Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities
Abstract
:1. Introduction
2. The Primary and Secondary Metabolites Found in Saffron
2.1. The Apocarotenoids of Saffron
2.2. Saffron-Based Monoterpenoids
2.3. Saffron-Based Flavonoids
2.4. Phenolic Acids in Saffron
2.5. Saffron Phytosterols
3. Role of Saffron Bioactive Compounds against Human Diseases
3.1. Role in the Treatment of Cancers
3.2. The Defense to Cardiovascular Diseases (CVDs)
3.3. Antioxidant and Anti-Inflammatory Properties of Saffron Bioactive Compounds
3.4. Anti-Diabetic Effects of Saffron
3.5. Role in Decreasing the Progression of Neurological Disorders
4. Antimicrobial Activities of Saffron
5. Nutritional Benefits of Saffron
6. Role of Omics and Metabolic Engineering for Improving Saffron Bioactive Compounds
7. Regulation of Gut Microbiome by Saffron and its Metabolites: A Concise Account
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khazdair, M.R.; Anaeigoudari, A.; Hashemzehi, M.; Mohebbati, R. Neuroprotective potency of some spice herbs, a literature review. J. Tradit. Complement. Med. 2019, 9, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Dalli, M.; Bekkouch, O.; Azizi, S.-E.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. phytochemistry and pharmacological activities: A review (2019–2021). Biomolecules 2022, 12, 20. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.I.; Manzoor, M.; Dhar, M. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed. Pharmacother. 2018, 98, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Gracia, L.; Perez-Vidal, C.; Gracia-López, C. Automated cutting system to obtain the stigmas of the saffron flower. Biosyst. Eng. 2009, 104, 8–17. [Google Scholar] [CrossRef]
- Maggi, M.A.; Bisti, S.; Picco, C. Saffron: Chemical Composition and Neuroprotective Activity. Molecules 2020, 25, 5618. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Boskabady, M.H.; Hosseini, M.; Rezaee, R.; Tsatsakis, A.M. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J. Phytomed 2015, 5, 376–391. [Google Scholar] [PubMed]
- Al-Snafi, A.E. The pharmacology of Crocus sativus—A review. IOSR J. Pharm. 2016, 6, 8–38. [Google Scholar]
- He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Santana-Méridas, O.; Polissiou, M.; Vioque, J.; Astraka, K.; Alaiz, M.; Herraiz-Peñalver, D.; Tarantilis, P.A.; Girón-Calle, J. Polyphenol composition and in vitro antiproliferative effect of corm, tepal, and leaf from Crocus sativus L. on human colon adenocarcinoma cells (Caco-2). J. Funct. Foods 2016, 24, 18–25. [Google Scholar] [CrossRef]
- Lam, K.Y.; Ling, A.P.K.; Koh, R.Y.; Wong, Y.P.; Say, Y.H. A review on medicinal properties of orientin. Adv. Pharmacol. Sci. 2016, 2016, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Motamedshariaty, V.; Hadizadeh, F. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, mice and rats. Pharmacol. Online 2007, 2, 367–370. [Google Scholar]
- Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, J.; Wu, W.; Liu, Q.; Liu, X. Effect of isoorientin on intracellular antioxidant defense mechanisms in hepatoma and liver cell lines. Biomed. Pharmacother. 2016, 81, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Selamoglu, Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018, 2, 9794625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, G.; Sun, C.; Li, H.; Fu, Y.; Xu, W. Apoptosis effects of dihydrokaempferol isolated from Bauhinia championii on Synoviocytes. Evid. Based Complement. Altern. Med. 2018, 2, 9806160. [Google Scholar] [CrossRef] [PubMed]
- Montoro, P.; Maldini, M.; Luciani, L.; Tuberoso, C.I.; Congiu, F.; Pizza, C. Radical scavenging activity and LC-MS metabolic profiling of petals, stamens, and flowers of Crocus sativus L. J. Food Sci. 2012, 77, C893–C900. [Google Scholar] [CrossRef] [PubMed]
- Gismondi, A.; Serio, M.; Canuti, L.; Canini, A. Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am. J. Plant Sci. 2012, 3, 1573–1580. [Google Scholar] [CrossRef]
- Kim, Y.J. Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. Biol. Pharm. Bull. 2013, 36, 1341–1347. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Oskoueian, E.; Hendra, R.; Jaafar, H.Z. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 2010, 15, 6244–6256. [Google Scholar] [CrossRef]
- Alfaqih, H.; Abu-Bakar, N. The potential of pyrogallol as a possible antimalarial drug candidate. Acad. J. Microbiol. Immun. 2010, 1, 1–4. [Google Scholar]
- Feizy, J.; Reyhani, N. Gas chromatographic determination of phytosterols and fatty acids profile in saffron petals. Can. Chem. Trans. 2016, 4, 389–397. [Google Scholar]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.H.; El Omari, N.; Bouyahya, A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef] [PubMed]
- Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric. 2016, 96, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Kianbakht, S. A Systematic Review on Pharmacology of Saffron and Its Active Constituents. J. Med. Plants 2008, 4, 1–27. [Google Scholar]
- Aissa, R.; Ibourki, M.; Bouzid, H.A.; Bijla, L.; Oubannin, S.; Jadouali, S.; Hermansyah, A.; Goh, K.W.; Ming, L.C.; Bouyahya, A.; et al. Phytochemistry, quality control and medicinal uses of Saffron (Crocus sativus L.): An updated review. J. Med. Life 2023, 16, 822. [Google Scholar]
- Anaeigoudari, F.; Anaeigoudari, A.; Kheirkhah-Vakilabad, A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol. Rep. 2023, 11, e15785. [Google Scholar] [CrossRef]
- Nilakshi, N.; Gadiya, R.V.; Champalal, K.D. Detailed profile of Crocus sativus. Int. J. Pharma Bio Sci. 2011, 2, 189–195. [Google Scholar]
- Azami, S.; Shahriari, Z.; Asgharzade, S.; Farkhondeh, T.; Sadeghi, M.; Ahmadi, F.; Vahedi, M.M.; Forouzanfar, F. Therapeutic potential of saffron (Crocus sativus L.) in ischemia stroke. Evid.-Based Complement. Altern. Med. 2021, 2021, 6643950. [Google Scholar] [CrossRef]
- Cerdá-Bernad, D.; Valero-Cases, E.; Pastor, J.-J.; Frutos, M.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit. Rev. Food Sci. Nutr. 2022, 62, 3232–3249. [Google Scholar] [CrossRef] [PubMed]
- Tiribuzi, R.; Crispoltoni, L.; Chiurchiù, V.; Casella, A.; Montecchiani, C.; Del Pino, A.M.; Maccarrone, M.; Palmerini, C.A.; Caltagirone, C.; Kawarai, T. Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer’s disease patients. J. Neurol. Sci. 2017, 372, 408–412. [Google Scholar] [CrossRef]
- Yang, W.; Qiu, X.; Wu, Q.; Chang, F.; Zhou, T.; Zhou, M.; Pei, J. Active constituents of saffron (Crocus sativus L.) and their prospects in treating neurodegenerative diseases. Exp. Ther. Med. 2023, 25, 235. [Google Scholar] [CrossRef] [PubMed]
- Hazman, Ö.; Bozkurt, M.F. Anti-inflammatory and antioxidative activities of safranal in the reduction of renal dysfunction and damage that occur in diabetic nephropathy. Inflammation 2015, 38, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Bo-Qiang, L.; Si-Tong, Z.; Zu-Yuan, L.; Wan-Yun, N.; Bin, C.; Yuan, L.; Xuyun, L.; Liangen, M.; You-Chao, C.; Xin-Zhen, Y. Safranal carried by nanostructured lipid vehicles inhibits generalized epilepsy in mice. Die Pharm.-Int. J. Pharm. Sci. 2018, 73, 207–212. [Google Scholar]
- Pitsikas, N. Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Molecules 2016, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.A.; Malik, A.H.; Wani, Z.A.; Mohiuddin, T.; Shah, Z.; Abbas, N.; Ashraf, N. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S. Afr. J. Bot. 2015, 99, 80–87. [Google Scholar] [CrossRef]
- Melnyk, J.P.; Wang, S.; Marcone, M.F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 2010, 43, 1981–1989. [Google Scholar] [CrossRef]
- Rahimi, M. Chemical and medicinal properties of saffron. Bulletin of Environment. Pharmacol. Life Sci. 2015, 4, 69–81. [Google Scholar]
- Shahi, T.; Assadpour, E.; Jafari, S.M. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’ saffron. Trends Food Sci. Technol. 2016, 58, 69–78. [Google Scholar] [CrossRef]
- Rios, J.; Recio, M.; Giner, R.; Manez, S. An update review of saffron and its active constituents. Phytother. Res. 1996, 10, 189–193. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A. Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV-visible spectra of aqueous extracts. Food Chem. 2017, 219, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Jadouali, S.M.; Atifi, H.; Mamouni, R.; Majourhat, K.; Bouzoubâ, Z.; Laknifli, A.; Faouzi, A. Chemical characterization and antioxidant compounds of flower parts of Moroccan Crocus sativus L. J. Saudi Soc. Agric. Sci. 2019, 18, 476–480. [Google Scholar] [CrossRef]
- Hashemi, P.; Erim, F.B. Analysis of vitamin B2 in saffron stigmas (Crocus sativus L) by capillary electrophoresis coupled with laser-induced fluorescence detector. Food Anal. Methods 2016, 9, 2395–2399. [Google Scholar] [CrossRef]
- Khare, C. Indian Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Zheng, C.J.; Li, L.; Ma, W.H.; Han, T.; Qin, L.P. Chemical constituents and bioactivities of the liposoluble fraction from different medicinal parts of Crocus sativus. Pharm. Biol. 2011, 49, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.H.; Shoyama, Y. New minor glycoside components from saffron. J. Nat. Med. 2013, 67, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhou, J.; Yan, X. Encyclopedia of traditional Chinese medicines: Molecular structures, pharmacological activities. In Natural Sources and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Giorgi, A.; Pentimalli, D.; Giupponi, L.; Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2017, 2, 52–57. [Google Scholar] [CrossRef]
- Lage, M.; Cantrell, C.L. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci. Hortic. 2009, 121, 366–373. [Google Scholar] [CrossRef]
- Bhandari, P.R. Crocus sativus L. (saffron) for cancer chemoprevention: A mini-review. J. Tradit. Complement. Med. 2015, 5, 81–87. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Drummond, P.D. Saffron (Crocus sativus) for depression: A systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Hum. Psychopharmacol. 2014, 29, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Ohba, T.; Ishisaka, M.; Tsujii, S.; Tsuruma, K.; Shimazawa, M.; Kubo, K.; Umigai, N.; Iwawaki, T.; Hara, H. Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo. Eur. J. Pharmacol. 2016, 789, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Liu, C.; Fang, C. Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur. J. Pharmacol. 2014, 741, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C. Herbal Medicine in Depression: Traditional Medicine to Innovative Drug Delivery; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Samarghandian, S.; Afshari, R.; Sadati, A. Evaluation of lung and bronchoalveolar lavage fluid oxidative stress indices for assessing the preventing effects of safranal on respiratory distress in diabetic rats. Sci. World J. 2014, 2014, 251378. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Ortega, H.; Pereda-Miranda, R.; Abdullaev, F.I. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007, 100, 1126–1131. [Google Scholar] [CrossRef]
- Singla, R.K.; Bhat, G. Crocin: An overview. Indo Glob. J. Pharm. Sci. 2011, 1, 281–286. [Google Scholar] [CrossRef]
- Tong, Y.; Zhu, X.; Yan, Y.; Liu, R.; Gong, F.; Zhang, L.; Hu, J.; Fang, L.; Wang, R.; Wang, P. The influence of different drying methods on constituents and antioxidant activity of saffron from China. Int. J. Anal. Chem. 2015, 2015, 953164. [Google Scholar] [CrossRef] [PubMed]
- Tarantilis, P.A.; Polissiou, M.G. Isolation and identification of the aroma components from saffron (Crocus sativus). J. Agric. Food Chem. 1997, 45, 459–462. [Google Scholar] [CrossRef]
- García-Rodríguez, M.V.; López-Córcoles, H.; Alonso, G.L.; Pappas, C.S.; Polissiou, M.G.; Tarantilis, P.A. Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chem. 2017, 221, 838–843. [Google Scholar] [CrossRef]
- Mounira, L.; Bernardo, M.; Luigi, C.P.; Guido, F.; Fatima, G.; Khadija, B.; Abdelmjid, Z.; Luisa, P. Phytochemical composition of Moroccan saffron accessions by headspacesolid-phase-microextraction. Am. J. Essent. Oils Nat. Prod. 2015, 2, 1–7. [Google Scholar]
- Hosseinzadeh, H.; Talebzadeh, F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005, 76, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Shakib, S.S.; Sameni, A.K.; Taghiabadi, E. Acute and subacute toxicity of safranal, a constituent of saffron, in mice and rats. Iran. J. Pharm. Res. IJPR 2013, 12, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.M.; Abdel-Latif, G.A.; Abbas, S.S.; El Magdoub, H.M.; Schaalan, M.F. Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020, 164, 107900. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.N.; Park, Y.-M.; Jung, H.-J.; Lee, J.Y.; Min, B.D.; Park, S.-U.; Jung, W.-S.; Cho, K.-H.; Park, J.-H.; Kang, I. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 2010, 648, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Mizuma, H.; Tanaka, M.; Nozaki, S.; Mizuno, K.; Tahara, T.; Ataka, S.; Sugino, T.; Shirai, T.; Kajimoto, Y.; Kuratsune, H.; et al. Daily oral administration of crocetin attenuates physical fatigue in human subjects. Nutr. Res. 2009, 29, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Finley, J.W.; Gao, S. A perspective on Crocus sativus L.(saffron) constituent crocin: A potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J. Agric. Food Chem. 2017, 65, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Shimeno, H.; Mishima, K.I.; Iwasaki, K.; Fujiwara, M.; Tanaka, H.; Shoyama, Y.; Toda, A.; Eyanagi, R.; Soeda, S. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2007, 1770, 578–584. [Google Scholar] [CrossRef]
- Cao, W.; Cui, J.; Li, S.; Zhang, D.; Guo, Y.; Li, Q.; Luan, Y.; Liu, X. Crocetin restores diabetic endothelial progenitor cell dysfunction by enhancing NO bioavailability via regulation of PI3K/AKTeNOS and ROS pathways. Life Sci. 2017, 181, 9–16. [Google Scholar] [CrossRef]
- Ghofrani, S.; Joghataei, M.-T.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Crocin, a bioactive constituent of Crocus sativus, alleviates trimethyltin-induced cognitive deficits through down-regulation of hippocampal apoptosis and oxidative stress. J. Basic. Clin. Pathophysiol. 2022, 10, 38–44. [Google Scholar]
- Tashakori, A.; Hassanpour, S.; Vazir, B. Protective effect of crocin on the cuprizone-induced model of multiple sclerosis in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 1713–1725. [Google Scholar] [CrossRef]
- Bandegi, A.R.; Rashidy-Pour, A.; Vafaei, A.A.; Ghadrdoost, B. Protective effects of Crocus sativus L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Adv. Pharm. Bull. 2014, 4, 493–499. [Google Scholar] [PubMed]
- Bao, X.; Hu, J.; Zhao, Y.; Jia, R.; Zhang, H.; Xia, L. Advances on the anti-tumor mechanisms of the carotenoid Crocin. PeerJ 2023, 11, e15535. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.; Zare, M.; Badie, M.R.; Watson, R.R.; Talebnejad, M.R.; Afarid, M. Crocin as a vision supplement. Clin. Exp. Optom. 2023, 106, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Abdulkareem Aljumaily, S.A.; Demir, M.; Elbe, H.; Yigitturk, G.; Bicer, Y.; Altinoz, E. Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. Environ. Sci. Pollut. Res. 2021, 28, 65802–65813. [Google Scholar] [CrossRef] [PubMed]
- Shafei, M.N.; Faramarzi, A.; Rad, A.K.; Anaeigoudari, A. Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats. Avicenna J. Phytomedicine 2017, 7, 345–352. [Google Scholar]
- Sadeghnia, H.; Cortez, M.; Liu, D.; Hosseinzadeh, H.; Snead, O.C. Antiabsence effects of safranal in acute experimental seizure models: EEG and autoradiography. J. Pharm. Pharm. Sci. 2008, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rafieipour, F.; Hadipour, E.; Emami, S.A.; Asili, J.; Tayarani-Najaran, Z. Safranal protects against beta-amyloid peptide-induced cell toxicity in PC12 cells via MAPK and PI3 K pathways. Metab. Brain Dis. 2019, 34, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Fotoohi, A.; Moloudi, M.R.; Hosseini, S.; Hassanzadeh, K.; Feligioni, M.; Izadpanah, E. A novel pharmacological protective role for safranal in an animal model of Huntington’s disease. Neurochem. Res. 2021, 46, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Sadeghnia, H.R.; Shaterzadeh, H.; Forouzanfar, F.; Hosseinzadeh, H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol. 2017, 55, 206–213. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; O’Callaghan, Y.C.; Galvin, K.; Tsimidou, M.Z.; O’Brien, N.M. Cellular transport and bioactivity of a major saffron apocarotenoid, picrocrocin (4-(β-D-glucopyranosyloxy)-2, 6, 6-trimethyl-1-cyclohexene-1-carboxaldehyde). J. Agric. Food Chem. 2015, 63, 8662–8668. [Google Scholar] [CrossRef]
- Hoshyar, R.; Bathaie, S.Z.; Ashrafi, M. Interaction of safranal and picrocrocin with ctDNA and their preferential mechanisms of binding to GC- and AT-rich oligonucleotides. DNA Cell Biol. 2008, 27, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, E.; Kadoglou, N.P.E.; Kostomitsopoulos, N.; Valsami, G. Saffron: A natural product with potential pharmaceutical applications. J. Pharm. Pharmacol. 2015, 67, 1634–1649. [Google Scholar] [CrossRef] [PubMed]
- Razavi, B.M.; Hosseinzadeh, H. Saffron as an antidote or a protective agent against natural or chemical toxicities. DARU J. Fac. Pharm. Tehran Univ. Med. Sci. 2015, 23, 31. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.S.; Ansari, M.A.; Ahmad, M.; Saleem, S.; Yousuf, S.; Hoda, M.N. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol. Biochem. Behav. 2005, 81, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Wu, T.S. Constituents of the stigmas of Crocus sativus and their tyrosinase inhibitory activity. J. Nat. Prod. 2002, 65, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Termentzi, A.; Kokkalou, E. LC-DAD-MS (ESIþ) analysis and antioxidant capacity of Crocus sativus petal extracts. Planta Medica 2008, 74, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Bodeker, G.; Ong, C.K.; Grundy, C.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; WHO Centre for Health Development: Kobe, Japan, 2005. [Google Scholar]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 31, 1215873. [Google Scholar] [CrossRef] [PubMed]
- Tariq, L.; Bhat, B.A.; Hamdani, S.S.; Mir, R.A. Phytochemistry, pharmacology and toxicity of medicinal plants. In Medicinal and Aromatic Plants: Healthcare and Industrial Applications; Springer: Cham, Switzerland, 2021; pp. 217–240. [Google Scholar]
- Zargar, S.M.; Hami, A.; Manzoor, M.; Mir, R.A.; Mahajan, R.; Bhat, K.A.; Gani, U.; Sofi, N.R.; Sofi, P.A.; Masi, A. Buckwheat OMICS: Present status and future prospects. Crit. Rev. Biotechnol. 2023, 23, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Mir, R.A.; Farooq, A.; Hami, A.; Pakhtoon, M.M.; Sofi, S.A.; Malik, F.A.; Hussain, K.; Bhat, M.A.; Sofi, N.R.; et al. Shifting archetype to nature’s hidden gems: From sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023, 13, 252. [Google Scholar] [CrossRef]
- José Bagur, M.; Alonso Salinas, G.L.; Jimenez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An old medicinal plant and a potential novel functional food. Molecules 2017, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Razak, S.I.A.; Anwar Hamzah, M.S.; Yee, F.C.; Kadir, M.R.A.; Nayan, N.H.M. A review on medicinal properties of saffron toward major diseases. J. Herbs Spices Med. Plants 2017, 23, 98–116. [Google Scholar] [CrossRef]
- Samarghandian, S.; Azimi-Nezhad, M.; Samini, F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. BioMed Res. 2014, 2014, 920857. [Google Scholar] [CrossRef] [PubMed]
- Ghadrdoost, B.; Vafaei, A.A.; Rashidy-Pour, A.; Hajisoltani, R.; Bandegi, A.R.; Motamedi, F.; Haghighi, S.; Sameni, H.R.; Pahlvan, S. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur. J. Pharmacol. 2011, 667, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, M.; Aghili Moghaddam, N.S.; Nosrati, M.; Tousi, M.; Avan, A.; Ryzhikov, M.; Parizadeh, M.R.; Fiuji, H.; Rajabian, M.; Bahreyni, A.; et al. Saffron against components of metabolic syndrome: Current status and prospective. J. Agric. Food Chem. 2017, 65, 10837–10843. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Bathaie, S.Z.; Abroun, S.; Azizian, M. Effect of crocin on cell cycle regulators in N-nitroso-N-methylurea-induced breast cancer in rats. DNA Cell Biol. 2015, 34, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Aung, H.H.; Wang, C.Z.; Ni, M.; Fishbein, A.; Mehendale, S.R.; Xie, J.T.; Shoyama, C.Y.; Yuan, C.S. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp. Oncol. 2007, 29, 175–180. [Google Scholar] [PubMed]
- Kawabata, K.; Tung, N.H.; Shoyama, Y.; Sugie, S.; Mori, T.; Tanaka, T. Dietary crocin inhibits colitis and colitis-associated colorectal carcinogenesis in male ICR mice. Evid. Based Complement. Alternat Med. 2012, 2012, 820415. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Dong, A.; Wang, R.; Shi, A. Crocetin treatment inhibits proliferation of colon cancer cells through downregulation of genes involved in the inflammation. Saudi J. Biol. Sci. 2018, 25, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Si, P.; Wang, H.; Tahir, U.; Chetn, K.; Xialo, J.; Duan, X.; Huang, R.; Xiang, G. Crocetin induces apoptosis of BGC-823 human gastric cancer cells. Mol. Med. Rep. 2014, 9, 521–526. [Google Scholar] [CrossRef]
- Amin, A.; Hamza, A.A.; Bajbouj, K.; Ashraf, S.S.; Daoud, S. Saffron: A potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 2011, 54, 857–867. [Google Scholar] [CrossRef]
- Kim, B.; Park, B. Saffron carotenoids inhibit STAT3 activation and promote apoptotic progression in IL-6-stimulated liver cancer cells. Oncol. Rep. 2018, 39, 1883–1891. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.; Mehta, S.; Dhar, G.; Dhar, K.; Banerjee, S.; Van Veldhuizen, P.; Campbell, D.R.; Banerjee, S.K. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol. Cancer Ther. 2009, 8, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Deep, A.; Kumar, D.; Bansal, N.; Narasimhan, B.; Marwaha, R.K.; Sharma, P.C. Understanding mechanistic aspects and therapeutic potential of natural substances as anticancer agents. Phytomedicine Plus 2023, 3, 100418. [Google Scholar] [CrossRef]
- Cui, H.; Miao, S.; Esworthy, T.; Zhou, X.; Lee, S.-J.; Liu, C.; Yu, Z.-X.; Fisher, J.P.; Mohiuddin, M.; Zhang, L.G. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv. Drug Deliv. Rev. 2018, 132, 252–269. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yuan, C.; Wang, L.; Chen, R.; Li, X.; Zhang, Y.; Liu, C.; Liu, X.; Liang, W.; Xing, Y. The beneficial effects of saffron extract on potential oxidative stress in cardiovascular diseases. Oxidative Med. Cell. Longev. 2021, 2021, 6699821. [Google Scholar] [CrossRef] [PubMed]
- Chahine, N.; Hanna, J.; Makhlouf, H.; Duca, L.; Martiny, L.; Chahine, R. Protective effect of saffron extract against doxorubicin cardiotoxicity in isolated rabbit heart. Pharm. Biol. 2013, 51, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Mashmoul, M.; Azlan, A.; Yusof, B.N.M.; Khaza’ai, H.N.; Mohtarrudin, N.; Boroushaki, M.T. Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J. Funct. Foods 2014, 8, 180–187. [Google Scholar] [CrossRef]
- Hofer, S.E.; Raile, K.; Reiterer, E.F.; Kapellen, T.; Dost, A.; Rosenbauer, J.; Grulich-Henn, J.; Holl, R.W. Tracking of metabolic control from childhood to young adulthood in Type 1 diabetes. J. Pediatr. 2014, 165, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Qian, Z.; Zheng, S.; Xi, L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur. J. Pharmacol. 2006, 543, 116–122. [Google Scholar] [CrossRef]
- Zheng, S.; Qian, Z.; Tang, F.; Sheng, L. Suppression of vascular cell adhesion molecule-1 expression by crocetin contributes to attenuation of atherosclerosis in hypercholesterolemic rabbits. Biochem. Pharmacol. 2005, 70, 1192–1199. [Google Scholar] [CrossRef]
- Zheng, S.; Qian, Z.; Sheng, L.; Wen, N. Crocetin attenuates atherosclerosis in hyperlipidemic rabbits through inhibition of LDL oxidation. J. Cardiovasc. Pharmacol. 2006, 47, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Abedimanesh, N.; Bathaie, S.Z.; Abedimanesh, S.; Motlagh, B.; Separham, A.; Ostadrahimi, A. Saffron and crocin improved appetite, dietary intakes and body composition in patients with coronary artery disease. J. Cardiovasc. Thorac. Res. 2017, 9, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Sanaie, S.; Nikanfar, S.; Kalekhane, Z.Y.; Azizi-Zeinalhajlou, A.; Sadigh-Eteghad, S.; Araj-Khodaei, M.; Ayati, M.H.; Andalib, S. Saffron as a promising therapy for diabetes and Alzheimer’s disease: Mechanistic insights. Metab. Brain Dis. 2023, 38, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Urbani, E.; Blasi, F.; Simonetti, M.S.; Chiesi, C.; Cossignani, L. Investigation on secondary metabolite content and antioxidant activity of commercial saffron powder. Eur. Food Res. Technol. 2016, 242, 987–993. [Google Scholar] [CrossRef]
- Serhan, C.N.; Gupta, S.K.; Perretti, M.; Godson, C.; Brennan, E.; Li, Y.; Soehnlein, O.; Shimizu, T.; Werz, O.; Chiurchiù, V.; et al. The atlas of inflammation resolution (AIR). Mol. Asp. Med. 2020, 74, 100894. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Albarral, J.A.; Ramírez, A.I.; de Hoz, R.; López-Villarín, N.; Salobrar-García, E.; López-Cuenca, I.; Licastro, E.; Inarejos-García, A.M.; Almodóvar, P.; Pinazo-Durán, M.D.; et al. Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. Int. J. Mol. Sci. 2019, 20, 4110. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.H.; Farkhondeh, T. Antiinflammatory, Antioxidant, and Immunomodulatory Effects of Crocus sativus L. and Its Main Constituents. Phytother. Res. 2016, 30, 1072–1094. [Google Scholar] [CrossRef]
- Xu, G.L.; Li, G.; Ma, H.P.; Zhong, H.; Liu, F.; Ao, G.Z. Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells. J. Agric. Food Chem. 2009, 57, 8325–8330. [Google Scholar] [CrossRef] [PubMed]
- Kianbakht, S.; Hajiaghaee, R. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. J. Med. Plants 2011, 10, 82–89. [Google Scholar]
- Karimi-Nazari, E.; Nadjarzadeh, A.; Masoumi, R.; Marzban, A.; Mohajeri, S.A.; Ramezani-Jolfaie, N.; Salehi-Abargouei, A. Effect of saffron (Crocus sativus L.) on lipid profile, glycemic indices and antioxidant status among overweight/obese prediabetic individuals: A double-blinded, randomized controlled trial. Clin. Nutr. ESPEN 2019, 34, 130–136. [Google Scholar] [CrossRef]
- Maeda, A.; Kai, K.; Ishii, M.; Ishii, T.; Akagawa, M. Safranal, a novel protein tyrosine phosphatase 1 B inhibitor, activates insulin signaling in C 2 C 12 myotubes and improves glucose tolerance in diabetic KK-Ay mice. Mol. Nutr. Food Res. 2014, 58, 1177–1189. [Google Scholar] [CrossRef]
- Qiu, Y.; Jiang, X.; Liu, D.; Deng, Z.; Hu, W.; Li, Z.; Li, Y. The hypoglycemic and renal protection properties of crocin via oxidative stress-regulated NF-κB Signaling in db/db Mice. Front. Pharmacol. 2020, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, V.; Mohammadi, M.; Mohaddes, G.; Darishnejad, H.; Chodari, L. Effect of crocin and voluntary exercise on P53 protein in pancreas of type2 diabetic rats. Pharm. Sci. 2017, 23, 182–188. [Google Scholar] [CrossRef]
- Garabadu, D.; Agrawal, N.; Sharma, A.; Sharma, S. Mitochondrial metabolism: A common link between neuroinflammation and neurodegeneration. Behav. Pharmacol. 2019, 30, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Almilaibary, A.; Mir, R.A.; Aljarallah, B.M.; Mir, W.R.; Ahmad, F.; Mir, M.A. Natural Therapeutics in Aid of Treating Alzheimer’s Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders. Front. Neurosci. 2022, 16, 884345. [Google Scholar] [CrossRef] [PubMed]
- Khalili, M.; Kiasalari, Z.; Rahmati, B.; Narenjkar, J. Behavioral and histological analysis of Crocus sativus effect in intracerebroventricular streptozotocin model of Alzheimer disease in rats. Iran. J. Pathol. 2010, 5, 27–33. [Google Scholar]
- Baghishani, F.; Mohammadipour, A.; Hosseinzadeh, H.; Hosseini, M.; Ebrahimzadeh-Bideskan, A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab. Brain Dis. 2018, 33, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, B.; Cheng, B.; Liu, Y.; Zhang, B.; Wang, X.; Gong, G. Crocin Alleviates Myocardial Ischemia/Reperfusion Induced Endoplasmic Reticulum Stress via Regulation of miR-34a/Sirt1/Nrf2 Pathway. Shock 2019, 51, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Batarseh, Y.S.; Bharate, S.S.; Kumar, V.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B.; Kaddoumi, A. Crocus sativus extract tightens the blood-brain barrier, reduces amyloid β load and related toxicity in 5XFAD mice. ACS Chem. Neurosci. 2017, 8, 1756–1766. [Google Scholar] [CrossRef]
- Heidari, S.; Mehri, S.; Hosseinzadeh, H. Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of Wistar rats. Iran. J. Basic. Med. Sci. 2017, 20, 1250–1259. [Google Scholar]
- Chu, W.Z.; Qian, C.Y. Expressions of Abeta1–40, Abeta1–42, tau202, tau396 and tau404 after intracerebroventricular injection of streptozotocin in rats. Acad. J. First Med. Coll. PLA 2005, 73, 168–170. [Google Scholar]
- Ghahghaei, A.; Bathaie, S.Z.; Kheirkhah, H.; Bahraminejad, E. The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro. Cell. Mol. Biol. Lett. 2013, 18, 328–339. [Google Scholar] [CrossRef]
- Karakani, A.M.; Riazi, G.; Mahmood Ghaffari, S.; Ahmadian, S.; Mokhtari, F.; Jalili Firuzi, M.; Zahra Bathaie, S. Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro. Iran. J. Basic. Med. Sci. 2015, 18, 485–492. [Google Scholar]
- Marx, W.; Lane, M.; Rocks, T.; Ruusunen, A.; Loughman, A.; Lopresti, A.; Marshall, S.; Berk, M.; Jacka, F.; Dean, O.M. Effect of saffron supplementation on symptoms of depression and anxiety: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hatami, H.; Dehghan, G. The Effect of Ethanolic the effect of ethanolic extract of Saffron (Crocus sativus L.) on improving the spatial memory parameters in the experimental models of Parkinson disease in male rats. J. Adv. Biomed. Sci. 2015, 5, 534–541. [Google Scholar]
- Pan, P.K.; Qiao, L.Y.; Wen, X.N. Safranal prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson’s disease through regulating Keap 1/Nrf2 signaling pathway. Cell. Mol. Biol. 2016, 62, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Inoue, E.; Shimizu, Y.; Masui, R.; Hayakawa, T.; Tsubonoya, T.; Hori, S.; Sudoh, K. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. J. Nat. Med. 2018, 72, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Squitieri, F.; Frati, L.; Ciarmiello, A.; Lastoria, S.; Quarrell, O. Juvenile Huntington’s disease: Does a dosage-effect pathogenic mechanism differ from the classical adult disease? Mech. Ageing Dev. 2006, 127, 208–212. [Google Scholar] [CrossRef]
- Bahramikia, S.; Yazdanparast, R. Anti-amyloidogenic and fibril-destabilizing effects of two manganese-salen derivatives against hen egg-white lysozyme aggregation. Int. J. Biol. Macromol. 2012, 50, 187–197. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Dang, Z.; Su, S.; Li, Z.; Lu, D. Cognitive protective mechanism of crocin pretreatment in rat submitted to acute high-altitude hypoxia exposure. BioMed Res. Int. 2020, 2020, 3409679. [Google Scholar] [CrossRef] [PubMed]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Eskin, N.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A promising weapon in the arsenal against antibiotic-resistant bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Lachguer, K.; El Merzougui, S.; Boudadi, I.; Laktib, A.; Ben El Caid, M.; Ramdan, B.; Serghini, M.A. Major Phytochemical Compounds, In Vitro Antioxidant, Antibacterial, and Antifungal Activities of Six Aqueous and Organic Extracts of Crocus sativus L. Flower Waste. Waste Biomass Valorization 2023, 14, 1571–1587. [Google Scholar] [CrossRef] [PubMed]
- Primavilla, S.; Pagano, C.; Roila, R.; Branciari, R.; Ranucci, D.; Valiani, A.; Perioli, L. Antibacterial Activity of Crocus sativus L. Petals Extracts against Foodborne Pathogenic and Spoilage Microorganisms, with a Special Focus on Clostridia. Life 2022, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Asgarpanaha, J.; Darabi-Mahbouba, E.; Mahboubib, A.; Mehrabb, R.; Hakemivalac, M. In-Vitro Evaluation of Crocus sativus L. Petals and Stamens as Natural Antibacterial Agents against Food-Borne Bacterial Strains. Iran. J. Pharm. Sci. 2013, 9, 69–82. [Google Scholar]
- Wali, A.F.; Alchamat, H.A.A.; Hariri, H.K.; Hariri, B.K.; Menezes, G.A.; Zehra, U.; Ahmad, P. Antioxidant, antimicrobial, antidiabetic and cytotoxic activity of Crocus sativus L. petals. Appl. Sci. 2020, 10, 1519. [Google Scholar] [CrossRef]
- Muzaffar, S.; Rather, S.A.; Khan, K.Z. In vitro bactericidal and fungicidal activities of various extracts of saffron (Crocus sativus L.) stigmas from Jammu & Kashmir, India. Cogent Food Agric. 2016, 2, 1158999. [Google Scholar]
- Serrano-Díaz, J.; Sánchez, A.M.; Alvarruiz, A.; Alonso, G.L. Preservation of saffron floral bio-residues by hot air convection. Food Chem. 2013, 141, 1536–1543. [Google Scholar] [CrossRef]
- El Midaoui, A.; Ghzaiel, I.; Vervandier-Fasseur, D.; Ksila, M.; Zarrouk, A.; Nury, T.; Lizard, G. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients 2022, 14, 597. [Google Scholar] [CrossRef]
- Zhao, K.; Rhee, S.Y. Omics-guided metabolic pathway discovery in plants: Resources, approaches, and opportunities. Curr. Opin. Plant Biol. 2022, 67, 102222. [Google Scholar] [CrossRef] [PubMed]
- Luo, J. Metabolite-based genome-wide association studies in plants. Curr. Opin. Plant Biol. 2015, 24, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.J.; Im, E. Heterologous expression of heat shock proteins confers stress tolerance in Escherichia coli, an industrial cell factory: A short review. Biocatal. Agric. Biotechnol. 2020, 29, 101833. [Google Scholar] [CrossRef]
- Goyal, S.; Arora, S.; Sharma, A.; Joshi, S.; Ray, R.; Bhatia, J.; Kumari, S.; Arya, D. Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine 2011, 17, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.T.; Moallem, S.A.; Mahmoudi, M.; Hosseinzadeh, H. The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological and genotoxicity indices in rats. Phytomedicine 2011, 18, e499–e504. [Google Scholar] [CrossRef] [PubMed]
- Hesari, A.K.; Shahrooz, R.; Ahmadi, A.; Malekinejad, H.; Saboory, H. Crocin prevention of anemia-induced changes in structural and functional parameters of mice testes. J. Appl. Biomed. 2015, 13, e213–e223. [Google Scholar] [CrossRef]
- Razavi, B.M.; Hosseinzadeh, H.; Movassaghi, A.R.; Imenshahidi, M.; Abnous, K. Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem.-Biol. Interact. 2013, 203, e547–e555. [Google Scholar] [CrossRef]
- Xi, L.; Qian, Z.; Xu, G.; Zheng, S.; Sun, S.; Wen, N.; Sheng, L.; Shi, Y.; Zhang, Y. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J. Nutr. Biochem. 2007, 18, e64–e72. [Google Scholar] [CrossRef]
- Yamauchi, M.; Tsuruma, K.; Imai, S.; Nakanishi, T.; Umigai, N.; Shimazawa, M.; Hara, H. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity. Eur. J. Pharmacol. 2011, 650, e110–e119. [Google Scholar] [CrossRef]
- Berger, F.; Hensel, A.; Nieber, K. Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 2011, 180, e238–e247. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Karimi, G.; Niapoor, M. Antidepressant effect of Crocus sativus L. extracts and their constituents, Crocin and safranal, in mice. J. Med. Plants 2004, 3, 48–58. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Sadeghnia, H.R. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia-induced oxidative damage in rat hippocampus. Pharm. Pharm. Sci. 2005, 8, e394–e399. [Google Scholar]
- Modaghegh, M.H.; Shahabian, M.; Esmaeili, H.A.; Rajbai, O.; Hosseinzadeh, H. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine 2008, 15, e1032–e1037. [Google Scholar] [CrossRef] [PubMed]
- Shamsa, A.; Hosseinzadeh, H.; Molaei, M.; Shakeri, M.T.; Rajabi, O. Evaluation of Crocus sativus L. (saffron) on male erectile dysfunction: A pilot study. Phytomedicine 2009, 16, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Akhondzadeh, S.; Sabet, M.S.; Harirchian, M.H.; Togha, M.; Cheraghmakani, H.; Razeghi, S.; Hejazi, S.S.; Yousefi, M.H.; Alimardani, R.; Jamshidi, A.; et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: A 16-week, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 2010, 35, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Shastry, R.P.; Rekha, P.D. Bacterial cross-talk with gut microbiome and its implications: A short review. Folia Microbiol. 2021, 66, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Guan, X.; Chen, D.; Ma, W. The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms 2019, 7, 583. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Brim, H.; Haileselassie, Y.; Varma, S.; Habtezion, A.; Rashid, M.; Sinha, S.R.; Ashktorab, H. Microbiomic and Metabolomic Analyses Unveil the Protective Effect of Saffron in a Mouse Colitis Model. Curr. Issues Mol. Biol. 2023, 30, 5558–5574. [Google Scholar] [CrossRef]
- Pontifex, M.G.; Connell, E.; Le Gall, G.; Pourtau, L.; Gaudout, D.; Angeloni, C.; Zallocco, L.; Ronci, M.; Giusti, L.; Müller, M.; et al. Saffron extract (Safr’Inside™) improves anxiety related behaviour in a mouse model of low-grade inflammation through the modulation of the microbiota and gut derived metabolites. Food Funct. 2022, 13, 12219–12233. [Google Scholar] [CrossRef]
Name of Compound | Present in Plant Part | Medicinal Properties | References |
---|---|---|---|
Vitexin | Leaves | Antioxidative, anti-cancerous, anti-inflammatory, anti-hyperalgesic, neuroprotective | [9,10] |
Orientin | Tepals | Anti-viral, antibacterial, anti-depressant, cardioprotective, anti-aging, and antioxidant | [10,11] |
Kaempferol | Tepals | Reduces the risk of cancer and metastasis Anti-depressive Inflammation Antioxidant | [12,13] |
Isoorientin | Tepals | Prevents liver damage; antioxidative, anti-inflammatory, and anti-nociceptive properties | [10,14] |
Naringenin | Petals | Antimicrobial, anti-mutagenic, and anti-cancer; reduces cardiovascular and gastrointestinal diseases | [15] |
Astragalin | Stigmas | Anti-obesity, anti-diabetic, anti-ulcer, anti-osteoporotic | [16] |
Dihydrokaempferol | Petals | Used as a treatment for rheumatoid arthritis (RA) | [17,18] |
Myricetin | Stigmas | Plays role in the scavenging of ROS; anti-allergic, anti-platelet aggregation, and anti-hypertensive | [19] |
Quercetin | Flowers | Reduces blood sugar level and reactive oxygen species and prevents heart diseases | [10] |
Rhamnetin | Stamens and petals | Plays role in attenuation of melanogenesis by reducing oxidative stress and pro-inflammatory mediators | [20] |
Populin | Stigmas | Anti-diabetic, reduces the activity of aldose reductase enzyme, and antioxidant | [12] |
Phenolic Acids present in Saffron and their medicinal properties | |||
Chlorogenic acid | Stigmas | Prevents weight gain, reduces development of liver steatosis, and reduces lipid accumulation in liver and enhances insulin sensitivity | [21] |
Caffeic acid | Stigmas | Anti-viral especially against herpes and HIV virus, and treatment for cancer | [19] |
Methylparaben | Stigmas | Antibacterial; antifungal | [19,22] |
Gallic acid | Stigmas | Antioxidative, antineoplastic, and anti-inflammatory; useful for cardiovascular disorders | [19,22] |
Pyrogallol | Petals | Antibacterial; antifungal; and anti-malarial | [22,23] |
Phytosterols present in saffron and their medicinal properties | |||
β-Sitosterol | Flowers (stigma, petals, and pollens) | Reduces cholesterol levels; treatment for heart disease and rheumatoid arthritis (RA) | [24] |
Stigmasterol | Flowers Stigmas Stamen Perianth corms | Used as a drug for cancer therapy by inducing intracellular signaling pathways in various types of cancers. It affects the pathways of gastric and ovarian cancers; these pathways include Akt/mTOR and JAK/STAT | [24,25] |
Fucosterol | Flowers (petals) | Anti-cancerous, anti-diabetic, antifungal, anti-osteoporotic, and anti-cholinergic; reduces blood cholesterol level | [24,26] |
Chemical Constituents | Concentration (%) | References |
Moisture | 10–14 | [40,41] |
Ash | 06–07 | |
Crude fat | 05–08 | |
Crude protein | 12–14 | |
Crude fiber | 04–05 | |
Nitrogen-free extract (NFE) | 52–63 | |
NFE | ||
Reducing sugars | 20 | [40,41,42] |
Gums and dextrins | 09–10 | |
Starch | 06–07 | |
Pentoses | 06–07 | |
Different mineral nutrients and their concentrations (mg/g) present in the stigmas of C. sativus | ||
Minerals | Concentration (mg/g) | References |
Phosphorous | 3770 | [43,44] |
Magnesium | 1350 | |
Calcium | 1070 | |
Iron | 110 | |
Potassium | 14.86 | |
Sodium | 100 | |
Different vitamins and their concentrations (mg) present in the stigmas of C. sativus | ||
Vitamins | Concentrations (mg) | References |
Vitamin-A | 27 | [22,45,46] |
Vitamin-B1 | 0.115 | |
Vitamin-B2 | 13 | |
Vitamin-B6 | 1.01 | |
Vitamin-C | 80 | |
Different concentrations of different fatty acids (g/100g) in saffron based on GC analysis | ||
Fatty Acids | Concentrations (g/100g) | References |
Palmitic acid | 16.2 | [24,47] |
Linoleic acid | 28.5 | |
Linolenic acid | 21.0 | |
Stearic acid | - | |
Oleic acid | - | |
Arachidonic acid | - |
Name of Metabolite | Biological Activities | References |
---|---|---|
Crocin | Anti-schizophrenia, Antifatigue, Anti-Alzheimer’s, Neuroprotective, Anti-depressant, Anti-diabetic, Therapeutics for multiple sclerosis, Antioxidative, Anti-tumor, Therapeutics for neuro-retinal diseases, Anti-inflammatory, Anti-apoptotic, Mitigates blood pressure and heart rate | [66,67,68,69,70,71,72,73,74,75,76,77,78] |
Safranal | Anti-convulsant Anti-Alzheimer’s Anti-Huntington disease Therapeutics for retinal degeneration Antioxidative Prevention of respiratory distress | [33,79,80,81,82] |
Picrocrocin | Antiproliferative | [83] |
Picrocrocin | Anti-cancer activity | [84] |
Crocusatin D, Crocusatin F, Crocusatin G, Crocusatin H, Crocusatin E, Crocusatin I | Withdrawal syndrome, depression, spatial memory | [85] |
Isophorone | Hyperglycemia–glucose uptake/metabolism Parkinson’s disease | [85] |
Lycopene | Reduces effects of CVD | [86] |
Crocetin | Anti-Parkinson’s disease Protection of heart diseases Anti-apoptotic | [55,87] |
Name of Saffron-Based Compound | The Experimental Animal/Cell Line | Effective Dose of the Extract | Disease Treatment under Tnvestigation | References |
---|---|---|---|---|
Crocin | Adult male Wistar rats | 15 and 30 mg/kg/day | Learning and memory impairment, chronic stress | [74] |
Male Wistar albino rats | 5, 10, and 20 mg/kg/day | Cardioprotective effect, alleviating oxidative stress | [159] | |
Male Wistar rats | 50, 100, and 200 mg/kg/day | Aids in prevention in the reduction in platelet counts | [159] | |
Adult male mice | 35 days, 20 mg/100 g | To neutralize hemolytic anemia | [160,161] | |
Rats | 5, 10, and 20 mg/kg/day | Cardioprotective | [159] | |
Adult male Wistar rats | 25 and 50 mg/kg | Alleviating oxidative stress | [162] | |
Crocetin | Male Wistar rats | 40 mg/kg for weeks | To prevent the development of insulin resistance | [163] |
Cultured retinal ganglion cells | 3 mM | Alleviating oxidative stress | [164] | |
Male Wistar rats | 50, 100, and 200 mg/kg | Alleviating oxidative stress | [163] | |
Male Wistar rats | 1–50 mM | Neuroprotection | [165] | |
Male Wistar rats | 40 mg/kg for 8 weeks | To prevent the development of insulin resistance | [163] | |
Mice | 50–600 mg/kg | Anti-depressant | [166] | |
Safranal | Male Wistar rats | 0.025, 0.05, and 0.1 mL/kg | Alleviating oxidative stress | [160] |
Mice | 0.15–0.5 mL/kg | Anti-depressant | [166] | |
Adult male NMRI rats | 24 h for 72 h, 727.5 mg/kg | Prevents oxidative damage in hippocampal tissue from ischemic rats | [167] | |
Saffron tablets | Human volunteers in placebo study | 400 mg/day | Treatment of depression/anxiety and safety evaluation | [168] |
Human volunteers in pilot study | 200 mg | To alleviate erectile dysfunction and infertility | [169] | |
Human volunteers in pilot study | 30 mg/day (15 mg twice a day) | Anti-depressant | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, R.A.; Tyagi, A.; Hussain, S.J.; Almalki, M.A.; Zeyad, M.T.; Deshmukh, R.; Ali, S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. Plants 2024, 13, 1467. https://doi.org/10.3390/plants13111467
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. Plants. 2024; 13(11):1467. https://doi.org/10.3390/plants13111467
Chicago/Turabian StyleMir, Rakeeb Ahmad, Anshika Tyagi, Sofi Javed Hussain, Mohammed A. Almalki, Mohammad Tarique Zeyad, Rupesh Deshmukh, and Sajad Ali. 2024. "Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities" Plants 13, no. 11: 1467. https://doi.org/10.3390/plants13111467
APA StyleMir, R. A., Tyagi, A., Hussain, S. J., Almalki, M. A., Zeyad, M. T., Deshmukh, R., & Ali, S. (2024). Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. Plants, 13(11), 1467. https://doi.org/10.3390/plants13111467