Can Environmental Stressors Determine the Condition of Ecological Plant Groups?
Abstract
:1. Introduction
2. Study Area; Material and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
- The differences among the soil Ec of the roots of plants in saline environments and the relationship with the extent of growth changes and biochemical parameters in plants suggest that salinity is the most important factor affecting the performance and distribution of ecological plant groups. The type of environment is important to explain the physiological responses of plants to the action of degradation.
- The intensity of lipoperoxidation, proline content, and growth of halophytes (Weeping Alkaligrass, Common Glasswort) and salt-glycophytes (Common Reed, Elder) are mainly influenced by edaphic pH, Ec, and organic matter. The physiological responses of these plants are highly species dependent.
- The higher salinity induced the growth of glycophytes and Weeping Alkaligrass, in contrast to Common Glasswort.
- The increase in proline osmo-protectant in the glycophytes and the facultative halophyte (Weeping Alkaligrass), in contrast to Common Glasswort, is determined by a higher soil Ec and pH.
- Lipid peroxidation can be determined by environmental disturbance, which influenced the higher MDA in shoots of halophytes (Common Glasswort) and the whole body of other species studied in less saline areas. The green parts of Elder, Common Reed, and Weeping Alkaligrass are more resistant to environmental disturbance than those of Common Glasswort.
- Organic matter determines halophyte and glycophyte growth and proline content, but high soil salinity and pH are associated with nutrient availability.
- Salinity and the lack of control of thick reeds, leading to increased competition, affect the distribution of halophytes in saline environments.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhtar, M.S. (Ed.) Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches, 2nd ed.; Springer Nature Singapore Pte. Ltd.: Singapore, 2019; 307p. [Google Scholar]
- Grzesiak, M.T.; Rzepka, A.; Hura, T.; Grzesiak, S. (Eds.) Plant Functioning Under Environmental Stress; Institute of Plant Physiology; Polish Academy of Sciences: Cracov, Poland, 2019; 83p. [Google Scholar]
- Silva, L.C.R.; Lambers, H. Soil-plant-atmosphere interactions: Structure, function, and predictive scaling for climate change mitigation. Plant Soil 2020, 461, 5–27. [Google Scholar] [CrossRef]
- Khan, M.A.; Ungar, I.A.; Showalter, A.M. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann. Bot. 2000, 85, 225–232. [Google Scholar] [CrossRef]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef]
- Amir, R.; Munir, F.; Kubra, G.; Nauman, I.; Noor, N. Role of Signaling Pathways in Improving Salt Stress in Plants. In Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches, 2nd ed.; Akhtar, M.S., Ed.; Springer Nature Singapore Pte. Ltd.: Singapore, 2019; pp. 183–211. [Google Scholar]
- Neema, P.; Jisha, K.C. Physiological and Biochemical Responses of Aerva lanata (L.) Juss. ex Schult. under Heavy Metal Stress. J. Stress Physiol. Biochem. 2020, 16, 67–73. [Google Scholar]
- Jaleel, C.A.; Gopi, R.; Manivannan, P.; Panneerselvam, R. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turk. J. Bot. 2007, 31, 245–251. [Google Scholar]
- Manivannan, P.; Jaleel, C.A.; Sankar, B.; Somasundaram, R.; Murali, P.V.; Sridharan, R.; Panneerselvam, R. Salt stress mitigation by calcium chloride in Vigna radiate (L.) Wilczek. Acta Biol. Cracov. Ser. Bot. 2007, 49, 105–109. [Google Scholar]
- Azzeme, A.M.; Abdullah, S.N.A. Adaptive Mechanisms of Plants Against Salt Stress and Salt Shock. In Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches, 2nd ed.; Akhtar, M.S., Ed.; Springer Nature Singapore Pte. Ltd.: Singapore, 2019; pp. 27–47. [Google Scholar]
- Schulze, E.D.; Beck, E.; Mçller-Hohenstein, K. Plant Ecology; Springer: Berlin/Heidelberg, Germany; Harpenden, UK, 2005; 692p. [Google Scholar]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Sing, P.S.; Patni, B. Effect of Salinity Stress on Growth Performance, Cellular Responses and Antioxidant Production Capacity of Medicinal Plants. J. Plant Sci. Res. 2020, 36, 281–287. [Google Scholar] [CrossRef]
- Jones, R.J.A.; Montanarella, L. Contributions to the International Workshop “Land Degradation”; Soil and Waste Unit Institute for Environment & Sustainability Joint Research Centre European Commission: Ispra, Italy, 2002. [Google Scholar]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.-K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Sairam, R.K.; Tyagi, A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 2004, 86, 407–421. [Google Scholar]
- Erdine, C.; Inal, B.; Erez, E.; Ekincial, A.; Sensoy, S. Comparative Adaptation Responses of Melon (Cucumis melo L.) Genotypes to Salinity Stress. J. Agr. Sci. Tech. 2021, 23, 403–418. [Google Scholar]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Gulmezoglu, N.; İzci, E. Ionic responses of bean (Phaseolus vulgaris L.) plants under salinity stress and humic acid applications. Not. Bot. Horti Agrobot. 2020, 48, 1317–1331. [Google Scholar] [CrossRef]
- Borsani, O.; Valpuesta, V.; Botella, M.A. Developing salt tolerant plants in a new century: A molecular biology approach. Plant Cell, Tissue Org. Culture 2003, 73, 101–115. [Google Scholar]
- Zhu, H.; Zhao, J.; Gong, L. The morphological and chemical properties of fne roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest. Sci. Rep. 2021, 11, 3839. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effect on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Skórzyńska-Polit, E. Lipid peroxidation in plant cells, its physiological role and changes under heavy metal stress. Acta Soc. Bot. Pol. 2007, 76, 49–54. [Google Scholar]
- Scandalios, J.G. Oxygen stress and superoxide dismutase. Plant Physiol. 1993, 101, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Liu, F.; Zhang, C.; Zhang, J.; Feng, H. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Sci. Rep. 2016, 6, 35393. [Google Scholar] [CrossRef] [PubMed]
- Sairam, R.K.; Srivastava, G.C.; Saxena, D.C. Increased antioxidant activity under elevated temperature: A mechanism of heat tolerance in wheat genotypes. Biol. Plant. 2000, 43, 245–251. [Google Scholar] [CrossRef]
- Elkahoui, S.; Hernandez, J.A.; Abdelly, C.; Ghrir, R.; Limam, F. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci. 2005, 168, 607–613. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Lv, X. Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecol. Evol. 2016, 6, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Alché, J. de Dios. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol. 2019, 23, 101136. [Google Scholar] [CrossRef] [PubMed]
- Gossett, D.R.; Millhollon, E.P.; Lucas, M.C. Antioxidant response to NaCl stress in salt-tolerant and salt sensitive cultivars of cotton. Crop Sci. 1994, 34, 706–714. [Google Scholar] [CrossRef]
- Dionisio-Sese, M.L.; Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Ramanjulu, S.; Ramachandra-Kini, K.; Prakash, H.S.; Shekar-Shetty, H.; Savitri, H.S.; Sudhakar, C. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci. 1999, 141, 1–9. [Google Scholar] [CrossRef]
- Loureiro, S.; Santos, C.; Pinto, G.; Costa, A.; Monteiro, M.; Nogueira, A.J.A.; Soares, A.M.V.M. Toxicity assessment of two soils from Jales Mine (Portugal) using plants: Growth and biochemical parameters. Arch. Environ. Contam. Toxicol. 2006, 50, 182–190. [Google Scholar] [CrossRef]
- Bidar, G.; Pruvot, C.; Garçon, G.; Verdin, A.; Shirali, P.; Douay, F. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ. Sci. Pollut. Res. 2009, 16, 42–53. [Google Scholar] [CrossRef]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Zhifang, G.; Loescher, W.H. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ. 2003, 26, 275–283. [Google Scholar] [CrossRef]
- McCue, K.F.; Hanson, A.D. Drought and salt tolerance: Towards understanding and application. Trends Biotech. 1990, 8, 358–362. [Google Scholar] [CrossRef]
- Abraham, E.; Rigo, G.; Szekely, G.; Nagy, R.; Koncz, C.; Szabados, L. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol. 2003, 51, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Vasilakoglou, I.; Dhima, K.; Giannakoula, A.; Dordas, C.; Skiada, V.; Papadopoulou, K. Carbon Assimilation, Isotope Discrimination, Proline and Lipid Peroxidation Contribution to Barley (Hordeum vulgare) Salinity Tolerance. Plants 2021, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochem 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Hong, Z.; Lakkineni, K.; Zhang, Z.; Verma, D.P.S. Removal of feedback inhibition of D1-pyrroline–5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 2000, 122, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.M.F. Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol. Biochem. 1998, 36, 767–772. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hua, X.-J.; May, M.; van Montagu, M. Environmental and developmental signals modulate proline homeostasis: Evidence for a negative transcriptional regulator. Proc. Nat. Acad. Sci. USA 1996, 93, 8787–8791. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Hellebust, J.A. The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiol. 1988, 88, 348–354. [Google Scholar] [CrossRef]
- Fougere, F.; Le Rudulier, D.; Streeter, J.G. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol. 1991, 96, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Nanjo, T.; Fujita, M.; Seki, M.; Kato, T.; Tabata, S.; Shinozaki, K. Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 2003, 44, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Martin-Tanguy, J.; Larher, F. Stress induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol. Plant. 1998, 104, 195–202. [Google Scholar] [CrossRef]
- Lutts, S.; Majerus, V.; Kinet, J.M. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 1999, 105, 450–458. [Google Scholar]
- Khan, M.A.; Duke, N.C. Halophytes—A resource for the future. Wetl. Ecol. Mgmt. 2001, 6, 455–456. [Google Scholar] [CrossRef]
- Piernik, A. Growth of the three meadow species along a salinity gradient in an inland saline habitat: Transplant experiment. Pol J. Ecol. 2006, 54, 117–126. [Google Scholar]
- Piernik, A. Inland halophilous vegetation as indicator of soil salinity. Basic Appl. Ecol. 2003, 4, 525–536. [Google Scholar]
- Cieśla, W.; Dąbkowska-Naskręt, H.; Siuda, W. Stan zasolenia gleb w okolicach Inowrocławskich Zakładów Sodowych w Mątwach. Roczn. Glebozn. 1981, 32, 103–113. [Google Scholar]
- Cieśla, W.; Dąbkowska-Naskręt, H. Właściwości zasolonych gleb w sąsiedztwie Janikowskich Zakładów Sodowych na Kujawach. Roczn. Glebozn. 1984, 35, 139–150. [Google Scholar]
- Czerwiński, Z.; Pracz, J.; Piątek, A. Wpływ odpadów z Janikowskich Zakładów Sodowych na tereny rolnicze. Roczn. Glebozn. 1984, 35, 87–105. [Google Scholar]
- Czerwiński, Z. Zasolenie wód i gleb na terenie Kujaw. Roczn. Glebozn. 1996, 47, 131–143. [Google Scholar]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Szafer, W.; Kulczyński, S.; Pawłowski, B. Rośliny Polskie; PWN-Polish Scientific Publishers: Warsaw, Poland, 1986. [Google Scholar]
- Windham, L.; Lathrop, R.G. Effects of Phragmites australis (Common Reed) Invasion on Aboveground Biomass and Soil Properties in Brackish Tidal Marsh of the Mullica River, New Jersey. Estuaries 1999, 22, 927–935. [Google Scholar] [CrossRef]
- Ederli, L.; Reale, L.; Ferranti, F.; Pasqualini, S. Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol. Plant. 2004, 121, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Próchnicki, P. The expansion of common reed (Phragmites australis (Cav.) Trin. ex. Steud.) in the anastomosing river valley after cessation of agriculture use (Narew River Valley, NE Poland). Pol. J. Ecol. 2005, 53, 353–364. [Google Scholar]
- Dunbabin, J.S.; Bowmer, K.H. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci. Total Environ. 1992, 111, 151–168. [Google Scholar] [CrossRef]
- Aksoy, A.; Duman, F.; Sezen, G. Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis). J. Freshw. Ecol. 2005, 20, 783–785. [Google Scholar] [CrossRef]
- Duman, F.; Cicek, M.; Sezen, G. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 2007, 16, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Ghassemzadeh, F.; Yousefzadeh, H.; Arbab-Zavar, M.H. Removing arsenic and antimony by Phragmites australis: Rhizofiltration technology. J. Appl. Sci. 2008, 8, 1668–1675. [Google Scholar] [CrossRef]
- Wilkoń-Michalska, J. The halophytes from Kujawy. Stud. Soc. Sci. Torun. D Bot. 1963, 7, 3–122. [Google Scholar]
- Balnokin, Y.V.; Myasoedov, N.A.; Shamsutdinov, Z.S.; Shamsutdinov, N.Z. Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae. Russ. J. Plant Physiol. 2005, 52, 779–787. [Google Scholar] [CrossRef]
- Ungar, I.A. The relationship between soil water potential and plant water potential in two inland halophytes under field conditions. Bot. Gaz. 1977, 138, 498–501. [Google Scholar] [CrossRef]
- Egan, T.P.; Ungar, I.A. Mortality of the Salt Marsh Species Salicornia europaea and Atriplex prostrata (Chenopodiaceae) in Response to Inundation. Ohio J. Sci. 2000, 100, 24–27. [Google Scholar]
- Wilkoń-Michalska, J. Plant succession in the halophyte reserve in Ciechocinek between 1954 and 1965. Ochr. Przyr. 1970, 35, 25–51. [Google Scholar]
- Górny, M.; Grüm, L. (Eds.) Methods in Soil Zoology; Elsevier: Amsterdam, The Netherlands; London, NY, USA; Tokyo, Japan; PWN-Polish Scientific Publishers: Warsaw, Poland, 1993; 459p. [Google Scholar]
- Demirezen, D.; Aksoy, A. Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol. Indic. 2006, 6, 388–393. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Sajwan, K.S.; Naidu, R. Trace Elements in the Environment. Biogeochemistry, Biotechnology, and Bioremediation; Taylor & Francis Group, LLC, CRC Press: Boca Raton, FL, USA; London, UK, 2006; 706p. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; 520p. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments, 1st ed.; CRC Press; Taylor & Francis LLC: Boca Raton, FL, USA, 2019; 469p. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 2005–2007. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, Y. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analyt. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Szczepańska, W. Metody Instrumentalne w Analizie Chemicznej; WNT: Warsaw, Poland, 1996. [Google Scholar]
- Więckowska, J. Termiczna Analiza Różnicowa i Termograwimetria; Politechnika Wrocławska: Warsaw, Poland, 1997. [Google Scholar]
- Otterson, D.W. Tech Talk: (10) Electrolytic Conductivity Measurement Basics. Meas. Control 2015, 48, 239–241. [Google Scholar] [CrossRef]
- Slovenski Standard SIST ISO 11265:1996; Soil Quality—Determination of the Specific Electrical Conductivity. ICS: 13.080.20 Fizikalne Lastnosti tal Physical Properties of Soils. 2003-01. iTeh Standard Preview (Standards.iteh.ai). Slovenski Inštitut za Standardizacijo. Razmnoževanje Celote ali delov tega Standarda ni Dovoljeno. Int. Org. for Standardization, Case Postale 56. CH-l 211 Geneve 20, Switzerland. Available online: https://standards.iteh.ai/catalog/standards/sist/4131c4d8-9227-4219-b9c6-1fe89c83a45d/sist-iso-11265-1996 (accessed on 12 March 2024).
- Bieganowski, A.; Cieśla, J. Electrochemical Measurements in Soils. In Encyclopedia of Agrophysics; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-90-481-3584-4. [Google Scholar] [CrossRef]
- International Standard ISO 10390. 2021; Soil, Treated Biowaste and Sludge—Determination of pH. ISO Copyright Office CP 401, Ch. de Blandonnet 8, CH-1214 Vernier, Geneva, Switzerland. iTeh Standard Preview (Standards.iteh.ai) ISO 10390:2021. Available online: https://standards.iteh.ai/catalog/standards/sist/f2ca1637-a0cb-47a8-a868-cd68a9defd91/iso-10390-2021 (accessed on 12 March 2024).
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice-Hall, Inc.: Leicester, UK, 1998; 746p. [Google Scholar]
- Hill, T.; Lewicki, P. Statistics: Methods and Applications: A Comprehensive Reference for Science, Industry and Data Mining, 1st ed.; StatSoft Inc.: Tulsa, OK, USA, 2006; 832p. [Google Scholar]
- Stanisz, A. The Accessible Course of the Statistics with the use Statistica.pl on Examples from the Medicine; Statsoft: Cracov, Poland, 2006; 532p. [Google Scholar]
- Çakırlar, H.; Çiçek, N.; Fedina, I.; Georgieva, K.; Doğru, A.; Velitchkova, M. NaCl induced cross-acclimation to UV-B radiation in four Barley (Hordeum vulgare L.) cultivars. Acta Physiol. Plant. 2008, 30, 561–567. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; 550p. [Google Scholar]
- Imlay, J.A. Pathways of oxidative damage. Ann. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Oxygen processing in photosynthesis: Regulation and signalling. New Phytol. 2000, 146, 359–388. [Google Scholar] [CrossRef]
- Eyidogan, F.; Öz, M.T. Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol. Plant. 2007, 29, 485–493. [Google Scholar] [CrossRef]
- Lin, C.C.; Kao, C.H. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Reg. 2000, 30, 151–155. [Google Scholar] [CrossRef]
- Sudhakar, C.; Lakshmi, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Aghaleh, M.; Niknam, V.; Ebrahimzadeh, H.; Razavi, K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol. Plant. 2009, 53, 243–248. [Google Scholar] [CrossRef]
- Kato, M.; Shimizu, S. Chlorophyll metabolism in higher plants, V.I. Involvement of peroxidase in chlorophyll degeneration. Plant Cell Physiol. 1985, 26, 1291–1301. [Google Scholar]
- Rudrappa, T.; Bonsall, J.; Gallagher, J.L.; Seliskar, D.M.; Bais, H.P. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 2007, 33, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- Meyerson, L.A.; Saltonstall, K.; Windham, L.; Kiviat, E.; Findlay, S. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wet. Ecol. Mgmt. 2000, 8, 89–103. [Google Scholar] [CrossRef]
- Acevedo-Rodríguez, P.; Strong, M.T. Catalogue of seed plants of the West Indies. Smithson. Contrib. Bot. 2012, 98, 1–1192. [Google Scholar] [CrossRef]
- Woźny, A. Komórka w Warunkach Stresu Środowiskowego; UAM: Poznań, Poland, 2004; Volume 2, 172p. [Google Scholar]
- Vives-Peris, V.; López-Climent, M.F.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Root Involvement in Plant Responses to Adverse Environmental Conditions. Agronomy 2020, 10, 942. [Google Scholar] [CrossRef]
- Shi, D.; Sheng, Y. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ. Exp. Bot. 2005, 54, 8–21. [Google Scholar] [CrossRef]
- Zhu, X.; Jing, Y.; Chen, G.; Wang, S.; Zhang, C. Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Reg. 2003, 41, 165–172. [Google Scholar] [CrossRef]
- Flowers, T.J.; Troke, P.F.; Yeo, A.R. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 1977, 28, 89–121. [Google Scholar] [CrossRef]
- Kozłowski, S.; Golinski, P.; Zielewicz, W.; Lembicz, M.; Rogowski, A. Changes in the chemical composition of spreading meadow-grass (Puccinellia distans L. Parl.) against the influence of salinity as anthropogenical factor. Ann. UMCS 2004, 59, 1965–1976. [Google Scholar]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Ozden, M.; Demirel, U.; Kahraman, A. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci. Hortic. 2009, 119, 163–168. [Google Scholar] [CrossRef]
- Lacerda, C.F.; Cambraia, J.; Oliva, M.A.; Ruiz, H.A. 2003 Osmotic adjustment in roots leaves of two sorghum genotypes under NaCl stress Brazilian. J. Plant Physiol. 2003, 15, 113–118. [Google Scholar] [CrossRef]
- Merino, J.H.; Dayna Huval, Ć.; Andy, Ć.; Nyman, J. Implication of nutrient and salinity interaction on the productivity of Spartina patens. Wet. Ecol. Mgmt. 2010, 18, 111–117. [Google Scholar] [CrossRef]
- Jain, M.; Mathur, G.; Koul, S.; Sarin, N.B. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep. 2001, 20, 463–468. [Google Scholar] [CrossRef]
- Silvestri, S.; Defina, A.; Marani, M. Tidal regime, salinity and salt marsh plant zonation. Estauarine Coast. Shelf Sci. 2005, 62, 119–130. [Google Scholar] [CrossRef]
Environment | pH (s) | OM (s) | Ec (s) | pH (d) | OM (d) | Ec (d) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | |
Elder Sambucus nigra | ||||||||||||||||||
Control C | 8.01 WE | ± | 0.21 | 14.65 WE,AE,SM | ± | 3.09 | 1.31 WE,AE,SM | ± | 0.10 | 8.27 SM | ± | 0.15 | 9.19 WE,AE,SM | ± | 1.76 | 1.2 SM | ± | 0.12 |
Wetland W | 7.81 C,AE,SM | ± | 0.07 | 6.11 C,AE | ± | 3.22 | 1.58 C,AE,SM | ± | 0.32 | 8.35 SM | ± | 0.22 | 5.26 C | ± | 3.15 | 1.14 AE.SM | ± | 0.55 |
Anthropogenic AE | 8.02 WE | ± | 0.18 | 11.73 C,WE,SM | ± | 5.02 | 2.49 C,WE | ± | 0.53 | 8.57 SM | ± | 0.39 | 4.14 C | ± | 0.79 | 1.35 WE | ± | 0.21 |
Sodium manufactures SM | 8.37 WE | ± | 0.45 | 5.99 C,AE | ± | 1.57 | 2.14 C,WE | ± | 0.32 | 7.41 C,WE,AE | ± | 0.74 | 4.46 C | ± | 1.88 | 1.71 C.WE | ± | 0.35 |
Common Reed Phragmites australis | ||||||||||||||||||
Control C | 7.8 WE,SM | ± | 0.23 | 15.23 WE,AE,SM | ± | 4.70 | 2.44 AE,SM | ± | 0.85 | 8.12 WE,AE,SM | ± | 0.16 | 9.27 WE,AE | ± | 2.29 | 1.59 AE,SM | ± | 0.55 |
Wetland W | 8.06 C | ± | 0.26 | 4.78 C | ± | 2.25 | 1.61 AE,SM | ± | 0.30 | 8.46 C | ± | 0.19 | 2.55 C,AE,SM | ± | 2.08 | 1.29 AE,SM | ± | 0.52 |
Anthropogenic AE | 8.00 | ± | 0.37 | 5.88 C,SM | ± | 2.29 | 30.1 C,WE,SM | ± | 3.53 | 8.47 C | ± | 0.48 | 4.43 C,WE,SM | ± | 1.63 | 26 C,WE,SM | ± | 4.55 |
Sodium manufactures SM | 9.05 C | ± | 1.62 | 4.05 C,AE | ± | 1.36 | 38.03 C,WE,AE | ± | 6.57 | 9.2 C | ± | 1.52 | 10.06 WE,AE | ± | 3.07 | 37.27 C,WE,AE | ± | 1.05 |
Weeping Alkaligrass Puccinellia distans | ||||||||||||||||||
Anthropogenic AE | 9.55 SM | ± | 0.48 | 4.25 SM | ± | 1.19 | 4.48 SM | ± | 0.01 | 9.70 | ± | 1.14 | 3.25 SM | ± | 0.03 | 5.83 SM | ± | 0.04 |
Sodium manufactures SM | 9.44 AE | ± | 0.04 | 5.10 AE | ± | 1.38 | 17.45 AE | ± | 1.51 | 10.13 | ± | 0.24 | 7.91 AE | ± | 1.58 | 18.93 AE | ± | 1.16 |
Common Glasswort Salicornia europaea | ||||||||||||||||||
Anthropogenic AE | 7.6 SM | ± | 0.05 | 3.02 SM | ± | 0.20 | 32.73 SM | ± | 1.31 | 7.69 SM | ± | 0.05 | 3.37 SM | ± | 0.05 | 30.82 SM | ± | 0.74 |
Sodium manufactures SM | 8.06 AE | ± | 1.35 | 9.60 AE | ± | 2.35 | 43.29 AE | ± | 6.61 | 8.45 AE | ± | 1.26 | 6.85 AE | ± | 2.45 | 40.72 AE | ± | 1.43 |
Environment | Element | Mean | ± | SD | Relations | Mean | ± | SD | Relations |
---|---|---|---|---|---|---|---|---|---|
glycophytes | |||||||||
ElderSambucus nigra | Common Reed Phragmites australis | ||||||||
green parts | |||||||||
Control C | MDA | 17.24 | ± | 2.59 | 10.98 | ± | 3.40 | Ec (d) 0.28 * | |
Wetland W | 15.83 | ± | 1.93 | 11.66 | ± | 4.45 | L −0.4 *** | ||
Anthropogenic AE | 16.50 | ± | 2.13 | 15.23 | ± | 5.29 | |||
Sodium manufactures SM | 16.16 | ± | 3.31 | 14.54 | ± | 4.32 | |||
Control C | Pro | 1.47 AE | ± | 1.12 | pH (s) 0.55 *** | 2.42 AE,SM | ± | 1.19 | Ec (s) 0.48 *** |
Wetland W | 1.22 AE.SM | ± | 0.68 | Ec (s) 0.66 *** | 4.60 | ± | 3.00 | pH (d) 0.39 *** | |
Anthropogenic AE | 5.22 C,WE | ± | 2.31 | Ec (d) 0.54 *** | 8.08 C | ± | 2.93 | Ec (d) 0.48 *** | |
Sodium manufactures SM | 3.13 WE | ± | 1.84 | L −0.25 * | 6.93 C | ± | 2.72 | ||
Control C | L | 31.64 AE,SM | ± | 4.30 | OM (s) 0.25 * | 214.7 AE,SM | ± | 70.22 | MDA −0.4 *** |
Wetland W | 25.36 SM | ± | 6.87 | Ec (s) −0.51 *** | 169.71 SM | ± | 47.43 | Ec (s) −0.4 *** | |
Anthropogenic AE | 21.12 C | ± | 4.61 | OM (d) 0.41 *** | 139.92 C | ± | 34.32 | Ec (d) −0.37 *** | |
Sodium manufactures SM | 18.44 WE,C | ± | 5.60 | Pro −0.25 * | 115.24 WE.C | ± | 41.13 | ||
roots | |||||||||
Control C | MDA | 5.44 | ± | 1.89 | 2.76 | ± | 0.92 | Ec (s) 0.23 * | |
Wetland W | 6.74 | ± | 2.52 | 3.29 | ± | 2.11 | Ec (d) 0.27 * | ||
Anthropogenic AE | 5.97 | ± | 1.09 | 5.64 | ± | 4.10 | |||
Sodium manufactures SM | 5.75 | ± | 1.58 | 4.95 | ± | 3.73 | |||
Control C | Pro | 1.49 AE,SM | ± | 1.01 | pH (s) 0.55 *** | 2.06 | ± | 1.82 | OM (s) −0.29 ** |
Wetland W | 1.83 AE,SM | ± | 1.15 | Ec (s) 0.54 *** | 1.73 SM | ± | 1.13 | Ec (s) 0.42 *** | |
Anthropogenic AE | 3.83 WE,C | ± | 2.11 | pH (d) −0.37 ** | 3.80 | ± | 3.66 | pH (d) 0.29 ** | |
Sodium manufactures SM | 6.03 WE,C | ± | 2.37 | Ec (d) 0.37 ** | 4.63 WE | ± | 3.09 | Ec (d) 0.42 *** | |
halophytes | |||||||||
Weeping Alkaligrass Puccinellia distans | Common Glasswort Salicornia europaea | ||||||||
green parts | |||||||||
Anthropogenic AE | MDA | 20.28 | ± | 6.94 | L −0.5 * | 4.02 SM | ± | 1.02 | OM (s) −0.53 * |
Sodium manufactures SM | 25.93 | ± | 2.68 | 2.78 AE | ± | 0.81 | pH (d) −0.45 * | ||
OM (d) −0.57 * | |||||||||
Ec (d) −0.53 ** | |||||||||
Anthropogenic AE | Pro | 9.28 SM | ± | 2.32 | Ec (s) −0.43 * | 0.94 | ± | 0.75 | pH (d) −0.58 ** |
Sodium manufactures SM | 7.17 AE | ± | 1.55 | 0.48 | ± | 0.13 | |||
Anthropogenic AE | L | 29.85 SM | ± | 8.09 | MDA −0.5 * | 18.25 | ± | 2.80 | |
Sodium manufactures SM | 22.3 AM | ± | 3.47 | Ec (s) −0.51 * | 15.38 | ± | 3.34 | ||
roots | |||||||||
Anthropogenic AE | MDA | 7.68 | ± | 4.53 | 5.14 | ± | 0.85 | ||
Sodium manufactures SM | 9.04 | ± | 3.84 | 6.04 | ± | 1.57 | |||
Anthropogenic AE | Pro | 0.72 SM | ± | 0.29 | Ec (s) 0.75 *** | 0.62 | ± | 0.70 | OM (d) 0.46 * |
Sodium manufactures SM | 1.66 AE | ± | 0.81 | OM (s) 0.65 *** | 1.07 | ± | 1.35 | ||
Ec (d) 0.65 *** |
Environment | Green Parts | Roots | ||
---|---|---|---|---|
MDA | Pro | MDA | Pro | |
Control | Pa:Sn ** | Pa:Sn * | Pa:Sn ** | |
Wetland | Pa:Sn *** | Pa:Sn *** | Pa:Sn *** | |
Anthropogenic | Sn, Pa, Pd:Se *** | Sn:Pd, Se* | Sn:Pd, Se* ** | |
Pa, Pd:Se *** | Pa:Pd **, Se *** | |||
Sodium manufactures | Sn:Pd, Se ** | Sn:Pa **, Pd * | Pa:Pd ** | Sn:Pd, Se *** |
Pa:Pd ***, Se * | Pa, Pd:Se *** | Pa:Pd *, Se ** | ||
Pd:Se *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koim-Puchowska, B.; Kamiński, P.; Puchowski, P.; Ossowska, A.; Wieloch, M.; Labudda, M.; Tkaczenko, H.; Barczak, T.; Woźniak, A.; Kurhaluk, N. Can Environmental Stressors Determine the Condition of Ecological Plant Groups? Plants 2024, 13, 1550. https://doi.org/10.3390/plants13111550
Koim-Puchowska B, Kamiński P, Puchowski P, Ossowska A, Wieloch M, Labudda M, Tkaczenko H, Barczak T, Woźniak A, Kurhaluk N. Can Environmental Stressors Determine the Condition of Ecological Plant Groups? Plants. 2024; 13(11):1550. https://doi.org/10.3390/plants13111550
Chicago/Turabian StyleKoim-Puchowska, Beata, Piotr Kamiński, Piotr Puchowski, Anna Ossowska, Monika Wieloch, Mateusz Labudda, Halina Tkaczenko, Tadeusz Barczak, Alina Woźniak, and Natalia Kurhaluk. 2024. "Can Environmental Stressors Determine the Condition of Ecological Plant Groups?" Plants 13, no. 11: 1550. https://doi.org/10.3390/plants13111550
APA StyleKoim-Puchowska, B., Kamiński, P., Puchowski, P., Ossowska, A., Wieloch, M., Labudda, M., Tkaczenko, H., Barczak, T., Woźniak, A., & Kurhaluk, N. (2024). Can Environmental Stressors Determine the Condition of Ecological Plant Groups? Plants, 13(11), 1550. https://doi.org/10.3390/plants13111550