Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Visual Membrane Inspection and Characterization
2.2. Membrane Process Parameters
2.2.1. Permeate Flux
2.2.2. Membrane Filtration Assessment
2.2.3. Membrane Resistance (MR)
2.2.4. Feed pH and Electrical Conductivity
2.3. UHPLC-MS Analysis
2.3.1. Metabolomic Profiling Using UHPLC-ESI-MS/MS and Tentative Identification
Phenolics
Amino Acids
2.4. Quantification of Phenolics through UHPLC-MS Analysis
2.4.1. Retention Percentage (RP)
2.4.2. Bioactive Compound Fractionation
2.4.3. Permeation Percentage (PP) of Total Solids during the NF of Muérdago Fruit Juice
3. Materials and Methods
3.1. Muérdago Extract Solution Preparation
3.2. Membrane Materials
3.3. Protocol
3.4. Membrane Filtration Assessment
3.5. Retention Percentage (RP)
3.6. Permeation Percentage (PP) of Total Solids
3.7. Electrical Conductivity, pH, and Temperature Measurements
3.8. Visual Membrane Inspection and Characterization
3.9. Tentative Identification (ESI-MS/MS) and Quantification (UHPLC-ESI-MS/MS) of Metabolites in the Muérdago Fruit
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simirgiotis, M.J.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic Compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) Analyzed by UHPLC-Q/Orbitrap/MS/MS and Its Antioxidant Properties. Molecules 2016, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Burgos, A.N.; Morales, M.A. Qualitative study of use medicinal plants in a complementary or alternative way with the use of among of rural population of the Bulnes City, Bío-Bío Region, Chile. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2010, 9, 377–387. [Google Scholar]
- De Mosbach, E.W. Botánica Indigena de Chile; Andres Bello: Santiago, Chile, 1992. [Google Scholar]
- Hoffmann, A.; Arroyo, M.T.K.; Liberona, F.; Muñoz, M.; Watson, J.M. Plantas Altoandinas en la Flora Silvestre de Chile; ediciones Fundación Claudio A. Gay: Santiago de Chile, Chile, 2000. [Google Scholar]
- Kleszken, E.; Timar, A.V.; Memete, A.R.; Miere, F.; Vicas, S.I. On overview of bioactive compounds, biological and pharmacological effects of mistletoe (Viscum album L.). Pharmacophore 2022, 13, 10–26. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S.; Sánchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Jimeno-Jiménez, A.; Carbonell-Alcaina, C.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Effect of the operating conditions on a nanofiltration process to separate low-molecular-weight phenolic compounds from the sugars present in olive mill wastewaters. Process Saf. Environ. Prot. 2021, 148, 428–436. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lea, M.A. Flavonol Regulation in Tumor Cells. J. Cell. Biochem. 2015, 116, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, A.; Chen, E.; Singh, R.K.; Chichester, C.O.; Moore, R.G.; Singh, A.P.; Vorsa, N. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int. J. Oncol. 2015, 46, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Berry Phenolic Antioxidants-Implications for Human Health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Greenham, C.G.; Leonard, O. The amino acids of some mistletoes and their hosts. Am. J. Bot. 1965, 52, 41. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Important roles of amino acids in immune responses. Br. J. Nutr. 2022, 127, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Smith, F.N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The role of meat in the human diet: Evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Rubilar, M.; Pinelo, M.; Ihl, M.; Scheuermann, E.; Sineiro, J.; Nuñez, M.J. Murta Leaves (Ugni molinae Turcz) as a Source of Antioxidant Polyphenols. J. Agric. Food Chem. 2006, 54, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, S.V.; Torocheshnikova, I.I.; Formanovsky, A.A.; Pletnev, I.V. Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6. Anal. Bioanal. Chem. 2004, 378, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Fíla, V. Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products. Trends Food Sci. Technol. 2018, 82, 8–20. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Drioli, E. Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 2012, 90, 867–874. [Google Scholar] [CrossRef]
- Cai, M.; Xie, C.; Zhong, H.; Tian, B.; Yang, K. Identification of Anthocyanins and Their Fouling Mechanisms during Non-Thermal Nanofiltration of Blueberry Aqueous Extracts. Membranes 2021, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Hou, W.; Li, Z.; Lv, Y.; Sun, P. Understanding Nanofiltration Fouling of Phenolic Compounds in Model Juice Solution with Two Membranes. Food Bioprocess Technol. 2017, 10, 2123–2131. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G.; Fan, Z.; Yang, X.; Wang, J.; Wang, S. Experimental study on treatment of electroplating wastewater by nanofiltration. J. Membr. Sci. 2007, 305, 185–195. [Google Scholar] [CrossRef]
- Chandrapala, J.; Duke, M.C.; Gray, S.R.; Weeks, M.; Palmer, M.; Vasiljevic, T. Nanofiltration and nanodiafiltration of acid whey as a function of pH and temperature. Sep. Purif. Technol. 2016, 160, 18–27. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Cunha-Petrus, J.C.; Hubinger, M.D. Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J. Food Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
- Pietrzak, V.; Nowak, R.; Gawlik-Dziki, U.; Lemieszek, M.K.; Rzeski, W. LC-ESI-MS/MS Identification of Biologically Active Phenolic Compounds in Mistletoe Berry Extracts from Different Host Trees. Molecules 2017, 22, 624. [Google Scholar] [CrossRef]
- Luczkiewicz, M.; Cisowski, W.; Kaiser, P.; Ochocka, R.; Piotrowski, A. Comparative analysis of phenolic acids in mistletoe plants from various hosts. Acta Pol. Pharm. 2001, 58, 373–379. [Google Scholar]
- Escher, P.; Eiblmeier, M.; Hetzger, I.; Rennenberg, H. Spatial and seasonal variation in amino compounds in the xylem sap of a mistletoe (Viscum album) and its hosts (Populus spp. and Abies alba). Tree Physiol. 2004, 24, 639–650. [Google Scholar] [CrossRef]
- Farha, A.K.; Gan, R.Y.; Li, H.B.; Wu, D.T.; Atanasov, A.G.; Gul, K.; Zhang, J.R.; Yang, Q.Q.; Corke, H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit. Rev. Food Sci. Nutr. 2020, 62, 832–859. [Google Scholar] [CrossRef]
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep. 2009, 8, 206–213. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Zhang, Y.; Wang, M. Nanofiltration Membrane Characterization and Application: Extracting Lithium in Lepidolite Leaching Solution. Membranes 2020, 10, 178. [Google Scholar] [CrossRef]
- Jasleen, K.; Ramandeep, K. p-Coumaric Acid: A Naturally Occurring Chemical with Potential Therapeutic Applications. Curr. Org. Chem. 2022, 26, 1333–1349. [Google Scholar]
- Alcázar-Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maie, C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Benali, T.; Bakrim, S.; Ghchimie, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2022, 19, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Pasqualin, P.; Davies, P.A. Experimental and theoretical investigation of nanofiltration membranes for liquid desiccant regeneration in air conditioning applications. Appl. Therm. Eng. 2023, 221, 119644. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Caiazzo, F.; Drioli, E. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J. Food Eng. 2017, 195, 1–13. [Google Scholar] [CrossRef]
- Koseoglu, H.; Harman, B.I.; Yigit, N.O.; Kabay, N.; Kitis, M. The impacts of operational conditions on phenol removal by nanofiltration membranes. Desalin. Water Treat. 2021, 26, 118–123. [Google Scholar] [CrossRef]
- da Silva, S.C.; Moravia, M.C.S.A.; Couto, C.F. Combined process of ultrafiltration and nanofiltration for vinasse treatment with and without pre-coagulation. J. Water Process Eng. 2020, 36, 101326. [Google Scholar] [CrossRef]
- Cheryan, M. Chapter 4, Performance and Engineering Models. In Ultrafiltration and Microfiltration Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1998; p. 58. [Google Scholar]
- Shang, M.; Shi, B. Study on preparation and performances of cellulose acetate forward osmosis membrane. Chem. Pap. 2018, 72, 3159–3167. [Google Scholar] [CrossRef]
- Gautam, A.; Menkhaus, T.J. Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. J. Membr. Sci. 2014, 451, 252–265. [Google Scholar] [CrossRef]
Membrane Treatments and Permeate Flux (L/m2h) | |||
---|---|---|---|
Proc. Time (min) | DL | NFW | NDX |
5 | 27.73 ± 0.52 a | 12.40 ± 0.18 c | 16.44 ± 0.39 d |
180 | 22.10 ± 1.26 b | 14.45 ± 0.53 c | 20.82 ± 0.23 e |
Membrane Treatments and Membrane Resistance (m−1) | |||
---|---|---|---|
Membrane Treatment | DL Membrane | NFW Membrane | NDX Membrane |
New membrane | 3.42 × 1013 ± 8.77 × 1011 a | 2.51 × 1014 ± 1.01 × 1012 b | 2.45 × 1014 ± 4.61 × 1012 c |
Washed membrane | 3.42 × 1013 ± 1.71 × 1011 a | 2.51 × 1014 ± 4.11 × 1012 b | 2.41 × 1014 ± 2.90 × 1012 c |
Membrane Treatments and Processing Parameters | |||
---|---|---|---|
Electrical Conductivity (mS/cm) | |||
Processing Time (min) | DL | NFW | NDX |
0 | 0.36 ± 0.01 e | 0.36 ± 0.01 i | 0.35 ± 0.01 il |
5 | 0.38 ± 0.01 de | 0.37 ± 0.01 hi | 0.35 ± 0.01 hkl |
60 | 0.39 ± 0.01 c | 0.37 ± 0.01 g | 0.36 ± 0.01 gk |
120 | 0.41 ± 0.01 b | 0.38 ± 0.01 f | 0.38 ± 0.01 fj |
180 | 0.43 ± 0.01 a | 0.39 ± 0.01 f | 0.39 ± 0.01 fj |
pH value | |||
Processing Time (min) | DL | NFW | NDX |
0 | 5.99 ± 0.01 a | 5.02 ± 0.02 f | 4.63 ± 0.02 k |
5 | 5.96 ± 0.02 b | 4.99 ± 0.02 g | 4.58 ± 0.01 l |
60 | 5.92 ± 0.01 c | 4.93 ± 0.01 h | 4.55 ± 0.02 m |
120 | 5.90 ± 0.02 d | 4.87 ± 0.02 i | 4.46 ± 0.01 n |
180 | 5.85 ± 0.01 e | 4.81 ± 0.02 j | 4.44 ± 0.02 o |
Phenolic | Retention Time (min) | Feed DL (ppb) | Permeate DL (ppb) | Feed NFW (ppb) |
Gallic acid | 1.24 | 39.16 ± 0.31 ae | 0.00 ± 0.00 | 41.26 ± 3.31 ad |
Cryptochlorogenic acid | 3.57 | 5,447,927.57 ± 4,314,977.29 af | 25,629.66 ± 25,629.66 bc | 5,647,777.10 ± 4,304,459.83 ae |
Chlorogenic acid | 3.94 | 13,138.29 ± 541.33 ag | 11.16 ± 0.58 bd | 16,292.64 ± 965.49 cf |
Caffeic acid | 4.29 | 84.48 ± 4.77 ah | 0.00 ± 0.00 | 181.60 ± 12.30 bg |
p-coumaric acid | 5.48 | 33.33 ± 0.49 ai | 2.02 ± 1.05 be | 39.64 ± 1.96 cd |
Rutin | 5.84 | 124.82 ± 36.85 ah | 0.00 ± 0.00 | 62.84 ± 44.25 ad |
Quercetin | 8.26 | 265.15 ± 100.36 ah | 0.00 ± 0.00 | 61.32 ± 3.29 bd |
Phenolic | Retention time (min) | Permeate NFW (ppb) | Feed NDX (ppb) | Permeate NDX (ppb) |
Gallic acid | 1.24 | 0.00 ± 0.00 | 39.53 ± 33.77 ae | 0.00 ± 0.00 |
Cryptochlorogenic acid | 3.57 | 134,035.57 ± 78,074.49 cd | 5,633,352.06 ± 4,244,817.36 af | 273,929.31 ± 136,748.71 cf |
Chlorogenic acid | 3.94 | 129.41 ± 1.35 de | 16,056.81 ± 846.08 cg | 216.91 ± 11.48 eg |
Caffeic acid | 4.29 | 0.00 ± 0.00 | 264.06 ± 10.14 ch | 0.00 ± 0.00 |
p-coumaric acid | 5.48 | 38.37 ± 0.84 cf | 32.20 ± 0.79 de | 15.46 ± 0.11 eh |
Rutin | 5.84 | 0.00 ± 0.00 | 71.16 ± 69.42 ae | 0.00 ± 0.00 |
Quercetin | 8.26 | 0.00 ± 0.00 | 73.46 ± 6.13 ce | 0.00 ± 0.00 |
Phenolics/Membranes | Rejection Percentage (%) | ||
---|---|---|---|
DL | NFW | NDX | |
Gallic acid | 100 ± 0.00 a | 100 ± 0.00 a | 100 ± 0.00 a |
Cryptochlorogenic acid | 99.74 ± 0.21 b | 96.85 ± 0.83 d | 92.98 ± 2.34 g |
Chlorogenic acid | 99.91 ± 0.01 b | 99.20 ± 0.05 e | 98.65 ± 0.00 h |
Caffeic acid | 100 ± 0.00 a | 100 ± 0.00 a | 100 ± 0.00 a |
p-coumaric acid | 84.51 ± 6.43 c | 2.64 ± 2.21 f | 51.95 ± 1.23 i |
Rutin | 100 ± 0.00 a | 100 ± 0.00 a | 100 ± 0.00 a |
Quercetin | 100 ± 0.00 a | 100 ± 0.00 a | 100 ± 0.00 a |
Membrane Treatment (Processing Time) | PP (%) |
---|---|
DL(t5) | 20.63 ± 0.13 a |
DL(t180) | 18.02 ± 0.18 b |
NFW(t5) | 9.89 ± 0.13 f |
NFW(t180) | 11.13 ± 0.11 e |
NDX(t5) | 12.54 ± 0.21 d |
NDX(t180) | 15.49 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cifuentes-Araya, N.; Simirgiotis, M.; Sepúlveda, B.; Areche, C. Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry. Plants 2024, 13, 1521. https://doi.org/10.3390/plants13111521
Cifuentes-Araya N, Simirgiotis M, Sepúlveda B, Areche C. Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry. Plants. 2024; 13(11):1521. https://doi.org/10.3390/plants13111521
Chicago/Turabian StyleCifuentes-Araya, Nicolás, Mario Simirgiotis, Beatriz Sepúlveda, and Carlos Areche. 2024. "Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry" Plants 13, no. 11: 1521. https://doi.org/10.3390/plants13111521
APA StyleCifuentes-Araya, N., Simirgiotis, M., Sepúlveda, B., & Areche, C. (2024). Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry. Plants, 13(11), 1521. https://doi.org/10.3390/plants13111521