Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Conditions
2.2. Measurement of Growth Traits
2.3. Determination of Ni Concentration in Different Parts
2.4. Determination of the Chlorophyll, Carotenoid Content, and Gas Exchange Parameters
2.5. Measurement of Physiological Indicators
2.6. RNA Extraction and Gene Expression Assay through the Quantitative Real-Time PCR Method
2.7. Real-Time Fluorescence Quantitative PCR (RT-qPCR)
2.8. Statistical Analysis
3. Result and Discussion
3.1. MT Alleviated the Hindering Effect of Ni Stress on the Growth and Development of R. typhina
3.2. MT Enhanced the Ni Concentration of R. typhina and Reduced the Transport Factor
3.3. MT Improved Photosynthetic Pigment Content and Gas Exchange Parameters of R. typhina Seedling Leaves under Ni Stress
3.4. Exogenous MT Alleviated the Physiological Damage of R. typhina under Ni Stress
3.5. The Potential Molecular Mechanism of MT Regulating the Growth of R. typhina under Ni Stress
3.5.1. Transcriptome Analysis of MT Regulation of Ni Stress
3.5.2. KEGG and GO Enrichment Analyses
3.5.3. MT Regulated a Variety of Amino Acid Metabolic Pathways
3.5.4. MT Regulated Starch and Sucrose Metabolism
3.5.5. MT Regulated Plant Hormone Signal Transduction
3.5.6. Validation of DEGs by qRT-PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Environmental Protection of the People’s Republic of China. Bulletin of National Soil Pollution Survey. China Environ. Prot. Ind. 2014, 6, 6–7. (In Chinese) [Google Scholar]
- Yan, K.; Wang, H.; Lan, Z.; Zhou, J.; Fu, H.; Wu, L.; Xu, J. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. J. Clean. Prod. 2022, 373, 133780. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef]
- Mustafa, A.; Zulfiqar, U.; Mumtaz, M.Z.; Radziemska, M.; Haider, F.U.; Holatko, J.; Hammershmiedt, T.; Naveed, M.; Ali, H.; Kintl, A.; et al. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere 2023, 328, 138574. [Google Scholar] [CrossRef]
- Altaf, M.A.; Hao, Y.; He, C.; Mumtaz, M.A.; Shu, H.; Fu, H.; Wang, Z. Physiological and Biochemical Responses of Pepper (Capsicum annuum L.) Seedlings to Nickel Toxicity. Front. Plant Sci. 2022, 13, 950392. [Google Scholar] [CrossRef]
- Moy, A.; Czajka, K.; Michael, P.; Nkongolo, K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine (Pinus banksiana). Plants 2023, 12, 2889. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Yanliang, L.; Hussain, S.; Hussain, B.; Khane, W.-U.-D.; Riaz, L.; Ashraf, M.N.; Khaliq, M.A.; Zhenjie, D.; Hefa, C. Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indic. 2023, 146, 109844. [Google Scholar] [CrossRef]
- Parwez, R.; Aftab, T.; Khan, M.M.A.; Naeem, M. Exogenous abscisic acid fine-tunes heavy metal accumulation and plant’s antioxidant defence mechanism to optimize crop performance and secondary metabolite production in Trigonella foenum-graecum L. under nickel stress. Plant Sci. 2023, 332, 111703. [Google Scholar] [CrossRef]
- Bhat, J.A.; Basit, F.; Alyemeni, M.N.; Mansoor, S.; Kaya, C.; Ahmad, P. Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. Plant Physiol. Biochem. 2023, 198, 107678. [Google Scholar] [CrossRef]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Xu, J.; Guo, Y.; Rensing, C.; Chang, J.; Zhang, T.; Zhang, L.; Xing, S.; Ni, W.; Yang, W. Jasmonic acid’s impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. Sci. Total Environ. 2024, 914, 169939. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Li, Y.; Chen, W.; Yan, J.; Wu, J.; Lou, H. Melatonin alleviates aluminum toxicity by regulating aluminum-responsive and nonresponsive pathways in hickory. J. Hazard. Mater. 2023, 460, 132274. [Google Scholar] [CrossRef] [PubMed]
- Parwez, R.; Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M. Melatonin supplementation combats nickel-induced phytotoxicity in Trigonella foenum-graecum L. plants through metal accumulation reduction, upregulation of NO generation, antioxidant defence machinery and secondary metabolites. Plant Physiol. Biochem. 2023, 202, 107981. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Jie, Z.; Xiangjun, K.; Ullah, N.; Short, A.W.; Diao, Y.; Zhou, R.; Xiong, Y.-C. Pre treatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways. J. Hazard. Mater. 2023, 445, 130530. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Arnao, M.B. Phytomelatonin: An emerging new hormone in plants. J. Exp. Bot. 2022, 73, 5773–5778. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Phytoremediation: Where do we go from here? Biocatal. Agric. Biotechnol. 2023, 50, 102721. [Google Scholar] [CrossRef]
- Naveed, S.; Oladoye, P.O.; Alli, Y.A. Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustain. Chem. Environ. 2023, 2, 100018. [Google Scholar] [CrossRef]
- Mankė, J.; Praspaliauskas, M.; Pedišius, N.; Sujetovienė, G. Evaluation of phytoremediation efficiency of shooting range soil using the bioaccumulation potential and sensitivity of different plant species. Ecol. Eng. 2024, 198, 107134. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Zhang, J.; Gong, X.; Zhang, Z.; Sun, J.; Chen, X.; Wang, Y. Exogenous Melatonin Improves Physiological Characteristics and Promotes Growth of Strawberry Seedlings under Cadmium Stress. Hortic. Plant J. 2021, 7, 13–22. [Google Scholar] [CrossRef]
- Karumannil, S.; Khan, T.A.; Kappachery, S.; Gururani, M.A. Impact of Exogenous Melatonin Application on Photosynthetic Machinery under Abiotic Stress Conditions. Plants 2023, 12, 2948. [Google Scholar] [CrossRef]
- Jahan, M.S.; Guo, S.; Baloch, A.R.; Sun, J.; Shu, S.; Wang, Y.; Ahammed, G.J.; Kabir, K.; Roy, R. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ. Saf. 2020, 197, 110593. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fang, R.; Luo, L.; Yang, W.; Huang, Q.; Yang, C.; Hui, W.; Gong, W.; Wang, J. Potential roles of melatonin in mitigating the heavy metals toxicity in horticultural plants. Sci. Hortic. 2023, 321, 112269. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, H.; Wang, S.; Yu, D.; Wei, Y. Physiological and Transcriptomic Analysis Reveals That Melatonin Alleviates Aluminum Toxicity in Alfalfa (Medicago sativa L.). Int. J. Mol. Sci. 2023, 24, 17221. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-G.; Kang, K.-K. Functional Analysis of Starch Metabolism in Plants. Plants 2020, 9, 1152. [Google Scholar] [CrossRef]
- Müller, M.; Munné-Bosch, S. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol. 2021, 185, 1500–1522. [Google Scholar] [CrossRef]
- Samanta, S.; Roychoudhury, A. Crosstalk of melatonin with major phytohormones and growth regulators in mediating abiotic stress tolerance in plants. S. Afr. J. Bot. 2023, 163, 201–216. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J.; Cano, A.; Reiter, R.J. Melatonin and Carbohydrate Metabolism in Plant Cells. Plants 2021, 10, 1917. [Google Scholar] [CrossRef]
- Khan, M.S.S.; Ahmed, S.; Ikram, A.u.; Hannan, F.; Yasin, M.U.; Wang, J.; Zhao, B.; Islam, F.; Chen, J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol. 2023, 64, 102805. [Google Scholar] [CrossRef]
- Xing, Q.; Hasan, M.K.; Li, Z.; Yang, T.; Jin, W.; Qi, Z.; Yang, P.; Wang, G.; Ahammed, G.J.; Zhou, J. Melatonin-induced plant adaptation to cadmium stress involves enhanced phytochelatin synthesis and nutrient homeostasis in Solanum lycopersicum L. J. Hazard. Mater. 2023, 456, 131670. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.; Khalofah, A.; Rehman, A.u.; Altaf, M.A. Alleviating effects of exogenous melatonin on nickel toxicity in two pepper genotypes. Sci. Hortic. 2024, 325, 112635. [Google Scholar] [CrossRef]
- Qu, T.; Yang, C.; Ma, W.; Wang, Y. Effects of Pb2+ and Cd2+ on seed germination and seedling growth of Rhus typhina. J. Cent. South Univ. For. Technol. 2020, 40, 30–36. [Google Scholar] [CrossRef]
- Yang, C.; Guo, W.; He, W.; Wang, M.; Qu, T. Effects of Cd2+ on the physiological response and accumulation characteristics of Rhus typhina. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2020, 49, 334–340. [Google Scholar] [CrossRef]
- Du, X.; Peng, Y.; Zhang, X.; Zhang, X.; Li, M.; Luo, H.; Chen, G.; Qu, T. Effects of heavy metals copper and zinc on growth and physiological indexes of Rhus typhina seedlings. Southwest China J. Agric. Sci. 2022, 35, 1407–1414. [Google Scholar] [CrossRef]
- Altaf, M.A.; Hao, Y.; Shu, H.; Mumtaz, M.A.; Cheng, S.; Alyemeni, M.N.; Ahmad, P.; Wang, Z. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. J. Hazard. Mater. 2023, 454, 131468. [Google Scholar] [CrossRef] [PubMed]
- Raja, V.; Qadir, S.U.; Kumar, N.; Alsahli, A.A.; Rinklebe, J.; Ahmad, P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiol. Biochem. 2023, 201, 107872. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.; Cheng, W.; Wang, Z.; Yao, X.; Yang, S. Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. Ecotoxicol. Environ. Saf. 2023, 252, 114619. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, M.; Liu, Y.; Fahad, S.; Qayyum, A.; Jadoon, S.A.; Chen, Y.; Zhu, G. Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. Front. Plant Sci. 2022, 13, 1054924. [Google Scholar] [CrossRef]
- Kumar, J. Nickel availability, deficiency and toxicity in soils and plants: A review. Int. J. Appl. Res. 2023, 9, 265–272. [Google Scholar] [CrossRef]
- Menhas, S.; Yang, X.; Hayat, K.; Bundschuh, J.; Chen, X.; Hui, N.; Zhang, D.; Chu, S.; Zhou, Y.; Ali, E.F.; et al. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. J. Hazard. Mater. 2023, 457, 131862. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.; Jiao, Y.; Chen, C.; Shireen, F.; Zheng, Z.; Imtiaz, M.; Bie, Z.; Huang, Y. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J. Plant Physiol. 2018, 220, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhuo, R.; Lu, Z.; Li, S.; Chen, J.; Wang, Y.; Li, J.; Han, X. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana. J. Hazard. Mater. 2023, 441, 129909. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, U.; Khan, S.M.; Khalid, N.; Ahmad, Z.; Jehangir, S.; Fatima Rizvi, Z.; Lho, L.H.; Han, H.; Raposo, A. Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 2023, 14, 1154571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Diao, F.; Hao, B.; Xu, L.; Jia, B.; Hou, Y.; Ding, S.; Guo, W. Multiomics reveals Claroideoglomus etunicatum regulates plant hormone signal transduction, photosynthesis and La compartmentalization in maize to promote growth under La stress. Ecotoxicol. Environ. Saf. 2023, 262, 115128. [Google Scholar] [CrossRef] [PubMed]
- Dolev, N.; Katz, Z.; Ludmer, Z.; Ullmann, A.; Brauner, N.; Goikhman, R. Natural amino acids as potential chelators for soil remediation. Environ. Res. 2020, 183, 109140. [Google Scholar] [CrossRef] [PubMed]
- Moeen-ud-din, M.; Yang, S.; Wang, J. Auxin homeostasis in plant responses to heavy metal stress. Plant Physiol. Biochem. 2023, 205, 108210. [Google Scholar] [CrossRef]
- Verma, A.; Ansari, M.W.; Singh, H.; Kumar, N.; Anwar, M.S.; Mudila, H.; Tuteja, N. Proteomics for Brassinosteroid signalling: Understanding Brassinosteroids mediated stress responses through advanced proteomics. Plant Gene 2021, 26, 100282. [Google Scholar] [CrossRef]
- Altaf, M.A.; Sharma, N.; Singh, J.; Samota, M.K.; Sankhyan, P.; Singh, B.; Kumar, A.; Naz, S.; Lal, M.K.; Tiwari, R.K.; et al. Mechanistic insights on melatonin-mediated plant growth regulation and hormonal cross-talk process in solanaceous vegetables. Sci. Hortic. 2023, 308, 111570. [Google Scholar] [CrossRef]
- Sharma, P.; Thakur, N.; Mann, N.A.; Umar, A. Melatonin as plant growth regulator in sustainable agriculture. Sci. Hortic. 2024, 323, 112421. [Google Scholar] [CrossRef]
- Kaya, C.; Ugurlar, F.; Ashraf, M.; Ahmad, P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiol. Biochem. 2023, 196, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Ignatenko, A.A.; Nilova, I.A.; Kholoptseva, E.S.; Titov, A.F.; Kaznina, N.M. Effect of Seed Treatment with Salicylic Acid on the Carbonic Anhydrase Activity, Photosynthesis Rate, Stomatal Conductance, and Pigments Content in Wheat Leaves at Zinc Excess. Dokl. Biol. Sci. Proc. Acad. Sci. USSR Biol. Sci. Sect. 2023, 513, 400–403. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, T.; Ma, Y.; Yun, M.; Zhao, C. Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin. Plants 2024, 13, 1287. https://doi.org/10.3390/plants13101287
Qu T, Ma Y, Yun M, Zhao C. Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin. Plants. 2024; 13(10):1287. https://doi.org/10.3390/plants13101287
Chicago/Turabian StyleQu, Tongbao, Yinxi Ma, Minqiang Yun, and Chunli Zhao. 2024. "Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin" Plants 13, no. 10: 1287. https://doi.org/10.3390/plants13101287
APA StyleQu, T., Ma, Y., Yun, M., & Zhao, C. (2024). Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin. Plants, 13(10), 1287. https://doi.org/10.3390/plants13101287