Cosmetic Preservative Potential and Chemical Composition of Lafoensia replicata Pohl. Leaves
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Extract Preparation
2.2.1. Ethanolic Extracts
2.2.2. Tincture
2.3. Total Phenolic Content
2.4. Antioxidant Activity
2.4.1. DPPH Radical Assay
2.4.2. Ferric Reducing Antioxidant Power Assay (FRAP)
2.4.3. ABTS
2.5. Determination of the Minimum Inhibitory Concentration Using the Microdilution Method
2.6. Cytotoxicity Assessment
2.7. Analysis of the Extracts by Liquid Chromatography Coupled with Mass Spectrometry (LC-ESI-MS/MS)
2.8. Preparation of Topical Moisturizing Cream and Evaluation of the Preservative Activity of the L. replicata
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Total Phenolic Content and Antioxidant Activity
3.2. Antimicrobial Activity and Cytotoxicity Assessment
3.3. Analysis of the Effectiveness of the Preservative System of the Creams—“The Challenge Test”
3.4. Chemical Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosmetics Market Size, Share & Industry Analysis, by Category (Hair Care, Skin Care, Makeup, and Others), by Gender (Men and Women), by Distribution Channel (Specialty Stores, Hypermarkets/Supermarkets, Online Channels, and Others), and Regional Forecasts, 2024–2032. Available online: https://www.fortunebusinessinsights.com/cosmetics-market-102614 (accessed on 3 November 2022).
- Lóreal. Annual Growth of the Global Cosmetics Market from 2004 to 2021; Statista Research Department: New York, NY, USA, 2022. [Google Scholar]
- Couteau, C.; Girard, E.; Coiffard, L. Analysis of 275 DIY recipes for eye cosmetics and their possible safety issues. Int. J. Cosmet. Sci. 2022, 44, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Controversy around Parabens: Alternative Strategies for Preservative Use in Cosmetics and Personal Care Products; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 198, p. 110488. [Google Scholar]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Yiannias, J.A. Paraben Toxicology. Dermatitis 2019, 30, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F., Jr.; Woolery-Lloyd, H.; Waldorf, H.; Saini, R. Innovations in natural ingredients and their use in skin care. J. Drugs Dermatol. 2010, 9, S72–S81; quiz s82-73. [Google Scholar] [PubMed]
- Cerrado. Ministério do Meio Ambiente e Mudança Climática. Available online: https://www.gov.br/mma/pt-br/assuntos/ecossistemas-1/biomas/cerrado (accessed on 8 November 2022).
- Solon, S.; Lopes, L.; Teixeira de Sousa, P., Jr.; Schmeda-Hirschmann, G. Free radical scavenging activity of Lafoensia pacari. J. Ethnopharmacol. 2000, 72, 173–178. [Google Scholar] [CrossRef]
- Nunes, G.P.; Silva, M.F.d.; Resende, U.M.; Siqueira, J.M.d. Plantas medicinais comercializadas por raizeiros no Centro de Campo Grande, Mato Grosso do Sul. Rev. Bras. Farmacogn. 2003, 13, 83–92. [Google Scholar] [CrossRef]
- Mundo, S.R.; Duarte, M.d.R. Morfoanatomia Foliar e Caulinar de Dedaleiro: Lafoensia pacari A. St.-Hil. (Lythraceae). Lat. Am. J. Pharm. 2007, 26, 522–529. [Google Scholar]
- Sobrinho, F.C.B.; Almeida, A.L.S.; Monteiro, J.M. Estudo etnofarmacológico sobre Lafoensia replicata Pohl. no leste do Maranhão, Brasil: Uma promissora espécie para bioprospecção. Desenvolv. Meio Ambiente 2016, 39, 207–216. [Google Scholar] [CrossRef]
- Vieira, I.d.S.; da Silva, S.d.S.F.; de Souza, J.S.N.; Monteiro, J.M. Relação entre parâmetros biométricos e teores de fenóis totais em Lafoensia replicata Pohl.—Um estudo de caso. Sci. Plena 2017, 13. [Google Scholar] [CrossRef]
- Monteiro, J.; Souza, J.; Lins Neto, E.; Scopel, K.; Trindade, E. Does total tannin content explain the use value of spontaneous medicinal plants from the Brazilian semi-arid region? Rev. Bras. Farmacogn. 2014, 24, 116–123. [Google Scholar] [CrossRef]
- Anvisa. Formulário de Fitoterápicos da Farmacopéia Brasileira/Agência Nacional de Vigilância Sanitária, 6th ed.; Anvisa: Brasilia, Brazil, 2019; Volume 1. [Google Scholar]
- Quaresma, D.M.O.; Justino, A.B.; Sousa, R.M.F.; Munoz, R.A.A.; de Aquino, F.J.T.; Martins, M.M.; Goulart, L.R.; Pivatto, M.; Espindola, F.S.; de Oliveira, A. Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorg. Chem. 2020, 105, 104335. [Google Scholar] [CrossRef]
- Malta, L.G.; Liu, R.H. Analyses of Total Phenolics, Total Flavonoids, and Total Antioxidant Activities in Foods and Dietary Supplements. In Encyclopedia of Agriculture and Food Systems, 2nd ed.; Alfen, N.K.V., Ed.; Academic Press: Cambridge, UK, 2014; Volume 1, pp. 305–314. [Google Scholar]
- CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In CLSI Document M7-A9, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, p. 63. [Google Scholar]
- CLSI. Methods for antimicrobial susceptibility testing of anaerobic bacteria. In CLSI document M11-A8, 8th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, p. 39. [Google Scholar]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual [Internet]; Markossian, S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C., Baell, J., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK144065/ (accessed on 10 January 2024).
- Anvisa. Resolução da Diretoria Colegiada-Resolução RDC no. 14, de 14 de Março de 2013; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2013. [Google Scholar]
- Lee, C.-J.; Chen, L.-G.; Liang, W.-L.; Wang, C.-C. Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem. 2010, 118, 315–322. [Google Scholar] [CrossRef]
- Recuenco, M.C.; Lacsamana, M.S.; Hurtada, W.A.; Sabularse, V.C. Total Phenolic and Total Flavonoid Contents of Selected Fruits in the Philippines. Philipp. J. Sci. 2016, 145, 275–281. [Google Scholar]
- Anvisa. Resolução da Diretoria Colegiada-Resolução RDC no. 630, de 10 de Março de 2022; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2022. [Google Scholar]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.R.F.d.; Ximenes, E.C.P.A.; Luna, J.S.; Sant’Ana, A.E.G. The antibiotic activity of some Brazilian medicinal plants. Rev. Bras. Farmacogn. 2006, 16, 300–306. [Google Scholar] [CrossRef]
- Porfírio, Z.; Melo-Filho, G.C.; Alvino, V.; Lima, M.R.F.; Sant’Ana, A.E.G. Atividade antimicrobiana de extratos hidroalcoólicos de Lafoensia pacari A. St.-Hil., Lythraceae, frente a bactérias multirresistentes de origem hospitalar. Rev. Bras. Farmacogn. 2009, 19, 785–789. [Google Scholar] [CrossRef]
- Anvisa. Resolução da Diretoria Colegiada-Resolução RDC no. 528, de 4 de Agosto de 2021; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2021. [Google Scholar]
- Albuquerque Nerys, L.L.D.; Jacob, I.T.T.; silva, P.A.; da Silva, A.R.; de Oliveira, A.M.; Rocha, W.R.V.D.; Pereira, D.T.M.; da Silva Abreu, A.; da Silva, R.M.F.; da Cruz Filho, I.J.; et al. Photoprotective, biological activities and chemical composition of the non-toxic hydroalcoholic extract of Clarisia racemosa with cosmetic and pharmaceutical applications. Ind. Crops Prod. 2022, 180, 114762. [Google Scholar] [CrossRef]
- Jin, J.; Lao, J.; Zhou, R.; He, W.; Qin, Y.; Zhong, C.; Xie, J.; Liu, H.; Wan, D.; Zhang, S.; et al. Simultaneous identification and dynamic analysis of saccharides during steam processing of rhizomes of Polygonatum cyrtonema by HPLC–QTOF–MS/MS. Molecules 2018, 23, 2855. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Commun. 2016, 11, 239–244. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef]
- Tan, H.P.; Ling, S.K.; Chuah, C.H. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS. Phytochem. Anal. 2011, 22, 516–525. [Google Scholar]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography-tandem mass spectrometry. Food Res. Int. 2015, 70, 74–86. [Google Scholar] [CrossRef]
- Hamed, A.I.; Said, R.B.; Kontek, B.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Stochmal, A.; Olas, B. LC-ESI-MS/MS profile of phenolic and glucosinolate compounds in samh flour (Mesembryanthemum forsskalei Hochst. ex Boiss) and the inhibition of oxidative stress by these compounds in human plasma. Food Res. Int. 2016, 85, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Correira, V.T.V.; D’Angelis, D.F.; Macedo, M.C.C.; Ramos, A.L.C.C.; Vieira, A.L.S.; Queiroz, V.A.V.; Augusti, R.; Ferreira, A.A.; Fante, C.A.; Melo, J.O.F. Chemical profile of extruded sorghum flour the genotype BRS 305 by paper spray. Res. Soc. Dev. 2021, 10, e40710111414. [Google Scholar]
- Pereira, V.V.; da Fonseca, F.A.; Bento, C.S.O.; Oliveira, P.M.; Rocha, L.L.; Augusti, R.; Mendonça Filho, C.V.; Silva, R.R. Electrospray ionization mass spectrometry fingerprint of the Byrsonima species. Rev. Virtual Quim. 2015, 7, 2539–2548. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündaǧ, Ö.; Carle, R.; Schweiggert, R.M. Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (exo- and mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Costa Silva, T.d.; Justino, A.B.; Prado, D.G.; Koch, G.A.; Martins, M.M.; Santos, P.d.S.; Morais, S.A.L.d.; Goulart, L.R.; Cunha, L.C.S.; Sousa, R.M.F.d.; et al. Chemical composition, antioxidant activity and inhibitory capacity of α-amylase, α-glucosidase, lipase and non-enzymatic glycation, in vitro, of the leaves of Cassia bakeriana Craib. Ind. Crops Prod. 2019, 140, 111641. [Google Scholar] [CrossRef]
- Vivas, N.; Nonier, M.-F.; de Gaulejac, N.V.; de Boissel, I.P. Occurrence and partial characterization of polymeric ellagitannins in Quercus petraea Liebl. and Q. robur L. wood. Comptes Rendus Chim. 2004, 7, 945–954. [Google Scholar] [CrossRef]
- Reddy, M.; Kasimsetty, S.; Jacob, M.; Khan, S.; Ferreira, D. Antioxidant, Antimalarial and Antimicrobial Activities of Tannin-Rich Fractions, Ellagitannins and Phenolic Acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef]
Sample | Total Phenol Content (mg GAE g−1) | Antioxidant Activity | ||
---|---|---|---|---|
DPPH CE50 (µg mL−1) | FRAP (µmol TE g−1) | ABTS (µmol TE g−1) | ||
HE | 43.4 ± 1.8 a | >200 | 84.67 ± 3.47 a | 111.3 ± 2.7 a |
EE | 253.7 ± 2.6 b | 4.24 ± 0.16 a | 473.79 ± 6.82 b | 473.79 ± 46.3 b |
DT | 230.2 ± 2.1 c | 3.50 ± 0.06 b | 681.16 ± 5.23 c | 479.7 ± 12.0 c |
Microorganisms | Minimum Inhibitory Concentration (MIC)—µg mL−1 | ||||
---|---|---|---|---|---|
Extracts | Antibiotics | ||||
HE | EE | DT | Gentamicin | Anthofericin B | |
S. aureus | >800 | 50 | 25 | 0.36 | - |
E. coli | >800 | >800 | >800 | 0.36 | - |
P. aeruginosas | >800 | 100 | 50 | 0.36 | - |
C. albicans | 400 | 3.12 | 3.12 | - | 0.5 |
Samples | IC50 (µg mL−1) | Selectivity Index | |||
---|---|---|---|---|---|
S. aureus | E. coli | P. aeruginosas | C. albicans | ||
EE | 397.23 ± 1.70 | 0.90 | −0.30 | 0.60 | 2.10 |
DT | 396.87 ± 20.00 | 1.20 | −0.30 | 0.90 | 2.10 |
Preservatives | Microorganisms | 0 Days log/CFU | 7 Days log/CFU | 14 Days log/CFU | 21 Days log/CFU | 28 Days log/CFU |
---|---|---|---|---|---|---|
- | A. brasiliensis | 5.70 | 5.65 | 5.63 | 5.69 | 5.72 |
C. albicans | 6.91 | 6.74 | 6.74 | 6.88 | 6.84 | |
E. coli | 7.20 | 7.11 | 7.31 | 7.20 | 7.12 | |
P. aeruginosa | 6.18 | 6.14 | 6.14 | 6.21 | 6.26 | |
S. aureus | 6.26 | 6.35 | 6.35 | 6.25 | 6.43 | |
Methylparaben | A. brasiliensis | 5.00 | <1.00 | <1.00 | <1.00 | <1.00 |
C. albicans | 6.08 | <1.00 | <1.00 | <1.00 | <1.00 | |
E. coli | 6.14 | <1.00 | <1.00 | <1.00 | <1.00 | |
P. aeruginosa | 6.15 | <1.00 | <1.00 | <1.00 | <1.00 | |
S. aureus | 6.36 | <1.00 | <1.00 | <1.00 | <1.00 | |
CT | A. brasiliensis | 5.86 | 1.24 | 1.24 | <1.00 | <1.00 |
C. albicans | 6.43 | 1.70 | 1.70 | <1.00 | <1.00 | |
E. coli | 6.60 | 3.21 | 2.30 | <1.00 | <1.00 | |
P. aeruginosa | 6.49 | 3.18 | 3.18 | <1.00 | <1.00 | |
S. aureus | 6.91 | <1.00 | <1.00 | <1.00 | <1.00 | |
DT | A. brasiliensis | 5.78 | 1.74 | <1.00 | <1.00 | <1.00 |
C. albicans | 6.33 | 2.01 | <1.00 | <1.00 | <1.00 | |
E. coli | 6.46 | 2.12 | <1.00 | <1.00 | <1.00 | |
P. aeruginosa | 6.89 | 2.34 | <1.00 | <1.00 | <1.00 | |
S. aureus | 6.47 | 2.14 | <1.00 | <1.00 | <1.00 | |
EE | A. brasiliensis | 5.63 | <1.00 | <1.00 | <1.00 | <1.00 |
C. albicans | 6.89 | 1.00 | <1.00 | <1.00 | <1.00 | |
E. coli | 6.89 | 2.31 | <1.00 | <1.00 | <1.00 | |
P. aeruginosa | 6.88 | 2.90 | 2.04 | <1.00 | <1.00 | |
S. aureus | 6.71 | 1.30 | <1.00 | <1.00 | <1.00 |
Rt (min) | Compound | Molecular Formula | m/z exp. [M − H]− | m/z Calculated [M − H]− | Error (ppm) | Fragments MS2 | Extracts | Refs. | |
---|---|---|---|---|---|---|---|---|---|
1 | 1.967 | Sorbitol | C6H13O6− | 181.0724 | 181.0718 | 3.31 | 163 | EE; DT | [29,30] |
2 | 1.967 | HHDP—glucose | C20H17O14− | 481.0635 | 481.0622 | 2.70 | 421, 301, 275 | EE; DT | [31,32] |
3 | 2.094 | Pedunculagin isomer I (di-HHDP—glucose) | C34H23O22− | 783.0685 | 783.0686 | −0.12 | 481, 301, 291, 275, 249, 145 | EE; DT | [31,32] |
4 * | 2.097 | Pedunculagin isomer I (di-HHDP—glucose) | C34H23O22− | 391.0303 | 391.0307 | −1.02 | 301, 291, 275, 145 | DT | [31,32] |
5 | 2.178 | Sucrose + formic acid | C12H21O11− | 387.1166 | 387.1144 | 5.68 | 341, 179, 161, 143 | EE; DT | [30] |
6 | 2.220 | Punicalin | C34H21O22− | 781.0530 | 781.0530 | 0.00 | 765, 721, 601, 575, 481, 393, 301, 299, 273 | EE; DT | [31,32] |
7 | 2.473 | HHDP galloyl glucose | C27H21O18− | 633.0733 | 633.0733 | 0.00 | 463, 275, 301, 249, 169 | EE; DT | [31,32] |
8 * | 2.490 | Punicalagin isomers | C48H27O30− | 541.0269 | 541.0260 | 1.66 | 601, 531, 402, 301, 124 | EE; DT | [32] |
9 | 2.515 | Galloyl glucose | C13H15O10− | 331.0686 | 331.0671 | 4.53 | 304, 170, 169, 139, 125 | EE; DT | [31] |
10 | 2.541 | Trisgaloyl—HHDP glucose | C41H27O27− | 951.0784 | 951.0740 | 4.62 | 907, 605, 425, 341, 301, 275 | EE | [31] |
11 | 2.566 | Galloyl punicalin | C41H25O26− | 933.0627 | 933.0640 | −1.39 | 631, 451, 425, 301 | EE; DT | [31] |
12 | 2.617 | Gallic acid | C7H5O5− | 169.0139 | 169.0142 | −1.77 | 125 | EE; DT | [31] |
13 | 2.687 | Flavogalonic acid | C21H9O13− | 469.0051 | 469.0049 | 0.43 | 470, 425, 407, 299 | DT | [31] |
14 | 2.768 | Terflavin A | C48H29O30− | 1085.0754 | 1085.074 | 0.46 | 933, 783, 631, 601, 451, 301 | EE; DT | [31] |
15 | 2.937 | Punicalagin isomers | C48H27O30− | 1083.0578 | 1083.059 | −1.38 | 781, 601, 451, 301 | EE; DT | [31,32] |
16 | 3.131 | HHDP—galloyl glucose isomer II | C27H21O18− | 633.0725 | 633.0733 | −1.26 | 301, 275 | EE; DT | [31,32] |
17 | 4.251 | HHDP—galloyl glucose isomer III | C27H21O18− | 633.0686 | 633.0733 | −7.42 | 301, 275 | EE; DT | [31,32] |
18 | 4.639 | HHDP—galloyl glucose isomer IV | C27H21O18− | 633.0736 | 633.0733 | 0.47 | 301, 275 | EE; DT | [31,32] |
19 | 9.385 | Trigaloyl hexoside | C27H23O18− | 635.0895 | 635.0890 | 0.79 | 483, 465, 313, 301, 169, 125 | EE; DT | [31] |
20 | 9.385 | Pterocarinin C | C41H29O26− | 937.0968 | 937.0953 | 1.60 | 785, 635, 465, 301, 275, 169,125 | DT | [33] |
21 | 9.764 | Tetragaloyl hexose | C34H27O22− | 787.0977 | 787.0999 | −2.79 | 635, 617, 465, 169 | EE; DT | [34] |
22 | 10.101 | Ethyl gallate | C9H9O5− | 197.0456 | 197.0455 | 0.51 | 169, 125 | EE; DT | [31] |
23 | 10.312 | Pentagaloyl hexoside | C41H31O26− | 939.1112 | 939.1109 | 0.32 | 787, 617, 465, 393, 241, 169 | DT | [35] |
24 | 10.481 | Quercetin dihexoside | C27H29O17− | 625.1412 | 625.1410 | 0.32 | 581, 579, 487, 463, 301, 300, 271, 169, 151 | EE; DT | [36] |
25 | 10.481 | Isorhamnetin hexoside | C22H21O12− | 477.1036 | 477.1038 | −0.42 | 433, 314, 313, 301, 271, 169, 125 | DT | [35,36] |
26 | 10.565 | Quercetin arabinoglycoside | C26H27O16− | 595.1315 | 595.1305 | 1.68 | 300, 301, 271, 169 | EE; DT | [37] |
27 | 10.776 | Quercetin galloyl hexoside | C28H23O16− | 615.0982 | 615.0992 | −1.62 | 463, 300, 301, 271 | EE; DT | [38] |
28 | 11.071 | Quercetin hexoside | C21H19O12− | 463.0882 | 463.0881 | 0.22 | 301, 300, 271 | EE; DT | [38] |
29 | 11.404 | Galoyl quercetin | C28H23O15− | 599.1040 | 599.1042 | −0.33 | 463, 301, 285 | EE; DT | [35,39] |
30 | 11.362 | Ellagic acid | C14H5O8− | 300.9996 | 300.9984 | 3.99 | 284, 173, 145, 133 | EE; DT | [32] |
31 | 11.573 | Hexoside kaempferol | C21H19O11− | 447.0934 | 447.0933 | 0.22 | 285, 284, 255, 227 | EE; DT | [32,35,40] |
32 | 12.206 | Quercetin | C15H9O7− | 301.0370 | 301.0354 | 5.31 | 273, 169, 151, 134 | EE; DT | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, D.M.d.; Santos, A.L.O.; Melo, M.R.S.d.; Tavares, D.C.; Martins, C.H.G.; Sousa, R.M.F. Cosmetic Preservative Potential and Chemical Composition of Lafoensia replicata Pohl. Leaves. Plants 2024, 13, 2011. https://doi.org/10.3390/plants13152011
Lima DMd, Santos ALO, Melo MRSd, Tavares DC, Martins CHG, Sousa RMF. Cosmetic Preservative Potential and Chemical Composition of Lafoensia replicata Pohl. Leaves. Plants. 2024; 13(15):2011. https://doi.org/10.3390/plants13152011
Chicago/Turabian StyleLima, Débora Machado de, Anna Lívia Oliveira Santos, Matheus Reis Santos de Melo, Denise Crispim Tavares, Carlos Henrique Gomes Martins, and Raquel Maria Ferreira Sousa. 2024. "Cosmetic Preservative Potential and Chemical Composition of Lafoensia replicata Pohl. Leaves" Plants 13, no. 15: 2011. https://doi.org/10.3390/plants13152011
APA StyleLima, D. M. d., Santos, A. L. O., Melo, M. R. S. d., Tavares, D. C., Martins, C. H. G., & Sousa, R. M. F. (2024). Cosmetic Preservative Potential and Chemical Composition of Lafoensia replicata Pohl. Leaves. Plants, 13(15), 2011. https://doi.org/10.3390/plants13152011