toxic nectar. Oikos 2000, 91, 409–420. [Google Scholar] [CrossRef]
- Narbona, E.; Arista, M.; Whittall, J.B.; Camargo, M.G.G.; Shrestha, M. The role of flower color in angiosperm evolution. Front. Plant Sci. 2021, 12, 736998. [Google Scholar] [CrossRef]
- Menzel, R.; Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: The Israeli flora as a case study. Biol. Rev. 1993, 68, 81–120. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Horisaki, A.; Kobaiyashi, K.; Syfaruddin, S.; Niikura, S.; Ninomiya, S.; Ohsawa, R. Intraspecific variation in the ultraviolet colour proportion of flowers in Brassica rapa L. Plant Breed. 2005, 124, 551–556. [Google Scholar] [CrossRef]
- Gray, L.A.; Varga, S.; Soulsbury, C.D. Floral ultraviolet absorbance area responds plastically to ultraviolet irradiance in Brassica rapa. Plant-Environ. Interact. 2022, 3, 203–211. [Google Scholar] [CrossRef]
- Nakano, C.; Washitani, I. Variability and specialization of plant-pollinator systems in a nothern maritime grassland. Ecol. Res. 2003, 18, 221–246. [Google Scholar] [CrossRef]
- Goulson, D. Are insects flower constant because they use search images to find flowers? Oikos 2000, 88, 547–552. [Google Scholar] [CrossRef]
- Johnson, S.D.; Dafni, A. Response of bee-flies to the shape and pattern of model flowers: Implications for floral evolution in a Mediterranean herb. Funct. Ecol. 1998, 12, 289–297. [Google Scholar] [CrossRef]
- Montgomery, B.R. Effect of introduced Euphorbia esula on the pollination of Viola pedatifida. Botany 2009, 87, 283–292. [Google Scholar]
- Van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C. Regulation of terpenoid and benzenoid production in flowers. Curr. Opin. Plant Biol. 2006, 9, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Van Kleunen, M.; Manning, J.C.; Pasqualetto, V.; Johnson, S.D. Phylogenetically independent associations between autonomous self-fertilization and plant invasiveness. Am. Nat. 2008, 171, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.D.; Swanton, C.J. Assembly theory applied to weed communities. Weed Sci. 2002, 50, 2–13. [Google Scholar] [CrossRef]
- Snell, R.; Aarssen, L.W. Life history traits in selfing versus outcrossing annuals: Exploring the ‘time-limitation’ hypothesis for the fitness benefit of self-pollination. BMC Ecol. 2005, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.M.; Baltensperger, D.D.; Kulakow, P.A.; Lehmann, J.W.; Myers, R.L.; Slabbert, M.M.; Sleugh, B.B. Genetic resources and breeding of Amaranthus. Plant Breed. Rev. 2000, 19, 227–285. [Google Scholar]
- Costea, M.; Weaver, S.E.; Tardif, F.J. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 2004, 130, 631–668. [Google Scholar] [CrossRef]
- Prokop, P. Urban environment decreases pollinator availability, fertility, and prolongs anthesis in the field bindweed (Convolvulus arvensis Linnaeus, 1753). Plant Sign. Behav. 2024, 19, 2325225. [Google Scholar] [CrossRef]
- Verkleij, J.A.C.; De Boer, A.M.; Lugtenborg, T.F. On the ecogenetics of Stellaria media (L.) Vill. And Stellaria pallida (Dum.) pire from abandoned arable field. Oecologia 1980, 46, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, C.A. A comparison of breeding systems and seed physiologies in three species of Portulaca L. Ecology 1977, 58, 860–868. [Google Scholar] [CrossRef]
- Gibbs, P.E.; Talavera, S. Breeding system studies with three species of Anagallis (Primulaceae): Self-incompatibility and reduced female fertility in A. monelli L. Ann. Bot. 2001, 88, 139–144. [Google Scholar] [CrossRef]
- Jiménez-Lobato, V.; Martínez-Borda, E.; Núñez-Farfán, J.; Valverde, P.L.; Cruz, L.L.; López-Velázquez, A.; Santos-Gally, R.; Arroyo, J. Changes in floral biology and inbreeding depression in native and invaded regions of Datura stramonium. Plant Biol. 2018, 20, 214–223. [Google Scholar] [CrossRef]
- Motten, A.F.; Stone, J.L. Heritability of stigma position and the effect of stigma-anther separation on outcrossing in a predominantly self-fertilizing weed, Datura stramonium (Solanaceae). Am. J. Bot. 2000, 87, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.J.; Ireland, H.S.; Wang, R.; David, K.M.; Schaffer, R.J. The genetic control of herkogamy. Funct. Plant Biol. 2024, 51, 5. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.J.; Armstrong, S.A.; Franklin-Tong, V.E.; Franklin, F.C.H. Genomic organization of the Papaver rhoeas self-incompatibility S 1 locus. J. Exp. Bot. 2023, 54, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lundquist, A. The self-incompatibility system in Ranunculus repens (Ranunculaceae). Hereditas 1994, 120, 151–157. [Google Scholar] [CrossRef]
- Kay, Q.O.N. Biological flora of the British Isles: Anthemis cotula L. J. Ecol. 1971, 59, 637–648. [Google Scholar] [CrossRef]
- Stevens, J.P.; Kay, Q.O.N. The number, dominance relationships and frequencies of self-incompatibility alleles in a natural population of Sinapis arvensis L. in South Wales. Heredity 1989, 62, 199–205. [Google Scholar] [CrossRef]
- Sampson, D.R. Frequency and distribution of self-incompatibility alleles in Raphanus raphanistrum. Genetics 1967, 56, 241–251. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. Entomogamy in wildflowers: What level of pollinator biodiversity is required? Acta Oecol. 2021, 111, 103737. [Google Scholar] [CrossRef]
- Stanton, M.L.; Snow, A.A.; Handel, S.N.; Bereczky, J. The impact of a flower-color polymorphism on mating patterns in experimental populations of Wild Radish (Raphanus raphanistrum L.). Evolution 1989, 43, 335–346. [Google Scholar] [PubMed]
- Devaux, C.; Lepers, C.; Porcher, E. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems. J. Evol. Biol. 2014, 27, 1413–1430. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.G. Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 2000, 81, 532–542. [Google Scholar] [CrossRef]
- De Jong, T.J. Geitonogamy: The neglected side of selfing. Trends Ecol. Evol. 1993, 8, 321–325. [Google Scholar] [CrossRef]
- Koul, P.; Koul, A.K.; Hamal, I.A. Reproductive biology of wild and cultivated carrot (Daucus carota L.). New Phytol. 1989, 112, 437–443. [Google Scholar] [CrossRef]
- Lamborn, E.; Ollerton, J. Experimental assessment of the functional morphology of inflorescences of Daucus carota (Apiaceae): Testing the “fly catcher effect”. Funct. Ecol. 2000, 14, 445–454. [Google Scholar] [CrossRef]
- De Jong, T.J. From pollen dynamics to adaptative dynamics. Plant Spec. Biol. 2000, 15, 31–41. [Google Scholar] [CrossRef]
- Ishii, H.S.; Harder, L.D. The size of individual Delphinum flowers and the opportunity for geitonogamous pollination. Funct. Ecol. 2006, 20, 1115–1123. [Google Scholar] [CrossRef]
- Klinkhamer, P.G.L.; De Jong, T.L. Effects of plant density and sex differential reward visitation in the protandrous Echium vulgare (Boraginaceae). Oikos 1990, 57, 399–405. [Google Scholar] [CrossRef]
- Leiss, K.A.; Klinkhammer, G.L. Genotype by environment interactions in the nectar production of Echium vulgare. Funct. Ecol. 2005, 19, 454–459. [Google Scholar] [CrossRef]
- Westerbergh, A.; Saura, A. Gene flow and pollinator behaviour in Silene dioica populations. Oikos 1994, 71, 215–224. [Google Scholar] [CrossRef]
- Blair, A.C.; Wolfe, L.M. The evolution of an invasive plant: An experimental study with Silene latifolia. Ecology 2004, 85, 3035–3042. [Google Scholar] [CrossRef]
- Petanidou, T. Sugars in Mediterranean floral nectars: An ecological and evolutionary approach. J. Chem. Ecol. 2005, 31, 1065–1088. [Google Scholar] [CrossRef]
- Fahn, A. Secretory tissues in vascular plants. New Phytol. 1988, 108, 229–257. [Google Scholar] [CrossRef]
- Albrecht, H.; Mattheis, A. The effect of organic and integrated farming on rare arable weeds on the Forschungsverbund Agrarökosysteme München (FAM) research station in southern Bavaria. Biol. Conserv. 1998, 86, 347–356. [Google Scholar] [CrossRef]
- Levin, D.A. Competition for pollinator service: A stimulus for the evolution of the autogamy. Evolution 1971, 26, 668–674. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef]
- Robinson, R.A.; Sutherland, W.J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 2002, 39, 157–176. [Google Scholar] [CrossRef]
- Munoz, F.; Fried, G.; Armengot, L.; Bourgeois, B.; Bretagnolle, V.; Chadoeuf, J.; Mahaut, L.; Plumejeaud, C.; Storkey, J.; Violle, C.; et al. Ecological specialization and rarity of arable weeds: Insights from a comprehensive survey in France. Plants 2020, 9, 824. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Lázaro, A.; Jakobsson, A.; Totland, Ø. How do pollinator visitation rate and seed set relate to species’ floral traits and community context? Oecologia 2013, 173, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Feldman, T.S. Pollinator aggregative and functional responses to flower density: Does pollinator response to patches of plants accelerate at low densities? Oikos 2006, 115, 128–140. [Google Scholar] [CrossRef]
- Pontin, D.R.; Wade, M.R.; Kehrli, P.; Wratten, S.D. Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems. Ann. Appl. Biol. 2005, 148, 39–47. [Google Scholar] [CrossRef]
- Chancellor, R.J. A preliminary survey of arable weeds in Britain. Weed Res. 1977, 17, 283–289. [Google Scholar] [CrossRef]
- Chancellor, R.J. Decline of arable weeds during 20 years in soil under grass on the periodicity of seedling emergence after cultivation. J. Appl. Ecol. 1983, 23, 631–637. [Google Scholar] [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- Andreasen, C.; Stryhn, H.; Streibig, J.C. Decline of the flora in Danish arable field. J. Appl. Ecol. 1996, 33, 619–626. [Google Scholar] [CrossRef]
- Chamorro, L.; Masalles, R.M.; Sans, F.X. Arable weed decline in Northeast Spain: Does organic farming recover functional biodiversity? Agric. Ecosys. Environ. 2016, 223, 1–9. [Google Scholar] [CrossRef]
- Dutoit, T.; Buisson, E.; Roche, P.; Didier, A. Land history and botanical changes in the calcareous hillsides of Upper-Normandy (north-western France): New implications for their conservation management. Biol. Conserv. 2004, 115, 1–19. [Google Scholar] [CrossRef]
- Gu, H.; Cao, A.; Walter, G.H. Host selection and utilisation of Sonchus oleraceus (Asteraceae) by Helicoverpa armigera (Lepidoptera: Noctuidae): A genetic analysis. Ann. Appl. Biol. 2001, 138, 293–299. [Google Scholar] [CrossRef]
- Witt, T.; Jürgens, A.; Gottsberger, G. Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J. Evol. Biol 2013, 26, 2244–2259. [Google Scholar] [CrossRef]
- Shapiro, A.M. The California urban butterfly is dependent on alien plants. Diver. Distrib. 2002, 8, 31–40. [Google Scholar] [CrossRef]
- Wiklund, C. Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functional aspects of the hierarchy of oviposition preferences. Oikos 1981, 36, 163–170. [Google Scholar] [CrossRef]
- Alam, S.M.; Bashar, A.; Aich, U.; Akand, S.; Rahman, S. Colonization and strategic stratification of butterfly Pachliopta aristolochiae (Lepidoptera: Papilionidae) and its relationship with the host plant Aristolochia indica (Piperales: Aristolochiaceae). J. Biodiv. Conserv. Biores. Manag. 2017, 3, 45–54. [Google Scholar] [CrossRef]
- Konvicka, M.; Novak, J.; Benes, J.; Fric, Z.; Bradley, J.; Keil, P.; Hrcek, J.; Chobot, K.; Marhoul, P. The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: Habitat use, demography and site management. J. Insect Conserv. 2008, 12, 549–560. [Google Scholar] [CrossRef]
- Courtney, S.P. Coevolution of pierid butterflies and their cruciferous foodplants IV. Crucifer apparency and Anthocharis cardamines (L.) oviposition. Oecologia 1982, 52, 258–265. [Google Scholar] [CrossRef]
- Novak, I.; Severa, F. Impariamo a Conoscere le Farfalle; Istituto Geografico De Agostini: Novara, Italy, 1980; 352p. [Google Scholar]
- Bowers, M.D. The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. J. Chem. Ecol. 1983, 9, 475–493. [Google Scholar] [CrossRef]
- Warren, M.S. The ecology and conservation of the heath fritillary butterfly, Mellicta hatalia I. host selection and phenology. J. Appl. Ecol. 1987, 24, 467–482. [Google Scholar] [CrossRef]
- Dennis, R.L.H.; Hodgson, J.G.; Grenyer, R.; Shreeve, T.G.; Roy, D.B. Host plants and butterfly biology. Ecol. Entomol. 2004, 29, 12–26. [Google Scholar] [CrossRef]
- Koh, L.P.; Sodhi, N.S.; Brook, B.W. Co-extinctions of tropical butterflies and their host plants. Biotropica 2004, 36, 272–274. [Google Scholar]
- DeVries, P.J.; Baker, I. Butterfly exploitation of a plant–ant mutualism: Adding insult to herbivory. J. N. Y. Entomol. Soc. 1989, 97, 332–340. [Google Scholar]
- Fiedler, K. Ants that associate with Lycaeninae butterfly larvae: Diversity, ecology and biogeography. Div. Distrib. 2001, 7, 45–60. [Google Scholar] [CrossRef]
- Kells, A.R.; Goulson, D. Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol. Conserv. 2003, 109, 165–174. [Google Scholar] [CrossRef]
- Potts, S.G.; Petanidou, T.; Roberts, S.; O’Toole, C.; Hulbert, A.; Willmer, P. Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biol. Conserv. 2006, 129, 519–529. [Google Scholar] [CrossRef]
- Ferguson, D.J.; Li, X.; Yeates, D.K. Silent, underground warfare of flies: An endoparasitic bee fly (Diptera: Bombyliidae) larva parasitising a predatory assassin fly (Diptera: Asilidae) larva. Austral Entomol. 2020, 59, 582–592. [Google Scholar] [CrossRef]
- Kephart, S. Pollination mutualisms in Caryophyllaceae. New Phytol. 2006, 169, 637. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.E. Behavioural evolution in the cabbage butterfly (Pieris rapae). Oecologia 1987, 72, 69–76. [Google Scholar] [CrossRef]
- Dufaÿ, M.; Anstett, M.C. Conflicts between plants and pollinators that reproduce within inflorescences: Evolutionary variations on a theme. Oikos 2003, 100, 3–14. [Google Scholar] [CrossRef]
- Rundlölf, M.; Smith, H.G. The effect of organic farming on butterfly diversity depends on landscape context. J. Appl. Ecol. 2006, 43, 1121–1127. [Google Scholar] [CrossRef]
- Heigland, S.J.; Boeke, L. Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol. Entomol. 2006, 31, 532–538. [Google Scholar] [CrossRef]
- Dukas, R.; Morse, D.H. Crab spiders affect flower visitation by bees. Oikos 2003, 101, 157–163. [Google Scholar] [CrossRef]
- Suttle, K.B. Pollinators as mediators of top-down effects on plants. Ecol. Lett. 2003, 6, 688–694. [Google Scholar] [CrossRef]
- Su, Q.; Qi, L.; Zhang, W.; Yun, Y.; Zhao, Y.; Peng, Y. Biodiversity survey of flower-visiting spiders based on literature review and field study. Environ. Entomol. 2020, 49, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.; Tscharntke, T. Local diversity of arable weeds increases with landscape complexity. Agric. Ecosyst. Environ. 2005, 7, 85–93. [Google Scholar] [CrossRef]
- Gerowitt, B. Development and control of weeds in arable farming systems. Agric. Ecosyst. Environ. 2003, 98, 247–254. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weitbull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Barbault, R. Biodiversity dynamics: From population and community ecology approaches to a landscape ecology point of view. Landsc. Urban Plan. 1995, 31, 89–98. [Google Scholar] [CrossRef]
- Gabriel, D.; Tscharntke, T. Insect pollinated plants benefit from organic farming. Agric. Ecosyst. Environ. 2007, 118, 43–48. [Google Scholar] [CrossRef]
- Rookwood, P. Landscape planning for biodiversity. Landsc. Urban Plan. 1995, 31, 379–385. [Google Scholar] [CrossRef]
- Kevan, P.G.; Baker, H.G. Insects as Flower Visitors and Pollinators. Ann. Rev. Entomol. 1989, 28, 407–453. [Google Scholar] [CrossRef]
- Banaszak, J. Strategy for conservation of wild bees in an agricultural landscape. Agric. Ecosyst. Environ. 1992, 40, 179–192. [Google Scholar] [CrossRef]
- Zamora, J.; Verdù, J.R.; Galante, E. Species richness in Mediterranean agroecosystems: Spatial and temporal analysis for biodiversity conservation. Biol. Conserv. 2007, 134, 113–121. [Google Scholar] [CrossRef]
- Vulliamy, B.; Potts, S.G.; Willmer, P.G. The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscape. Oikos 2006, 114, 529–543. [Google Scholar] [CrossRef]
- Tschanz, P.; Vogel, S.; Walter, A.; Keller, T.; Albrecht, M. Nesting of ground-nesting bees in arable fields is not associated with tillage system per se, but with distance to field edge, crop cover, soil and landscape context. J. Appl. Ecol. 2023, 60, 158–169. [Google Scholar] [CrossRef]
- Atkins, E.L.; Kellum, D. Comparative morphogenic and toxicity studies on the effect of pesticides on honeybee brood. J. Apic. Res. 1986, 25, 242–255. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Arnold, G.M. Factors affecting field weed and field margin flora on a farm in Essex, UK. Landsc. Urban Plan. 1995, 31, 205–216. [Google Scholar] [CrossRef]
- Ma, M.; Tarmi, S.; Helenius, J. Revisiting the speces-area relationship in a semi-natural habitat: Floral richness in agricultural buffer zones in Finland. Agric. Ecosyst. Environ. 2002, 89, 137–148. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Tscharntke, T. Early succession of butterfly and plant communities on set-aside fields. Oecologia 1997, 109, 294–302. [Google Scholar] [CrossRef]
- Graves, S.D.; Shapiro, A.M. Exotic as host plants of the Calofornia butterfly fauna. Biol. Conserv. 2003, 110, 413–433. [Google Scholar] [CrossRef]
- Saarinen, K.A. comparison of butterfly communities along field margins under traditional and intensive management in SE Finland. Agric. Ecosyst. Environ. 2002, 90, 59–65. [Google Scholar] [CrossRef]
- Carvell, C.; Meek, W.R.; Pywell RFGouldson, D.; Nowakoski, M. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J. Appl. Ecol. 2007, 44, 29–40. [Google Scholar] [CrossRef]
- Debnam, S.; Saez, A.; Aizen, M.A.; Callaway, R.M. Exotic insect pollinators and native pollination systems. Plant Ecol. 2021, 222, 1075–1088. [Google Scholar] [CrossRef]
- Ghisbain, G.; Gérard, M.; Wood, T.J.; Hines, H.M.; Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 2021, 96, 2755–2770. [Google Scholar] [CrossRef] [PubMed]
- Bjerknes, A.L.; Totland, Ø.; Hegland, S.J.; Nielsen, A. Do alien plant invasions really affect pollination success in native plant species? Biol. Conserv. 2007, 138, 1–12. [Google Scholar] [CrossRef]
- Hanley, M.E.; Goulsonm, D. Introduced weeds pollinated by introduced bees: Cause or effect? Weed Biol. Manag. 2003, 3, 204–212. [Google Scholar] [CrossRef]
- Lau, J.A.; Funk, J.L. How ecological and evolutionary theory expanded the ‘ideal weed’ concept. Oecologia 2023, 203, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Fijen, T.P.; Read, S.F.; Walker, M.K.; Gee, M.; Nelson, W.R.; Howlett, B.G. Different landscape features within a simplified agroecosystem support diverse pollinators and their service to crop plants. Landsc. Ecol. 2022, 37, 1787–1799. [Google Scholar] [CrossRef]
- Benvenuti, S. Wildflowers-pollinator-crab spider predator food-web as indicator of the agroecosystem biodiversity. Ecol. Indic. 2022, 143, 109272. [Google Scholar] [CrossRef]
Weed Species | Observed Flower Visitors | Source |
---|---|---|
Abutilon theophrasti Medic. | Solitary bees, Tachinidae | Benvenuti, personal observ. |
Agrostemma githago L. | Lepidoptera, solitary bees | [21] |
Anagallis arvensis L. | Solitary bees, Bombylidae, Coleoptera | Benvenuti, personal observ. |
Anthemis cotula L. | Solitary bees, Lepidoptera | Benvenuti, personal observ. |
Arum italicum Mill. | Diptera | [22] |
Asclepias syriaca L. | Bombus, Xylocopa, Sphecidae | [23] |
Aster squamatus (Spreng.) Hier. | Bees | Benvenuti, personal observ. |
Blackstonia perfoliata (L.) Huds. | Bombylidae | Benvenuti, personal observ. |
Borago officinalis L. | Bees, solitary bees | Benvenuti, personal observ. |
Calystegia sepium (L.) R.Br. | Solitary bees, Coleptera | Benvenuti, personal observ. |
Centaurea cyanus L. | Bees, solitary bees. Lepidoptera | [24] |
Centaurium erytrea Rafn | Syrphidae | [25] |
Chrysanthemum segetum L. | Bees, solitary bees; Bomyilidae; Lepidoptera | [26] |
Chrysanthemum coronarium L. | Bees, solitary bees; Bomyilidae; Lepidoptera | Benvenuti, personal observ. |
Cirsium arvense (L.) Scop. | Solitary bees, Lepidoptera | [27] |
Consolida regalis Gray. | Bombus, Lepidoptera | [26] |
Convolvulus arvensis L. | Solitary bees, Coleptera | Benvenuti, personal observ. |
Conyza canadensis L. | Bees | Benvenuti, personal observ. |
Cuscuta campestris Yunk. | Bees, wasps | Benvenuti, personal observ. |
Cychorium inthibus L. | Diptera, solitary bees | Benvenuti, personal observ. |
Datura stramonium L. | Bombus spp. | Benvenuti, personal observ. |
Dianthus carthusianorum L. | Lepidoptera | [26] |
Dipsacus fullonum L. | Lepidoptera, solitary bees | Benvenuti, personal observ. |
Echium vulgare L. | Bombus spp. | [26] |
Euphorbia esula L. | Solitary bees | [28] |
Euphorbia helioscopia L. | Bees | Benvenuti, personal observ. |
Geranium molle L. | Diptera | Benvenuti, personal observ. |
Lamium purpureum L. | Bees, solitary bees, Bombylidae | Benvenuti, personal observ. |
Lavatera punctata All. | [26] | |
Legousia speculum-veneris (L.) Chaix | Bees, Syrphidae, Bombylidae | [24] |
Linaria vulgaris Mill. | Bombus | [29] |
Lycnis flos-cuculi L. | Bees, solitary bees, Lepidoptera | [26] |
Matricaria chamomilla L. | Bees, solitary bees, Bombylidae, Lepidoptera | Benvenuti, personal observ. |
Nigella damascena L. | Bees | [26] |
Oenotera biennis L. | Lepidoptera | [30] |
Ornithogalum spp. | Solitary bees, Coleoptera | Benvenuti, personal observ. |
Papaver rhoeas L. | Bees, solitary bees, Xilocopa | Benvenuti, personal observ. |
Polygonum lapathifolium L. | Bees, solitary bees | Benvenuti, personal observ. |
Portulaca oleracea L. | Bees, Bombylidae | Benvenuti, personal observ. |
Senecio vulgaris L. | Bees | Benvenuti, personal observ. |
Silene alba (Mill.) Krause | Nocturnal and diurnal Lepidoptera | [31] |
Silene dioica (L.) Clairv. | Bombus, bees, Lepidoptera, Syrphidae | [32] |
Silene noctiflora L. | Nocturnal Lepidoptera | [33] |
Sinapis arvensis L. | Bees, solitary bees; Bomyilidae; Lepidoptera | Benvenuti, personal observ. |
Stellaria media (L.) Vill. | Bees, solitary bees | Benvenuti, personal observ. |
Veronica persica Poir. | Solitary bees, ants | Benvenuti, personal observ. |
Viola spp. | Solitary bees | [34] |
Xanthium strumarium L. | Bees | Benvenuti, personal observ. |
Weed-Host | Butterfly Species | Source |
---|---|---|
Amaranthus spp., Chenopodium spp. | Pholisora catullus | [134] |
Apiaceae | Papilio machaon | [135] |
Aristolochia spp. | Pachliopta aristolochiae | [136] |
Carex spp. | Lopinga achine | [137] |
Asteraceae, Malvaceae, others | Vanessa cardui | [134] |
Avena fatua L. | Cercyonis pegala | [134] |
Bidens pilosa L. | Nathalis iole | [134] |
Brassica nigra (L.) W.D.J.Koch | Pontia bekeri | [134] |
Brassicaceae | Anthocaris sara | [134] |
Brassicaceae | Euchloe ausoides | [134] |
Brassicaceae | Pieris rapae | [134] |
Brassicaceae | Pontia protodice | [134] |
Cardamine spp., Nasturtium spp. | Anthocaris cardamines | [138] |
Caryophyllaceae | Euphyia picata | [139] |
Centaurea spp.; Plantago spp. | Melitaea didyma | [139] |
Chenpopodium album L. | Brephidium exilis | [134] |
Cirsium spp., Centaurea solstitialis | Phycioides mylitta | [134] |
Cirsium spp., Centaurea spp. | Tymelicus sylvestris | [139] |
Echium vulgare L. | Ethmia terminella | [139] |
Galium spp. | Ryparia purpurata | [139] |
Galium spp. | Macroglossa stellatarum | [139] |
Graminaceae | Brintesia circe | [139] |
Graminaceae | Lerodea eufala | [134] |
Hypericum spp. | Deilephila elpenor | [139] |
Lamiaceae | Perizoma alchemillata | [139] |
Lytrum spp., Epilobium spp. | Hyles vespertilio | [139] |
Malva sylvestris, Alcea rosea | Heliopetes ericetorum | [134] |
Malvaceae, Chenopodium album L. | Pyrgus communis | [134] |
Malvaceae, Papilionaceae | Strymon melinus | [134] |
Malvaceae, Urticaceae | Vanessa annabella, | [134] |
Melilotus officinalis Lam., M. alba Medic. | Colias eurytheme | [134] |
Papillionaceae | Cyaniris semiargus | [139] |
Plantaginaceae | Euphydryas chalcedona | [140] |
Plantago lanceolata L. | Mellicta hatalia | [141] |
Plantago major L. and P. lanceolata L. | Euphydryas editha | [134] |
Polygonaceae | Lycaena phlaeas | [139] |
Polygonum persicaria L. | Lycaena helloides | [134] |
Rumex crispus L. | Lycaeana xanthoides | [134] |
Rumex spp. | Lycaena cupreus | [134] |
Scrophulariaceae | Junonia coenia | [134] |
Scrophulariaceae, Verbenaceae | Junonia coenia | [140] |
Silene spp.; Lycnis spp. | Hadena rivularis | [139] |
Sonchus oleraceus L. | Helicoverpa armigera | [142] |
Urtica spp. | Vanessa atlanta | [139] |
Veronica spp. | Stenoptilia pterodactyla | [139] |
Viola spp. | Argynnis paphia | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benvenuti, S. Weed Role for Pollinator in the Agroecosystem: Plant–Insect Interactions and Agronomic Strategies for Biodiversity Conservation. Plants 2024, 13, 2249. https://doi.org/10.3390/plants13162249
Benvenuti S. Weed Role for Pollinator in the Agroecosystem: Plant–Insect Interactions and Agronomic Strategies for Biodiversity Conservation. Plants. 2024; 13(16):2249. https://doi.org/10.3390/plants13162249
Chicago/Turabian StyleBenvenuti, Stefano. 2024. "Weed Role for Pollinator in the Agroecosystem: Plant–Insect Interactions and Agronomic Strategies for Biodiversity Conservation" Plants 13, no. 16: 2249. https://doi.org/10.3390/plants13162249
APA StyleBenvenuti, S. (2024). Weed Role for Pollinator in the Agroecosystem: Plant–Insect Interactions and Agronomic Strategies for Biodiversity Conservation. Plants, 13(16), 2249. https://doi.org/10.3390/plants13162249