Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Using Conventional or Non-Conventional Techniques
2.2. Isolation
2.3. Metabolomic Profiling Using UHPLC-ESI-MS/MS
2.3.1. Carbohydrates
2.3.2. Simple Organic Acids
2.3.3. Nitrogen-Containing Compounds
2.3.4. Hydroxybenzoic Acid and Its Derivatives
2.3.5. Hydroxycinnamic Acids
2.3.6. Flavonoid Derivatives
2.3.7. Terpenoid Derivatives
2.3.8. Lipid Derivatives
2.4. Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Maceration Extraction
3.4. Microwave-Assisted Extraction (MAE)
3.5. Extraction and Isolation
3.5.1. Conventional Methods
3.5.2. Non-Conventional Methods
3.6. UHPLC-APCI-HRMS/MS Instrument
HPLC and MS Parameters
3.7. Antioxidant and Content of Phenolic Assays
3.7.1. Polyphenol and Flavonoid Contents
3.7.2. DPPH Test
3.7.3. Ferric Reducing Antioxidant Power Test (FRAP)
3.7.4. Oxygen Radical Absorbance Capacity (ORAC) Test
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De la Cruz, H.; Vilcapoma, G.; Zevallos, P.A. Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru. J. Ethnopharmacol. 2007, 111, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Zullaikah, S.; Rachmaniah, O.; Utomo, A.T.; Niawanti, H.; Ju, Y.H. Green Separation of Bioactive Natural Products Using Liquefied Mixture of Solids. In Green Chemistry; Saleh, H.M., Koller, M., Eds.; Intechopen: London, UK, 2018; pp. 17–38. [Google Scholar]
- Chemat, F.; Abert Vian, M.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Cordell, G.A. Ecopharmacognosy and the responsibilities of natural product research to sustainability. Phytochem. Lett. 2015, 11, 332–342. [Google Scholar] [CrossRef]
- Funari, C.S.; Rinaldo, D.; Bolzani, V.S.; Verpoorte, R. Reaction of the phytochemistry community to Green chemistry: Insights obtained since 1990. J. Nat. Prod. 2023, 86, 440–459. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Pereira, C.S.M.; Silva, V.M.T.M.; Rodrigues, A.E. Ethyl lactate as a solvent: Properties, applications and production processes—A review. Green Chem. 2011, 13, 2658–2671. [Google Scholar] [CrossRef]
- Guerrero-Castillo, P.; Reyes, S.; Robles, J.; Simirgiotis, M.J.; Sepulveda, B.; Fernandez-Burgos, R.; Areche, C. Biological activity and chemical characterization of Pouteria lúcuma sedes: A possible use of an agricultural waste. Waste Manag. 2019, 88, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Contreras, M.M.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolomic profiling of vegetables: Lactuca sativa as an example of its application. J. Chromatogr. A 2013, 1313, 212–227. [Google Scholar] [CrossRef] [PubMed]
- De Leo, M.; Vera Saltos, M.B.; Naranjo Puente, B.F.; De Tommasi, N.; Braca, A. Sesquiterpenes and diterpenes from Ambrosia arborescens. Phytochemistry 2010, 71, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Ata, A.; Diduck, C.; Udenigwe, C.C.; Zahid, S.; Decken, A. New chemical constituents of Ambrosia spilostachya. Arkivoc 2007, 13, 195–203. [Google Scholar] [CrossRef]
- Oberti, J.C.; Silva, G.L.; Sosa, V.E.; Kulanthaivel, P.; Herz, W. Ambrosanolides and secoambrosanolides from Ambrosia tenuifolia. Phytochemistry 1986, 25, 1355–1358. [Google Scholar] [CrossRef]
- Abdel-Salam, N.A.; Mahmoud, Z.F.; Ziesche, J.; Jakupovic, J. Sesquiterpene lactones from Ambrosia marítima (Damssissa). Phytochemistry 1984, 23, 2851–2853. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Extensive characterization of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 2016, 96, 4235–4242. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.C.; Palacios, J.; Barrientos, R.E.; Gómez, J.; Castagnini, J.M.; Barba, F.J.; Tapia, A.; Paredes, A.; Cifuentes, F.; Simirgiotis, M.J. UHPLC-MS Phenolic Fingerprinting, Aorta Endothelium Relaxation Effect, Antioxidant, and Enzyme Inhibition Activities of Azara dentata Ruiz & Pav Berries. Foods 2023, 12, 643. [Google Scholar] [PubMed]
- Silva-Correa, C.R.; Villarreal-La Torre, V.E.; González-Siccha, A.D.; Cruzado-Razco, J.L.; Gonzalez-Blas, M.V.; Sagastegui-Guarniz, W.A.; Calderon-Peña, A.A.; Aspajo-Villalaz, C.L.; Hilario-Vargas, J. Acute toxicity of aqueous extract of Ambrosia arborescens Mill. on biochemical and histopathological parameters in rats. Toxicol. Res. 2022, 38, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Svensson, D.; Lozano, M.; Almanza, G.R.; Nilsson, B.O.; Sterner, O.; Villagomez, R. Sesquiterpene lactones from Ambrosia arborescens Mill. Inhibit pro-inflammatory cytokine expression and modulate NF-Kb signaling in human skin cells. Phytomedicine 2018, 50, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Sotillo, W.S.; Villagomez, R.; Smiljanic, S.; Huang, X.; Malakpour, A.; Kempengren, S.; Rodrigo, G.; Almanza, G.; Sterner, O.; Oredsson, S. Anti-cancer stem cell activity of a sesquiterpene lactone isolated from Ambrosia arborescens and of a synthetic derivative. PLoS ONE 2017, 12, e0184304. [Google Scholar] [CrossRef]
- Cotugno, R.; Fortunato, R.; Santoro, A.; Gallotta, D.; Braca, A.; De Tommasi, N.; Belisario, M.A. Effect of sesquiterpene lactone coronopilin on leukaemia cell population growth cell type-specific induction of apoptosis and mitotic catastrophe. Cell Prolif. 2012, 45, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Solís-Quispe, L.; Pino, J.A.; Marín-Villa, J.Z.; Tomaylla-Cruz, C.; Solís-Quispe, J.A.; Aragón-Alencastre, L.J.; Hernández, I.; Cuellar, C.; Rodeiro, I.; Fernández, M.D. Chemical composition and antioxidant activity of Ambrosia arborescens Miller leaf essential oil from Peruvian Andes. J. Essent. Oil Res. 2022, 34, 439–445. [Google Scholar] [CrossRef]
- Herz, W.; Anderson, G.; Gibaja, S.; Raulais, D. Sesquiterpene lactones of some Ambrosia species. Phytochemistry 1969, 8, 877–881. [Google Scholar] [CrossRef]
- Da Silva, R.F.; Carneiro, C.N.; De Souza, C.B.; Gomez, F.J.V.; Espino, M.; Boiteux, J.; Fernandez, M.A.; Silva, M.F.; Dias, F.S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- Majid, I.; Khan, S.; Aladel, A.; Dar, A.H.; Adnan, M.; Khan, M.I.; Awadelkareem, A.M.; Ashraf, S.A. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CyTA-J. Food 2023, 21, 101–114. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Monteagudo-Arrebola, M.J.; Dobado, J.A.; Isac-Garcia, J. Green and Bio-Based Solvents. Top. Curr. Chem. (Z) 2018, 376, 18. [Google Scholar] [CrossRef] [PubMed]
- Ishida, B.; Chapman, M.H. Carotenoid extraction from plants using a novel, enviromentally friendly solvent. J. Agric. Food Chem. 2009, 57, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Vicente, G.; Paiva, A.; Fornari, T.; Najdanovic-Visak, V. Liquid-liquid equilibria for separation of tocopherol from olive oil using ethyl lactate. Chem. Eng. J. 2011, 172, 879–884. [Google Scholar] [CrossRef]
- Tombokan, X.C.; Aguda, R.M.; Danehower, D.A.; Kilpatrick, P.K.; Carbonell, R.G. Three-component phase behavior of the sclareol-ethyl lactate-carbon dioxide system for GAS applications. J. Supercrit. Fluids. 2008, 45, 146–155. [Google Scholar] [CrossRef]
- Velho, P.; Requejo, P.F.; Gomez, E.; Macedo, E.A. Novel ethyl lactate based ATPS for the purification of rutin and quercetin. Sep. Purif. Technol. 2020, 252, 117447. [Google Scholar] [CrossRef]
- Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain. Chem. Pharm. 2016, 4, 21–31. [Google Scholar] [CrossRef]
- Kamalanathan, I.; Canal, L.; Hegarty, J.; Najdanovic-Visak, V. Partitioning of amino acids in the novel biphasic systems based on environmentally friendly ethyl lactate. Fluid Phase Equilibr. 2018, 462, 6–13. [Google Scholar] [CrossRef]
- Rajkowska, K.; Simińska, D.; Kunicka-Styczyńska, A. Bioactivities and Microbial Quality of Lycium Fruits (Goji) Extracts Derived by Various Solvents and Green Extraction Methods. Molecules 2022, 27, 7856. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda, B.; Benites, D.; Albornoz, L.; Simirgiotis, M.; Castro, O.; Garcia-Beltran, O.; Areche, C. Green ultrasound-assisted extraction of lichen substances from Hypotrachyna cirrhata. Ethyl lactate, a better extracting agent tan metanol toxic organic solvent? Nat. Prod. Res. 2023, 37, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Calla-Quispe, E.; Robles, J.; Areche, C.; Sepulveda, B. Are Ionic Liquids Better Extracting Agents Than Toxic Volatile Organic Solvents? A Combination of Ionic Liquids, Microwave and LC/MS/MS, Applied to the Lichen Stereocaulon glareosum. Front. Chem. 2020, 8, 450. [Google Scholar] [CrossRef]
- Borges del Castillo, J.; Manresa-Ferrero, M.T.; Rodriguez-Luis, F.; Vasquez-Bueno, P.; Joseph-Nathan, P. 13C NMR study of psilostachyinolides from some Ambrosia species. Org. Magn. Reson. 1981, 17, 232–234. [Google Scholar] [CrossRef]
- Areche, C.; Hernandez, M.; Cano, T.; Ticona, J.; Cortes, C.; Simirgiotis, M.; Caceres, F.; Borquez, J.; Echeverria, J.; Sepulveda, B. Corryocactus brevistylus (K. Schum. ex Vaupel) Britton & Rose (Cactaceae): Antioxidant, Gastroprotective Effects, and Metabolomic Profiling by Ultrahigh-Pressure Liquid Chromatography and Electrospray High Resolution Orbitrap Tandem Mass Spectrometry. Front. Pharmacol. 2020, 11, 417. [Google Scholar] [PubMed]
Peak | TR (min) | Compounds | Formula Molecular | Theoretical Mass | Experimental Mass | MS Ions (m/z) | Solvent Maceration | Solvent MAE |
---|---|---|---|---|---|---|---|---|
1 | 3.33 | Sucrose | C15H17O9 | 341.1031 | 341.1042 | 179.0569 | MeOH | EL |
2 | 3.47 | Quinic acid | C7H12O6 | 191.0561 | 191.0563 | --- | MeOH | EL |
3 | 4.78 | Malic acid | C4H5O5 | 133.0149 | 133.0139 | --- | MeOH | EL |
4 | 5.65 | Leucine/isoleucine-hexose | C12H22NO7 | 292.1402 | 292.1420 | 202.1085, 130.0875 | MeOH | - |
5 | 6.54 | Succinic acid | C4H5O4 | 117.0193 | 117.0201 | --- | MeOH | EL |
6 | 10.10 | Phenylalanine | C9H10NO2 | 164.0717 | 164.0713 | 147.0492 | MeOH | - |
7 | 10.24 | Dihydroxybenzoic acid hexoside | C13H15O9 | 315.0735 | 315.0745 | 153.0200 | MeOH | EL |
8 | 11.66 | Dihydroxybenzoic acid hexoside I | C13H15O9 | 315.0734 | 315.0740 | --- | MeOH | EL |
9 | 12.47 | Vanillic acid hexoside | C14H17O9 | 329.0878 | 329.0886 | 167.0351 | MeOH | EL |
10 | 14.07 | Monocaffeoylquinic acid | C16H17O9 | 353.0878 | 353.0881 | 191.0563 | MeOH | EL |
11 | 14.61 | Monocaffeoylquinic acid I | C16H17O9 | 353.0878 | 353.0880 | 191.0562 | MeOH | EL |
12 | 15.14 | Caffeoylquinic acid methyl ester | C17H20O9 | 367.1035 | 367.1045 | 191.0565 | MeOH | EL |
13 | 15.54 | Galloyl dihexoside | C19H26O15 | 493.1199 | 493.1188 | 331.0668 169.0149 | MeOH | EL |
14 | 15.81 | Dicaffeoylquinic acid | C25H23O12 | 515.1195 | 515.1220 | 353.0871 191.0566 179.0350 | MeOH | EL |
15 | 16.35 | Chlorogenic acid hexoside | C22H27O14 | 515.1418 | 515.1428 | 353.0880 191.0560 | MeOH | EL |
16 | 17.02 | Chlorogenic acid hexoside I | C22H27O14 | 515.1418 | 515.1428 | 353.0881 191.0566 | MeOH | EL |
17 | 18.76 | Nonanedioic acid (azelaic acid) | C9H16O4 | 187.0976 | 187.0984 | --- | MeOH | EL |
18 | 19.83 | Dihydroxybenzoic acid hexoside II | C13H15O9 | 315.0735 | 315.0739 | --- | MeOH | EL |
19 | 21.30 | Dehydropsilostachyin | C15H21O5 | 281.1389 | 281.1408 | 191.1558 237.1512 253.1829 265.1447 | MeOH | EL |
20 | 21.83 | Quercetin methyl ether | C16H11O7 | 315.0510 | 315.0523 | --- | MeOH | EL |
21 | 22.37 | Tetrahydroxy dimethoxy flavone | C17H14O8 | 345.0616 | 345.0629 | --- | MeOH | EL |
22 | 22.64 | Trihydroxyoctadecadienoic acid | C18H31O5 | 327.2177 | 327.2189 | --- | MeOH | EL |
23 | 23.17 | Psilostachyin | C15H19O5 | 279.1238 | - | 265.1451 | MeOH | EL |
24 | 23.98 | Psilostachyin derivative or coronopilin | C15H19O4 | 263.1289 | 263.1357 | --- | MeOH | EL |
25 | 24.64 | Oxo-oplopanone | C15H23O3 | 251.1647 | 251.1717 | --- | MeOH | EL |
26 | 25.45 | Hydroxy-oxo-oplopanone | C15H21O3 | 249.1496 | 249.1560 | --- | ||
27 | 29.06 | Hydroxyoctadecatrienoic acid | C18H29O3 | 293.2117 | 293.2198 | --- | MeOH | EL |
28 | 29.46 | Hydroxyoctadecatrienoic acid I | C18H29O3 | 293.2117 | 293.2198 | --- | MeOH | EL |
Sample | TPC | TFC | FRAP * | ORAC * | DPPH * |
---|---|---|---|---|---|
NCM (ethyl lactate, MAE) | 5.541 ± 0.54 a | 3.84 ± 0.43 b | 705.22 ± 15.42 c | 715.38 ± 3.2 d | 263.04 ± 2.8 e |
CM (MeOH, maceration) | 9.581 ± 0.62 | 6.32 ± 0.44 g | 711.43 ± 23.2 c | 541.13 ± 4.8 | 180.47 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillen, E.; Terrones, H.; de Terrones, T.C.; Simirgiotis, M.J.; Hájek, J.; Cheel, J.; Sepulveda, B.; Areche, C. Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity. Plants 2024, 13, 1213. https://doi.org/10.3390/plants13091213
Guillen E, Terrones H, de Terrones TC, Simirgiotis MJ, Hájek J, Cheel J, Sepulveda B, Areche C. Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity. Plants. 2024; 13(9):1213. https://doi.org/10.3390/plants13091213
Chicago/Turabian StyleGuillen, Evelyn, Hector Terrones, Teresa Cano de Terrones, Mario J. Simirgiotis, Jan Hájek, José Cheel, Beatriz Sepulveda, and Carlos Areche. 2024. "Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity" Plants 13, no. 9: 1213. https://doi.org/10.3390/plants13091213
APA StyleGuillen, E., Terrones, H., de Terrones, T. C., Simirgiotis, M. J., Hájek, J., Cheel, J., Sepulveda, B., & Areche, C. (2024). Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity. Plants, 13(9), 1213. https://doi.org/10.3390/plants13091213