Assessing Soil Quality, Wheat Crop Yield, and Water Productivity under Condition of Deficit Irrigation
Abstract
:1. Introduction
2. Results
2.1. Soil Response to Irrigation Treatments
2.2. Factor Analysis for Soil Response
2.3. Wheat Yield Assessment
2.4. Grain Yield Assessment
2.5. Grain Yield Reduction
2.6. Irrigation Water Productivity under Applied Treatments
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Field Experiment
4.3. Soil Quality Assessment
4.4. Wheat Crop Yield Assessment
4.5. Water Productivity Assessment
4.5.1. Applied Irrigation Water (AIW)
4.5.2. Crop Evapotranspiration (ETc)
4.5.3. Irrigation Water Productivity (IWP)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2021. [Google Scholar]
- Christian, M.; Shimelis, H.; Laing, M.; Tsilo, T.; Mathew, I. Breeding for silicon-use efficiency, protein content and drought tolerance in bread wheat (Triticum aestivum L.): A review. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2021, 72, 17–29. [Google Scholar] [CrossRef]
- Ebeed, H.T.; Hassan, N.M.; Ahmed, H.S. Silicon-mediated Improvement of Drought Tolerance in Two Wheat Genotypes. Egypt. J. Bot. 2023, 63, 563–580. [Google Scholar] [CrossRef]
- Badr, E.A.; Ibrahim, O.M.; Tawfik, M.M.; Bahr, A.A. Management strategy for improving the productivity of wheat in newly reclaimed sandy soil. Int. J. ChemTech Res. 2015, 8, 1438–1445. [Google Scholar]
- Khedr, R.A.; Sorour, S.G.R.; Aboukhadrah, S.H.; El Shafey, N.M.; Abd Elsalam, H.E.; El-Sharnouby, M.E.; El-Tahan, A.M. Alleviation of salinity stress effects on agro-physiological traits of wheat by auxin, glycine betaine, and soil additives. Saudi J. Biol. Sci. 2022, 29, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Ning, D.; Zhang, Y.; Li, X.; Qin, A.; Huang, C.; Fu, Y.; Gao, Y.; Duan, A. The Effects of Foliar Supplementation of Silicon on Physiological and Biochemical Responses of Winter Wheat to Drought Stress during Different Growth Stages. Plants 2023, 12, 2386. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Tayyab, M.; Islam, W.; Tarin, M.; Sarfraz, R.; Naveed, H.; Zaman, S.M.T.; Zhang, B.; Yuan, Z.; Zhang, H. Silicon-mediated improvement in tolerance of economically important crops under drought stress. Appl. Ecol. Environ. Res. 2019, 17, 6151–6170. [Google Scholar] [CrossRef]
- Snehalatha, D.; Bharghavi, J.; Rao, P.; Srikanth, B.; Kumar, C.; Ramesh, T. Silicon Improved Water Stress Tolerance in Rice Genotypes. Int. J. Environ. Clim. Change 2023, 13, 2056–2068. [Google Scholar] [CrossRef]
- Sousa, L.; Brito, A.; Souza, L.; Teixeira, K.; Nascimento, V.; Albuquerque, G.; Neto, C.F.; Okumura, R.; Nogueira, G.; Freitas, J.; et al. Does silicon attenuate PEG 6000-induced water deficit in germination and growth initial the seedlings corn. Braz. J. Biol. 2023, 83, e265991. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.M.; Shimelis, H.; Laing, M.D.; Tsilo, T.J. The effect of silicon fertilizers on agronomic performance of bread wheat under drought stress and non-stress conditions. J. Agron. Crop Sci. 2023, 209, 827–840. [Google Scholar] [CrossRef]
- Abd El-Aty, M.S.; Katta, Y.S.; El-Abd, A.E.M.B.; Mahmoud, S.M.; Ibrahim, O.M.; Eweda, M.A.; El-Saadony, M.T.; AbuQamar, S.F.; El-Tarabily, K.A.; El-Tahan, A.M. The Combining Ability for GrainYield and Some RelatedCharacteristics in Rice (Oryza sativa L.) Under Normal and Water StressConditions. Front. Plant Sci. 2022, 13, 866742. [Google Scholar] [CrossRef]
- Aurangzaib, M.; Ahmad, Z.; Jalil, M.I.; Nawaz, F.; Shaheen, M.R.; Ahmad, M.; Hussain, A.; Ejaz, M.K.; Tabassum, M.A. Foliar Spray of Silicon Confers Drought Tolerance in Wheat (Triticum aestivum L.) by Enhancing Morpho-Physiological and Antioxidant Potential. Silicon 2022, 14, 4793–4807. [Google Scholar] [CrossRef]
- de Camargo, M.S.; Bezerra, B.K.L.; Holanda, L.A.; Oliveira, A.L.; Vitti, A.C.; Silva, M.A. Silicon Fertilization Improves Physiological Responses in Sugarcane Cultivars Grown under Water Deficit. J. Soil Sci. Plant Nutr. 2019, 19, 81–91. [Google Scholar] [CrossRef]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Effect of Silicon on Crop Growth, Yield and Quality. In Silicon in Agriculture: From Theory to Practice; Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 209–223. [Google Scholar]
- Ali, M.; Sabah, N.; Sarwar, G.; Aftab, M.; Moeez, A.; Ramzan, H.; Hafeez, M.; Manzoor, M.; Riaz, A.; Muhammad, S.; et al. Mitigation of Salinity Stress in Rice through Zinc Silicate Application. Pak. J. Agric. Res. 2021, 34, 517–523. [Google Scholar] [CrossRef]
- Uzair, M.; Ali, M.; Fiaz, S.; Attia, K.; Khan, N.; Al-Doss, A.A.; Ramzan Khan, M.; Ali, Z. The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi J. Biol. Sci. 2022, 29, 103299. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Maillard, A.; Hajirezaei, M.R.; Ali, N.; Schwarzenberg, A.; Jamois, F.; Yvin, J.-C. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency. Front. Plant Sci. 2017, 8, 275481. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Ali, N.; Schwarzenberg, A.; Jamois, F.; Yvin, J.; Hosseini, S.A. Silicon transcriptionally regulates sulfur and ABA metabolism and delays leaf senescence in barley under combined sulfur deficiency and osmotic stress. Environ. Exp. Bot. 2018, 155, 394–410. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Giannakoula, A.; Ilias, I.; Zamanidis, P. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz. J. Bot. 2016, 39, 531–539. [Google Scholar] [CrossRef]
- Malav, J. Effect of Silicon and Phosphorus on Growth and Yield of Wheat (Triticum aestivum L.) in Loamy Sand Soils of North Gujarat. Indian J. Nat. Sci. 2022, 13, 41912–41918. [Google Scholar]
- Malik, M.A.; Wani, A.H.; Mir, S.H.; Rehman, I.U.; Tahir, I.; Ahmad, P.; Rashid, I. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol. Biochem. 2021, 165, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ghouri, F.; Ali, Z.; Naeem, M.; Ul-Allah, S.; Babar, M.; Baloch, F.; Shafqat, W.; Shahid, M.Q. Effects of Silicon and Selenium in Alleviation of Drought Stress in Rice. Silicon 2021, 14, 5453–5461. [Google Scholar] [CrossRef]
- Naz, M.; Raza, M.; Bodhla, A.; Bouzroud, S.; Ghani, M.; Riaz, M.; Shah, S.; Zubair, A.; Bodlah, I.; Fan, X. Beneficial elements in plant life under changing environment. In Beneficial Chemical Elements of Plants: Recent Developments and Future Prospects; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Redfield, A.C. The biological control of chemical factors in the environment. Sci. Prog. 1960, 11, 150–170. [Google Scholar] [PubMed]
- Emran, M.; Naeim, H.; Rashad, M.; Gispert, M. Seasonal changes in soil carbon storage capacity and glomalin-related soil protein under different agricultural activities, abandonment, and wildfire occurrence in Mediterranean region. J. Saudi Soc. Agric. Sci. 2022, 21, 359–371. [Google Scholar] [CrossRef]
- Rai-Kalal, P.; Tomar, R.S.; Jajoo, A. H2O2 signaling regulates seed germination in ZnO nanoprimed wheat (Triticum aestivum L.) seeds for improving plant performance under drought stress. Environ. Exp. Bot. 2021, 189, 104561. [Google Scholar] [CrossRef]
- Yang, S.; Cammeraat, E.; Jansen, B.; den Haan, M.; van Loon, E.; Recharte, J. Soil organic carbon stocks controlled by lithology and soil depth in a Peruvian alpine grassland of the Andes. CATENA 2018, 171, 11–21. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Fodor, I.K.; Tit, D.M.; Blidar, C.F.; David, A.T.; Melinte (Frunzulica), C.E. Effects of Liming and Fertilization on the Dehydrogenase and Catalase Activities. Rev. Chim. 2019, 70, 3464–3468. [Google Scholar] [CrossRef]
- Samal, R.; Roy, P.S.; Sahoo, A.; Kar, M.K.; Patra, B.C.; Marndi, B.C.; Gundimeda, J.N.R. Morphological and molecular dissection of wild rices from eastern India suggests distinct speciation between O. rufipogon and O. nivara populations. Sci. Rep. 2018, 8, 2773. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic Indicators of Soil Quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Fultz, L.M.; Moore-Kucera, J.; Zobeck, T.M.; Acosta-Martínez, V.; Wester, D.B.; Allen, V.G. Organic carbon dynamics and soil stability in five semiarid agroecosystems. Agric. Ecosyst. Environ. 2013, 181, 231–240. [Google Scholar] [CrossRef]
- Ibrahim, O.M.; Asal, M.W.; Elham, A.B.; Ghalab, E.G. Response of wheat yield to soil application of humic acid and foliar application of sodium silicate. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2003–2007. [Google Scholar]
- Raza, M.A.S.; Zulfiqar, B.; Iqbal, R.; Muzamil, M.N.; Aslam, M.U.; Muhammad, F.; Amin, J.; Aslam, H.M.U.; Ibrahim, M.A.; Uzair, M.; et al. Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Sci. Rep. 2023, 13, 2700. [Google Scholar] [CrossRef]
- Thorne, S.J.; Hartley, S.E.; Maathuis, F.J.M. The Effect of Silicon on Osmotic and Drought Stress Tolerance in Wheat Landraces. Plants 2021, 10, 814. [Google Scholar] [CrossRef] [PubMed]
- Oustani, M.; Mehda, S.; Halilat, M.T.; Chenchouni, H. Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Sci. Rep. 2023, 13, 1991. [Google Scholar] [CrossRef] [PubMed]
- Saudy, H.S.; Salem, E.M.M.; Abd El-Momen, W.R. Effect of Potassium Silicate and Irrigation on Grain Nutrient Uptake and Water Use Efficiency of Wheat Under Calcareous Soils. Gesunde Pflanz. 2023, 75, 647–654. [Google Scholar] [CrossRef]
- Chaves, A.; Moraes, L.; Montaño, A.; Cunha, F.; Theodoro, G. Analysis of Principal Components for the Assessment of Silage Corn Hybrid Performance under Water Deficit. Agriculture 2023, 13, 1335. [Google Scholar] [CrossRef]
- Shah, K.A. Effect of foliar spray of potassium silicate on growth and yield of paddy (Oryza sativa L.). Ann. Plant Soil Res. 2022, 24, 476–480. [Google Scholar] [CrossRef]
- Irfan, M.; Maqsood, M.A.; Rehman, H.U.; Mahboob, W.; Sarwar, N.; Hafeez, O.B.A.; Hussain, S.; Ercisli, S.; Akhtar, M.; Aziz, T. Silicon Nutrition in Plants under Water-Deficit Conditions: Overview and Prospects. Water 2023, 15, 739. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Mur, L.A.J.; Ruan, J.; Shen, Q.; Guo, S. Functions of silicon in plant drought stress responses. Hortic. Res. 2021, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA); National Agricultural Research Center (NARC): Aleppo, Syria, 2001; pp. 46–48.
- Said-Pullicino, D.; Gigliotti, G. Oxidative biodegradation of dissolved organic matter during composting. Chemosphere 2007, 68, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- Junior, C.; Kawakami, J. Efficiency of the leaf disc method for estimating the leaf area index of soybean plants. Acta Sci. Agron. 2013, 35, 487–493. [Google Scholar] [CrossRef]
- Stewart, J.I.; Hagan, R.M.; Pruitt, W.O.; Danielson, R.E.; Franklin, W.T.; Hanks, R.J.; Riley, J.P.; Jackson, E.B. Optimizing Crop Production through Control of Water and Salinity Levels in the Soil; Reports; Paper 67; Utah State University: Logan, UT, USA, 1977; Available online: https://digitalcommons.usu.edu/water_rep/67 (accessed on 10 April 2024).
- Vermeiren, L.; Jopling, G.A. Localized Irrigation; Paper No. 36, Irrigation and Drainage; FAO: Rome, Italy, 1984. [Google Scholar]
- Allan, R.; Pereira, L.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- FAO. Cropwat—A Computer Program for Irrigation Planning and Management; Irrigation and Drainage Publications No. 46; FAO: Rome, Italy, 1992. [Google Scholar]
- Jensen, M. Environmental Essay. Defining Lifestyle. Environ. Sci. 2007, 4, 63–73. [Google Scholar] [CrossRef]
- Giriappa, S. Water Use Efficiency in Agriculture; Institute for Social and Economic Change: Bangalore, India, 1991; p. 97. [Google Scholar]
- STATISTICA; Version 10; Data Analysis Software System; StatSoftInc.: Tulsa, OK, USA, 2011; Available online: www.statsoft.com (accessed on 30 March 2024).
Treatments | SM (%) | pH | EC (dS m−1) | SOC (%) | DOC (mg L−1) | DOC/SOC (%) | |
---|---|---|---|---|---|---|---|
1st month | I1 | 20.36 ± 0.34 f | 8.19 ± 0.20 a | 2.35 ± 0.11 ab | 1.32 ± 0.12 ab | 17.00 ± 1.32 a | 0.64 ± 0.00 c |
I2 | 22.78 ± 0.65 de | 8.17 ± 0.12 a | 2.20 ± 0.12 b | 1.22 ± 0.03 ab | 20.08 ± 1.24 a | 0.83 ± 0.01 a | |
I3 | 22.72 ± 0.55 de | 8.12 ± 0.24 a | 2.95 ± 0.13 a | 1.14 ± 0.08 b | 18.64 ± 1.32 a | 0.82 ± 0.01 a | |
I4 | 23.37 ± 0.34 d | 8.21 ± 0.23 a | 2.16 ± 0.20 b | 1.58 ± 0.16 ab | 20.27 ± 2.22 a | 0.64 ± 0.00 c | |
3rd month | I1 | 21.27 ± 0.45 ef | 8.54 ± 0.21 a | 0.62 ± 0.23 d | 1.39 ± 0.03 ab | 19.82 ± 1.84 a | 0.71 ± 0.01 b |
I2 | 23.53 ± 0.91 d | 8.70 ± 0.22 a | 0.46 ± 0.21 d | 1.36 ± 0.24 ab | 19.73 ± 1.02 a | 0.72 ± 0.01 b | |
I3 | 25.54 ± 0.75 bc | 8.50 ± 0.18 a | 0.86 ± 0.21 cd | 1.33 ± 0.32 ab | 21.50 ± 1.52 a | 0.81 ± 0.01 a | |
I4 | 27.00 ± 0.53 ab | 8.57 ± 0.16 a | 0.59 ± 0.23 d | 1.72 ± 0.22 ab | 20.17 ± 1.63 a | 0.59 ± 0.01 d | |
5th month | I1 | 20.73 ± 0.45 f | 8.37 ± 0.17 a | 0.94 ± 0.32 cd | 1.51 ± 0.34 ab | 22.11 ± 1.24 a | 0.73 ± 0.01 b |
I2 | 25.31 ± 0.19 c | 8.49 ± 0.24 a | 0.80 ± 0.30 cd | 1.34 ± 0.54 ab | 21.80 ± 1.67 a | 0.81 ± 0.01 a | |
I3 | 26.63 ± 0.28 abc | 8.52 ± 0.17 a | 1.02 ± 0.24 cd | 1.42 ± 0.23 ab | 22.87 ± 1.34 a | 0.81 ± 0.01 a | |
I4 | 28.12 ± 0.65 a | 8.29 ± 0.16 a | 1.44 ± 0.25 c | 1.88 ± 0.06 a | 22.36 ± 1.63 a | 0.60 ± 0.01 d | |
Treatments | TN (%) | TP (%) | Molar C/P Ratio | Molar N/P Ratio | CO2 Emissions (mg g−1) | C-CO2 Loss (mg g−1) | |
11st month | I1 | 0.06 ± 0.01 e | 0.12 ± 0.01 a | 29.11 ± 2.22 ef | 1.13 ± 0.34 ef | 0.11 ± 0.01 d | 0.03 ± 0.00 e |
I2 | 0.06 ± 0.02 e | 0.12 ± 0.01 a | 25.29 ± 2.23 f | 1.05 ± 0.31 f | 0.11 ± 0.01 d | 0.03 ± 0.00 e | |
I3 | 0.07 ± 0.01 de | 0.12 ± 0.02 a | 24.96 ± 2.32 f | 1.22 ± 0.24 ef | 0.13 ± 0.01 cd | 0.04 ± 0.00 d | |
I4 | 0.09 ± 0.02 de | 0.10 ± 0.01 a | 39.98 ± 2.21 cd | 1.86 ± 0.31 def | 0.10 ± 0.01 d | 0.03 ± 0.00 e | |
3rd month | I1 | 0.11 ± 0.02 cde | 0.11 ± 0.01 a | 33.18 ± 2.65 de | 2.16 ± 0.22 cd | 0.16 ± 0.01 bc | 0.04 ± 0.00 d |
I2 | 0.11 ± 0.02 cde | 0.10 ± 0.01 a | 36.56 ± 2.27 d | 2.48 ± 0.21 cd | 0.17 ± 0.01 b | 0.05 ± 0.00 c | |
I3 | 0.11 ± 0.03 cde | 0.12 ± 0.01 a | 28.81 ± 2.26 ef | 2.02 ± 0.25 cde | 0.15 ± 0.01 bc | 0.04 ± 0.00 d | |
I4 | 0.18 ± 0.02 ab | 0.10 ± 0.01 a | 44.25 ± 2.73 bc | 3.88 ± 0.35 b | 0.18 ± 0.01 b | 0.05 ± 0.00 c | |
5th month | I1 | 0.12 ± 0.01 bcde | 0.09 ± 0.01 a | 44.58 ± 2.56 bc | 2.99 ± 0.42 c | 0.24 ± 0.02 a | 0.06 ± 0.00 b |
I2 | 0.13 ± 0.02 bcd | 0.07 ± 0.01 a | 49.84 ± 2.54 b | 4.18 ± 0.45 b | 0.23 ± 0.01 a | 0.06 ± 0.00 b | |
I3 | 0.16 ± 0.03 abc | 0.08 ± 0.01 a | 48.02 ± 2.65 b | 4.59 ± 0.31 b | 0.26 ± 0.01 a | 0.07 ± 0.00 a | |
I4 | 0.20 ± 0.03 a | 0.07 ± 0.01 a | 67.37 ± 2.74 a | 6.07 ± 0.09 a | 0.25 ± 0.02 a | 0.07 ± 0.00 a |
Treatments | Soluble Cations (mg kg−1) | Soluble Anions (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | HCO3− | Cl− | SO42− | ||
1st month | I1 | 5.29 ± 1.65 c | 44.01 ± 2.45 b | 23.27 ± 1.39 ab | 9.14 ± 1.64 abc | 467.13 ± 5.64 a | 207.68 ± 2.35 a | 454.69 ± 2.67 a |
I2 | 5.29 ± 1.12 c | 43.86 ± 3.21 b | 23.27 ± 1.64 ab | 9.11 ± 1.64 abc | 563.85 ± 6.34 a | 218.24 ± 2.19 a | 483.84 ± 3.07 a | |
I3 | 7.21 ± 1.35 bc | 53.46 ± 3.35 a | 26.58 ± 1.63 a | 11.10 ± 1.27 ab | 563.65 ± 5.36 a | 218.29 ± 2.88 a | 483.82 ± 3.64 a | |
I4 | 9.12 ± 1.23 abc | 58.58 ± 2.24 a | 27.07 ± 1.34 a | 12.17 ± 1.36 a | 406.21 ± 3.09 a | 168.01 ± 2.87 a | 281.58 ± 2.67 a | |
3rd month | I1 | 8.09 ± 1.22 bc | 35.83 ± 2.27 cd | 20.73 ± 1.32 bc | 7.44 ± 1.63 bcd | 434.39 ± 3.34 a | 172.95 ± 2.69 a | 292.57 ± 2.64 a |
I2 | 8.86 ± 1.64 abc | 41.01 ± 2.26 bcd | 21.17 ± 1.36 bc | 8.52 ± 1.53 abcd | 434.04 ± 3.64 a | 172.84 ± 2.91 a | 292.48 ± 3.04 a | |
I3 | 8.88 ± 1.52 abc | 41.40 ± 2.35 bcd | 21.17 ± 1.53 bc | 8.60 ± 1.34 abcd | 444.83 ± 5.65 a | 186.40 ± 2.73 a | 332.94 ± 3.31 a | |
I4 | 10.67 ± 1.33 ab | 43.14 ± 3.01 bc | 22.31 ± 1.55 bc | 8.96 ± 1.35 abcd | 378.31 ± 5.01 a | 146.25 ± 2.74 a | 243.12 ± 3.36 a | |
5th month | I1 | 12.94 ± 1.68 a | 23.74 ± 2.21 e | 18.35 ± 1.32 c | 4.93 ± 1.08d | 378.32 ± 4.34 a | 146.27 ± 2.64 a | 242.98 ± 2.06 a |
I2 | 12.97 ± 1.69 a | 24.07 ± 2.03 e | 18.33 ± 1.24 c | 5.00 ± 1.04 cd | 391.60 ± 3.68 a | 162.40 ± 2.64 a | 260.21 ± 2.27 a | |
I3 | 10.88 ± 1.56 ab | 35.20 ± 2.05 d | 19.37 ± 1.32 bc | 7.31 ± 1.54 bcd | 400.58 ± 3.37 a | 172.15 ± 2.34 a | 274.74 ± 3.15 a | |
I4 | 11.21 ± 1.67 ab | 38.13 ± 2.01 bcd | 20.50 ± 1.09 bc | 7.92 ± 1.35 bcd | 400.76 ± 2.99 a | 171.96 ± 2.77 a | 274.31 ± 2.68 a |
Treatments | CEC (cmol kg−1) | Na+ Effective | K+ Effective | Ca2+ Effective | Mg2+ Effective | |
---|---|---|---|---|---|---|
% | ||||||
1st month | I1 | 3.50 ± 0.02 ab | 13.13±2.14 a | 32.20±2.34 a | 33.20 ± 1.07 a | 21.47 ± 1.67 a |
I2 | 3.50 ± 0.31 ab | 13.15 ± 1.98 a | 32.15 ± 2.64 a | 33.27 ± 2.15 a | 21.43 ± 1.64 a | |
I3 | 4.24 ± 0.31 ab | 14.78 ± 1.64 a | 32.33 ± 2.35 a | 31.34 ± 1.87 a | 21.55 ± 1.34 a | |
I4 | 4.65 ± 0.36 a | 17.05 ± 1.35 a | 32.30 ± 3.08 a | 29.11 ± 1.67 a | 21.54 ± 1.08 a | |
3rd month | I1 | 3.27 ± 0.34 ab | 21.51 ± 2.22 a | 28.09 ± 3.04 a | 31.68 ± 2.01 a | 18.73 ± 1.67 a |
I2 | 3.58 ± 0.38 ab | 21.51 ± 2.04 a | 29.36 ± 2.01 a | 29.55 ± 2.00 a | 19.58 ± 1.44 a | |
I3 | 3.60 ± 0.97 ab | 21.46 ± 2.00 a | 29.49 ± 1.06 a | 29.40 ± 1.79 a | 19.66 ± 1.37 a | |
I4 | 3.89 ± 0.62 ab | 23.88 ± 1.98 a | 28.46 ± 1.87 a | 28.69 ± 1.67 a | 18.97 ± 1.67 a | |
5th month | I1 | 3.06 ± 0.31 b | 36.81 ± 1.79 a | 19.90 ± 2.06 a | 30.01 ± 2.01 a | 13.27 ± 1.35 a |
I2 | 3.07 ± 0.64 b | 36.70 ± 2.03 a | 20.08 ± 2.34 a | 29.83 ± 2.07 a | 13.39 ± 1.33 a | |
I3 | 3.42 ± 0.64 ab | 27.67 ± 2.65 a | 26.40 ± 2.09 a | 28.33 ± 1.87 a | 17.60 ± 1.97 a | |
I4 | 3.63 ± 0.36 ab | 26.86 ± 2.08 a | 26.94 ± 2.13 a | 28.24 ± 1.67 a | 17.96 ± 1.64 a |
Soil Variables | Factor 1 | Factor 2 | Factor 3 | Communality |
---|---|---|---|---|
SM | −0.091 | 0.148 | −0.938 | 0.91 |
pH | −0.404 | 0.518 | 0.266 | 0.50 |
EC | 0.608 | −0.431 | 0.270 | 0.63 |
SOC | 0.111 | 0.719 | −0.547 | 0.83 |
DOC | −0.466 | 0.229 | −0.789 | 0.89 |
DOC/SOC | −0.483 | −0.643 | −0.137 | 0.67 |
TN | −0.222 | 0.764 | −0.510 | 0.89 |
TP | 0.340 | −0.757 | −0.086 | 0.70 |
C/P | −0.178 | 0.828 | −0.291 | 0.80 |
N/P | −0.279 | 0.760 | −0.410 | 0.82 |
CO2 | −0.616 | 0.330 | −0.691 | 0.97 |
C−CO2 | −0.616 | 0.330 | −0.691 | 0.97 |
C−CO2/SOC | −0.726 | 0.080 | −0.623 | 0.92 |
Na+ | −0.524 | 0.741 | −0.210 | 0.87 |
K+ | 0.951 | −0.172 | 0.166 | 0.96 |
Ca2+ | 0.891 | −0.281 | 0.216 | 0.92 |
Mg2+ | 0.951 | −0.172 | 0.166 | 0.96 |
HCO3− | 0.332 | −0.863 | 0.115 | 0.87 |
Cl− | 0.388 | −0.795 | 0.189 | 0.82 |
SO42− | 0.376 | −0.831 | 0.217 | 0.88 |
CEC | 0.913 | 0.097 | 0.123 | 0.86 |
Na+ Effective | −0.772 | 0.545 | −0.195 | 0.93 |
K+ Effective | 0.857 | −0.400 | 0.159 | 0.92 |
Ca2+ Effective | −0.012 | −0.848 | 0.237 | 0.78 |
Mg2+ Effective | 0.857 | −0.400 | 0.159 | 0.92 |
Variation (%) | 59 | 17 | 9 | |
Total variance (%) | 59 | 76 | 85 | 85 |
Treatments | Grain No./Spike | Grain wt./Spike (g) | Spikes (m2) | LAI | 1000 Grain Weight (g) | Grain Yield (ton/ha) | Biological Yield (ton/ha) | Straw Yield (ton/ha) | HI | |
---|---|---|---|---|---|---|---|---|---|---|
Irrigation (I) | I1 | 32.930 b | 1.040 b | 402.220 b | 1.580 b | 3.160 a | 2.100 b | 10.290 c | 8.170 b | 0.200 b |
I2 | 35.980 ab | 1.050 b | 472.890 ab | 2.460 a | 3.080 a | 2.500 b | 12.790 b | 10.290 a | 0.200 b | |
I3 | 42.840 ab | 1.350 a | 454.220 ab | 2.390 a | 3.220 a | 4.430 a | 15.190 a | 10.790 a | 0.290 a | |
I4 | 44.970 a | 1.530 a | 521.330 a | 2.190 ab | 3.670 a | 4.360 a | 14.950 a | 10.600 a | 0.290 a | |
Significance of irrigation | * | ** | * | * | NS | *** | *** | ** | ** | |
Effect size statistics for irrigation | 0.530 | 0.590 | 0.308 | 0.494 | 0.132 | 0.701 | 0.658 | 0.452 | 0.474 | |
0.770 | 0.709 | 0.582 | 0.694 | 0.259 | 0.946 | 0.836 | 0.622 | 0.842 | ||
0.496 | 0.537 | 0.263 | 0.447 | 0.060 | 0.692 | 0.629 | 0.394 | 0.455 | ||
0.584 | 0.500 | 0.349 | 0.481 | 0.067 | 0.885 | 0.686 | 0.394 | 0.696 | ||
0.500 | 0.545 | 0.267 | 0.453 | 0.061 | 0.694 | 0.634 | 0.401 | 0.457 | ||
Silicon (Si) | 0 mg L−1 | 38.420 a | 1.260 a | 476.670 a | 2.120 a | 3.280 a | 2.880 b | 12.570 a | 9.690 a | 0.220 b |
200 mg L−1 | 37.970 a | 1.230 a | 474.000 a | 2.080 a | 3.420 a | 3.380 a | 13.760 a | 10.380 a | 0.240 b | |
400 mg L−1 | 39.830 a | 1.250 a | 437.330 a | 2.250 a | 3.150 a | 3.760 a | 13.570 a | 9.810 a | 0.270 a | |
Significance of silicon | NS | NS | NS | NS | NS | *** | NS | NS | *** | |
Effect size statistics for silicon | 0.008 | 0.001 | 0.008 | 0.021 | 0.030 | 0.082 | 0.046 | 0.037 | 0.113 | |
0.045 | 0.005 | 0.035 | 0.090 | 0.073 | 0.672 | 0.261 | 0.118 | 0.561 | ||
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.077 | 0.029 | 0.002 | 0.102 | ||
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.461 | 0.092 | 0.004 | 0.339 | ||
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.077 | 0.029 | 0.002 | 0.102 | ||
Significance of interaction | NS | NS | ** | NS | NS | ** | NS | NS | * | |
Effect size statistics for interaction | 0.115 | 0.054 | 0.320 | 0.090 | 0.088 | 0.150 | 0.101 | 0.122 | 0.272 | |
0.421 | 0.183 | 0.591 | 0.294 | 0.189 | 0.790 | 0.438 | 0.307 | 0.754 | ||
0.055 | 0.000 | 0.234 | 0.009 | 0.000 | 0.135 | 0.052 | 0.019 | 0.237 | ||
0.135 | 0.000 | 0.323 | 0.018 | 0.000 | 0.601 | 0.153 | 0.030 | 0.545 | ||
0.056 | 0.000 | 0.237 | 0.009 | 0.000 | 0.135 | 0.052 | 0.019 | 0.239 |
Irrigation | Silicon | Grain Yield (ton ha−1) | Harvest Index | Number of Spikes (m2) |
---|---|---|---|---|
I1 | 0 mg L−1 | 0.95 d | 0.11 e | 378.67 b |
200 mg L−1 | 2.40 c | 0.21 bcd | 392.0 b | |
400 mg L−1 | 2.98 c | 0.28 abc | 404.0 ab | |
I2 | 0 mg L−1 | 2.86 c | 0.22 bcd | 520.0 ab |
200 mg L−1 | 2.17 c | 0.17 de | 413.3 ab | |
400 mg L−1 | 2.48 c | 0.20 cd | 564.0 ab | |
I3 | 0 mg L−1 | 4.48 a | 0.30 ab | 420.0 ab |
200 mg L−1 | 4.40 ab | 0.30 ab | 506.67 ab | |
400 mg L−1 | 4.40 ab | 0.27 abc | 436.0 ab | |
I4 | 0 mg L−1 | 3.26 bc | 0.25 abcd | 588.0 a |
200 mg L−1 | 4.57 a | 0.28 abc | 552.0 ab | |
400 mg L−1 | 5.21 a | 0.34 a | 424.0 ab |
Silicate Rates | Grain Yield (kg ha−1) | RYD (%) | |||||
---|---|---|---|---|---|---|---|
Irrigation Treatments | |||||||
I1 | I2 | I3 | I4 | I1 | I2 | I3 | |
0 mg L−1 | 950 | 2860 | 4480 | 3260 | 70.9 | 12.3 | 0.0 |
200 mg L−1 | 2400 | 2170 | 4400 | 4570 | 47.5 | 52.5 | 3.7 |
400 mg L−1 | 2980 | 2480 | 4400 | 5210 | 42.8 | 52.4 | 15.5 |
Average | 2110.0 | 2503.3 | 4426.7 | 4346.7 | 53.7 | 39.1 | 6.4 |
Irrigation Treatments | Sodium Silicate | AIW (mm) | AIW (m3 ha−1) | Grain Yield (kg ha−1) | IWP (kg m−3) |
---|---|---|---|---|---|
I1 | 0 mg L−1 | 100 | 1000 | 950 | 0.95 |
200 mg L−1 | 100 | 1000 | 2400 | 2.40 | |
400 mg L−1 | 100 | 1000 | 2980 | 2.98 | |
Average of two seasons | 100 | 1000 | 2110 | 2.11 | |
I2 | 0 mg L−1 | 200 | 2000 | 2860 | 1.43 |
200 mg L−1 | 200 | 2000 | 2170 | 1.09 | |
400 mg L−1 | 200 | 2000 | 2480 | 1.24 | |
Average of two seasons | 200 | 2000 | 2503 | 1.25 | |
I3 | 0 mg L−1 | 300 | 3000 | 4480 | 1.493 |
200 mg L−1 | 300 | 3000 | 4400 | 1.467 | |
400 mg L−1 | 300 | 3000 | 4400 | 1.467 | |
Average of two seasons | 300 | 3000 | 4427 | 1.48 | |
I4 | 0 mg L−1 | 400 | 4000 | 3260 | 0.815 |
200 mg L−1 | 400 | 4000 | 4570 | 1.143 | |
400 mg L−1 | 400 | 4000 | 5210 | 1.303 | |
Average of two seasons | 400 | 4000 | 4347 | 1.09 |
Month | ETo (mm) | Kc | ETc (mm day−1) | AIW (mm day−1) | ||
---|---|---|---|---|---|---|
mm | m3 ha−1 | mm | m3 ha−1 | |||
November | 57.8 | 0.40 | 23.1 | 231 | 30.8 | 308 |
December | 96.3 | 0.62 | 59.7 | 597 | 79.6 | 796 |
January | 91.1 | 1.00 | 91.1 | 911 | 121.5 | 1215 |
February | 84.1 | 0.85 | 71.5 | 715 | 95.4 | 954 |
March | 141.8 | 0.83 | 117.7 | 1177 | 157.0 | 1570 |
April | 65.6 | 0.20 | 13.1 | 131 | 17.5 | 175 |
Total | 536.7 | 376.3 | 3763 | 501.7 | 5017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emran, M.; Ibrahim, O.M.; Wali, A.M.; Darwish, K.M.; Badr Eldin, R.M.; Alomran, M.M.; El-Tahan, A.M. Assessing Soil Quality, Wheat Crop Yield, and Water Productivity under Condition of Deficit Irrigation. Plants 2024, 13, 1462. https://doi.org/10.3390/plants13111462
Emran M, Ibrahim OM, Wali AM, Darwish KM, Badr Eldin RM, Alomran MM, El-Tahan AM. Assessing Soil Quality, Wheat Crop Yield, and Water Productivity under Condition of Deficit Irrigation. Plants. 2024; 13(11):1462. https://doi.org/10.3390/plants13111462
Chicago/Turabian StyleEmran, Mohamed, Omar M. Ibrahim, Asal M. Wali, Khaled M. Darwish, Rasha M. Badr Eldin, Maryam M. Alomran, and Amira M. El-Tahan. 2024. "Assessing Soil Quality, Wheat Crop Yield, and Water Productivity under Condition of Deficit Irrigation" Plants 13, no. 11: 1462. https://doi.org/10.3390/plants13111462
APA StyleEmran, M., Ibrahim, O. M., Wali, A. M., Darwish, K. M., Badr Eldin, R. M., Alomran, M. M., & El-Tahan, A. M. (2024). Assessing Soil Quality, Wheat Crop Yield, and Water Productivity under Condition of Deficit Irrigation. Plants, 13(11), 1462. https://doi.org/10.3390/plants13111462