Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Plant Extract
3.3. Analysis of Total Polyphenolic, Total Flavonoid and Anthraquinones Content
3.3.1. Phenols
3.3.2. Flavonoids
3.3.3. Anthraquinones
3.4. GC-MS Identification of Compounds
3.5. DPPH Free Radical Scavenging Assay
3.6. Ferric Reducing Power (FRAP) Assay
3.7. Total Reactive Antioxidant Power (TRAP) Assay
3.8. In Vitro Cytotoxicity Assay
3.8.1. Cells and Culture Conditions
3.8.2. In Vitro Growth Inhibition Assay
3.8.3. Selectivity Index
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Colorectal Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 27 August 2024).
- Vallis, J.; Wang, P.P. The Role of Diet and Lifestyle in Colorectal Cancer Incidence and Survival. In Gastrointestinal Cancers; Morgado-Diaz, J.A., Ed.; Exon Publications: Brisbane City, QLD, Australia, 2022; Chapter 2. [Google Scholar] [CrossRef]
- Alzate-Yepes, T.; Pérez-Palacio, L.; Martínez, E.; Osorio, M. Mechanisms of Action of Fruit and Vegetable Phytochemicals in Colorectal Cancer Prevention. Molecules 2023, 28, 4322. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Jakobušić Brala, C.; Karković Marković, A.; Kugić, A.; Torić, J.; Barbarić, M. Combination Chemotherapy with Selected Polyphenols in Preclinical and Clinical Studies—An Update Overview. Molecules 2023, 28, 3746. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.B.A.; Nasiri, R.; Hamzehalipour, A.J. In Vitro Antiproliferative Activity of Fresh Pineapple Juices on Ovarian and Colon Cancer Cell Lines. Int. J. Pept. Res. Ther. 2015, 21, 353–364. [Google Scholar] [CrossRef]
- Amini, A.; Ehteda, A.; Masoumi, M.S.; Akhter, J.; Pillai, K.; Morris, D.L. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21) Lines. OncoTargets Ther. 2013, 6, 403–409. [Google Scholar]
- Jabaily, R.S.; Sytsma, K.J. Phylogenetics of Puya (Bromeliaceae): Placement, major lineages, and evolution of Chilean species. Am. J. Bot. 2010, 97, 337–356. [Google Scholar] [CrossRef]
- Metcalf, J.C.; Rose, K.E.; Rees, M. Evolutionary demography of monocarpic perennials. Trends Ecol. Evol. 2003, 18, 471–480. [Google Scholar] [CrossRef]
- Muñoz-Schick, M.; Moreira-Muñoz, A. El género Schizanthus (Solanaceae) en Chile. Rev. Chagual 2008, 6, 21–32. Available online: https://jardinbotanicochagual.cl/wp-content/uploads/2023/10/revista-chagual-1.pd (accessed on 27 August 2024).
- Zizka, G.; Schmidt, M.; Schulte, K.; Novoa, P.; Pinto, R.; König, K. Chilean Bromeliaceae: Diversity, Distribution and Evaluation of Conservation Status. Biodivers. Conserv. 2009, 18, 2449–2471. [Google Scholar] [CrossRef]
- Muñoz, M.S.; Barrera, E.M.; Meza, I.P. El uso Medicinal y Alimenticio de Plantas Nativas y Naturalizadas en Chile; Publicación Ocasional N° 33; Museo Nacional de Historia Natural: Santiago, Chile, 1981; p. 12. [Google Scholar]
- Smith, L.B.; Looser, G. Las especies chilenas del género Puya. Rev. Univ. Católica De Chile 1935, 20, 255–295. Available online: https://obtienearchivo.bcn.cl/obtieneimagen?id=documentos/10221.1/53390/1/207614.pdf (accessed on 27 August 2024).
- Hornung-Leoni, C. Avances sobre Usos Etnobotánicos de las Bromeliaceae en Latinoamérica. BLACPMA 2011, 10, 297–314. Available online: https://www.redalyc.org/pdf/856/85619300003.pdf (accessed on 28 August 2024).
- Jiménez-Aspee, F.; Theoduloz, C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; Reyes, M.; Schmeda-Hirschmann, G. Polyphenolic Profile and Antioxidant Activity of Meristem and Leaves from “Chagual” (Puya chilensis Mol.), a Salad from Central Chile. Food Res. Int. 2018, 114, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Echeverria-Echeverria, C.; Valderrama-Villarroel, A.; Ortega, M.; Contreras, R.A.; Zúñiga, G.E.; Alvarado-Soto, L.; Ramírez-Tagle, R. Cytotoxic Effect of Puya chilensis Collected in Central Chile. Nat. Prod. Commun. 2022, 17, 1–5. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.L.; Ramírez-Garza, R.E.; Serna, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Zhang, X.; Thuong, P.T.; Jin, W.; Su, N.D.; Sok, D.E.; Bae, K.; Kang, S.S. Antioxidant Activity of Anthraquinones and Flavonoids from Flower of Reynoutria sachalinensis. Arch. Pharm. Res. 2005, 28, 22–27. [Google Scholar] [CrossRef]
- Ben Mrid, R.; Bouchmaa, N.; Bouargalne, Y.; Ramdan, B.; Karrouchi, K.; Kabach, I.; El Karbane, M.; Idir, A.; Zyad, A.; Nhiri, M. Phytochemical Characterization, Antioxidant and In Vitro Cytotoxic Activity Evaluation of Juniperus oxycedrus Subsp. oxycedrus Needles and Berries. Molecules 2019, 24, 502. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Niciforovic, N.; Topuzovic, M.; Solujic, S. Total Phenolic Content, Flavonoid Concentrations and Antioxidant Activity, of The Whole Plant and Plant Parts Extracts from Teucrium montanum L. Var. Montanum, F. supinum (L.) Reichenb. Biotechnol. Biotechnol. Equip. 2011, 25, 2222–2227. [Google Scholar] [CrossRef]
- Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic Activity Screening of Some Indigenous Thai Plants. Fitoterapia 2008, 79, 598–601. [Google Scholar] [CrossRef]
- Chothiphirat, A.; Nittayaboon, K.; Kanokwiroon, K.; Srisawat, T.; Navakanitworakul, R. Anticancer Potential of Fruit Extracts from Vatica diospyroides Symington Type SS and Their Effect on Program Cell Death of Cervical Cancer Cell Lines. Sci. World J. 2019, 2019, 5491904. [Google Scholar] [CrossRef]
- Jaradat, N.A.; Al-Ramahi, R.; Zaid, A.N.; Ayesh, O.I.; Eid, A.M. Ethnopharmacological Survey of Herbal Remedies Used for Treatment of Various Types of Cancer and Their Methods of Preparations in the West Bank-Palestine. BMC Complement. Altern. Med. 2016, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Sugahara, K.; Tsutsumi, C.; Iino, M.; Koi, S.; Noda, N.; Iwashina, T. Identification of Anthocyanin and Other Flavonoids from the Green–Blue Petals of Puya alpestris (Bromeliaceae) and a Clarification of Their Coloration Mechanism. Phytochem. 2021, 181, 112581. [Google Scholar] [CrossRef]
- Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and Apoptosis-Inducing Effects of Quercetin in Vitro and in Vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in Cancer Therapy: Anti-Cancer Effects and Mechanisms of Action. Cell Biosci. 2017, 7, 50. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; Collins, V.J.; Vauzour, D.; Rodríguez-Mateos, A.; Corona, G.; Spencer, J.P.E. Inhibition of Colon Adenocarcinoma Cell Proliferation by Flavonols Is Linked to a G2/M Cell Cycle Block and Reduction in Cyclin D1 Expression. Food Chem. 2012, 130, 493–500. [Google Scholar] [CrossRef]
- Giannetti, V.; Biancolillo, A.; Marini, F.; Boccacci Mariani, M.; Livi, G. Characterization of the Aroma Profile of Edible Flowers Using HS-SPME/GC–MS and Chemometrics. Food Res. Int. 2024, 178, 114001. [Google Scholar] [CrossRef]
- Abed, S.S.; Kiranmayi, P.; Imran, K.; Lateef, S.S. Gas Chromatography-Mass Spectrometry (GC-MS) Metabolite Profiling of Citrus limon (L.) Osbeck Juice Extract Evaluated for Its Antimicrobial Activity Against Streptococcus mutans. Cureus 2023, 15, e33585. [Google Scholar] [CrossRef] [PubMed]
- Ajilogba, C.F.; Babalola, O.O. GC–MS Analysis of Volatile Organic Compounds from Bambara Groundnut Rhizobacteria and Their Antibacterial Properties. World J. Microbiol. Biotechnol. 2019, 35, 83. [Google Scholar] [CrossRef]
- Adams, P.R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectromety, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Baeshen, N.A.; Almulaiky, Y.Q.; Afifi, M.; Al-Farga, A.; Ali, H.A.; Baeshen, N.N.; Abomughaid, M.M.; Abdelazim, A.M.; Baeshen, M.N. GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents. Plants 2023, 12, 960. [Google Scholar] [CrossRef]
- Pais, A.L.; Li, X.; Xiang, Q. Discovering Variation of Secondary Metabolite Diversity and Its Relationship with Disease Resistance in Cornus florida L. Ecol. Evol. 2018, 8, 5619–5636. [Google Scholar] [CrossRef]
- Mohy El-Din, S.M.; El-Ahwany, A.M.D. Bioactivity and Phytochemical Constituents of Marine Red Seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 2016, 10, 471–484. [Google Scholar] [CrossRef]
- Akinmoladun, A.C.; Ibukun, E.O.; Afor, E.; Akinsinlola, B.L.; Onibon, T.R.; Akinboboye, A.O. Chemical constituents and antioxidant activity of Boonei alstonia. Afr. J. Biotechnol. 2007, 6, 1197. [Google Scholar]
- Begum, S.M.F.M.; Priya, S.; Sundararajan, R.; Hemalatha, S. Novel anticancerous compounds from Sargassum wightii: In silico and in vitro approaches to test the antiproliferative efficacy. J. Adv. Pharm. Edu Res. 2017, 7, 272–277. [Google Scholar]
- Rodríguez, J.P.; Guijas, C.; Astudillo, A.M.; Rubio, J.M.; Balboa, M.A.; Balsinde, J. Sequestration of 9-Hydroxystearic Acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a Protective Mechanism for Colon Carcinoma Cells to Avoid Apoptotic Cell Death. Cancers 2019, 11, 524. [Google Scholar] [CrossRef]
- Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer Activities of Fatty Acids and Their Heterocyclic Derivatives. Eur. J. Pharmacol. 2020, 871, 172937. [Google Scholar] [CrossRef]
- Korbecki, J.; Bajdak-Rusinek, K. The Effect of Palmitic Acid on Inflammatory Response in Macrophages: An Overview of Molecular Mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Vergara, M.; Olivares, A.; Altamirano, C. Antiproliferative Evaluation of Tall-Oil Docosanol and Tetracosanol over CHO-K1 and Human Melanoma Cells. Electro J. Biotecnol. 2015, 18, 291–294. [Google Scholar] [CrossRef]
- Sowmya, S.; Perumal, P.C.; Ravi, S.; Anusooriya, P.; Shanmughavel, P.; Murugesh, E.; Chaithany, K.K.; Gopalakrishnan, V.K. 1-Pentacosanol Isolated from Stem Ethanolic Extract of Cayratia trifolia (L.) Is a Potential Target for Prostate Cancer-In silico Approach. JJBS 2021, 14, 359–365. [Google Scholar] [CrossRef]
- Jara, C.; Leyton, M.; Osorio, M.; Silva, V.; Fleming, F.; Paz, M.; Madrid, A.; Mellado, M. Antioxidant, Phenolic and Antifungal Profiles of Acanthus mollis (Acanthaceae). Nat. Prod. Res. 2017, 31, 2325–2328. [Google Scholar] [CrossRef]
- Faundes-Gandolfo, N.; Jara-Gutiérrez, C.; Párraga, M.; Montenegro, I.; Vera, W.; Escobar, M.; Madrid, A.; Valenzuela, M.; Villena, J. Kalanchoe pinnata (Lam.) Pers. leaf ethanolic extract exerts selective anticancer activity through ROS-induced apoptotic cell death in human cancer cell lines. BMC Complement. Med. Ther. 2024, 24, 269. [Google Scholar] [CrossRef]
- NIST. NIST Mass Spectral Database for NIST/EPA/NIH and Mass Spectral Search Program (Version 2.3); National Institute of Standards and Technology NIST: Gaithersburg, MD, USA, 2017; Volume 6, pp. 1–73. [Google Scholar]
- Mellado, M.; Soto, M.; Madrid, A.; Montenegro, I.; Jara-Gutiérrez, C.; Villena, J.; Werner, E.; Godoy, P.; Aguilar, L.F. In Vitro Antioxidant and Antiproliferative Effect of the Extracts of Ephedra chilensis K Presl Aerial Parts. BMC Complement. Altern. Med. 2019, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Villena, J.; Montenegro, I.; Said, B.; Werner, E.; Flores, S.; Madrid, A. Ultrasound Assisted Synthesis and Cytotoxicity Evaluation of Known 2′,4′-Dihydroxychalcone Derivatives against Cancer Cell Lines. Food Chem. Toxicol. 2021, 148, 111969. [Google Scholar] [CrossRef] [PubMed]
Part of Plant | Extract | Phenols (μg GAE/g d.e.) | Flavonoids (μg QE/g d.e.) | Anthraquinones (μg EE/g d.e.) |
---|---|---|---|---|
Stem | H | 2.63 ± 0.24 a | 0.92 ± 0.17 a | 1.48 ± 0.12 a |
EA | 2.66 ± 0.05 a | 21.06 ± 0.31 b | 0.48 ± 0.20 a | |
E | 2.50 ± 0.14 b | 20.29 ± 0.32 b | 0.93 ± 0.25 a | |
Flower | H | 2.84 ± 0.22 c | 30.07 ± 0.12 c | 14.71 ± 0.38 b |
EA | 4.63 ± 0.37 d | 31.5 ± 0.23 c | 12.60 ± 0.20 b | |
E | 2.72 ± 0.32 c | LOD | LOD |
Part of Plant | Sample/Extract | DPPH∙ (IC50 mg/mL) | FRAP (TEAC mM) | TRAP (TEAC µM) |
---|---|---|---|---|
Stem | H | 91.33 ± 0.26 a | 12.53 ± 0.02 b | 0.02 ± 0.01 a |
EA | 44.03 ± 0.21 c | 12.61 ± 0.24 b | 0.03± 0.01 b | |
E | 11.77 ± 0.17 d | 11.80 ± 0.32 b | 0.07± 0.05 a | |
Flower | H | 21.43 ± 0.10 e | 12.75 ± 0.01 b | 0.03 ± 0.00 a |
EA | 4.15 ± 0.10 d | 26.52 ± 0.01 a | 0.47 ± 0.01 b | |
E | 5.32 ± 0.01 d | 11.38 ± 0.01 b | 0.09 ± 0.01 a | |
Trolox | 0.26 ± 0.02 f | n.a | n.a | |
Gallic acid | 0.06 ± 0.01 f | 1.72 ± 0.01 c | 1.14 ± 0.01 c | |
BHT | n.a | 1.52 ± 0.07 c | 1.06 ± 0.02 c |
Part of Plant | Extract | Cell Lines | SI | |
---|---|---|---|---|
HT-29 | CCD 841 CoN | |||
Stem | H | >100 | >100 | I |
EA | >100 | >100 | I | |
E | >100 | >100 | I | |
Flower | H | >100 | >100 | I |
EA | 41.70 ± 0.05 | >100 | 2.40 | |
E | 98.6 ± 0.02 | >100 | 1.01 | |
Doxo | 1.75 ± 0.05 | 5.01 + 0.53 | 2.86 | |
5-FU | 9.15 ± 0.5 | 42.41 ± 0.1 | 4.63 |
Nº | RT (min) | Components | %A a | RI b | RI c | Match |
---|---|---|---|---|---|---|
1 | 7.66 | 2,3-butanediol diacetate | 0.17 | 1075 | 1080 | 940 |
2 | 8.48 | Nonanal | 0.09 | 1106 | 1102 | 960 |
3 | 8.822 | 1,3-propanediol diacetate | 0.10 | 1121 | RINR | 870 |
4 | 10.30 | benzoic acid | 0.05 | 1186 | 1191 | 850 |
5 | 10.62 | ethyl hydrogen succinate | 0.25 | 1201 | RINR | 920 |
6 | 12.03 | benzeneacetic acid | 0.28 | 1279 | 1276 | 930 |
7 | 12.30 | nonanoic acid | 0.06 | 1293 | 1297 | 890 |
8 | 12.91 | 2-methoxy-4-vinylphenol | 0.02 | 1328 | 1330 | 800 |
9 | 13.63 | γ-nonanolactone | 0.05 | 1367 | 1363 | 910 |
10 | 14.34 | Vanillin | 0.06 | 1408 | 1409 | 870 |
11 | 16.91 | dodecanoic acid | 0.09 | 1578 | 1576 | 860 |
12 | 17.10 | 3-hydroxy-4-methoxybenzoic acid | 0.40 | 1591 | RINR | 860 |
13 | 17.95 | 3-oxo-α-ionol | 0.02 | 1652 | 1656 | 810 |
14 | 18.81 | ethylhexyl benzoate | 0.08 | 1716 | RINR | 940 |
15 | 19.40 | methyl vanillate | 0.20 | 1762 | RINR | 860 |
16 | 19.60 | myristic acid | 0.33 | 1776 | 1775 | 850 |
17 | 19.88 | Isophorone | 0.30 | 1798 | RINR | 810 |
18 | 20.83 | pentadecanoic acid | 0.09 | 1875 | 1878 | 850 |
19 | 21.09 | trans-ferulic acid | 0.74 | 1895 | 1897 | 880 |
20 | 21.56 | hexadecanoic acid methyl ester | 5.47 | 1931 | 1928 | 890 |
21 | 21.86 | 9-hexadecenoic acid | 2.39 | 1960 | 1957 | 920 |
22 | 22.17 | ascorbic acid 2,6 dihexadecanoate | 15.21 | 1986 | RINR | 930 |
23 | 22.32 | palmitic acid | 4.88 | 1999 | 1996 | 900 |
24 | 24.17 | (Z,Z)-9,12-octadecadienoic acid | 10.41 | 2083 | 2095 | 920 |
26 | 26.57 | Docosane | 0.78 | 2200 | 2200 | 900 |
27 | 30.21 | Tetracosane | 0.39 | 2400 | 2400 | 860 |
28 | 30.36 | bis(ethylhexyl) sebacate | 1.11 | 2408 | RINR | 940 |
29 | 30.93 | 1-tetracosanol | 9.85 | 2437 | RINR | 930 |
30 | 32.47 | 1-pentacosanol | 12.57 | 2529 | RINR | 930 |
31 | 33.06 | α-tocopherol | 1.77 | 2563 | 3112 | 950 |
32 | 34.86 | β-sitosterol | 2.55 | 2665 | 3187 | 860 |
33 | 35.29 | 20b-Dihydroprogesterone | 0.92 | 2690 | RINR | 800 |
34 | 35.73 | 9,19-cyclolanost-24-en-3-ol | 0.69 | 2715 | 3465 | 850 |
35 | 36.53 | stigmast-4-en-3-one | 10.59 | 2761 | 3458 | 880 |
Known compounds | 82.96 | |||||
Unknown compounds | 17.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Lobos, M.; Silva, V.; Villena, J.; Jara-Gutiérrez, C.; Vera Quezada, W.E.; Montenegro, I.; Madrid, A. Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines. Plants 2024, 13, 2989. https://doi.org/10.3390/plants13212989
Martínez-Lobos M, Silva V, Villena J, Jara-Gutiérrez C, Vera Quezada WE, Montenegro I, Madrid A. Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines. Plants. 2024; 13(21):2989. https://doi.org/10.3390/plants13212989
Chicago/Turabian StyleMartínez-Lobos, Manuel, Valentina Silva, Joan Villena, Carlos Jara-Gutiérrez, Waleska E. Vera Quezada, Iván Montenegro, and Alejandro Madrid. 2024. "Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines" Plants 13, no. 21: 2989. https://doi.org/10.3390/plants13212989
APA StyleMartínez-Lobos, M., Silva, V., Villena, J., Jara-Gutiérrez, C., Vera Quezada, W. E., Montenegro, I., & Madrid, A. (2024). Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines. Plants, 13(21), 2989. https://doi.org/10.3390/plants13212989