Pollination Ecology, Breeding System, and Conservation of Butia lallemantii Deble & Marchiori (Arecaceae): A Useful Dwarf Palm Tree from the Pampa
Abstract
:1. Introduction
2. Results
2.1. Inflorescence Morphology, Anthesis, and Flower Duration
2.2. Vector-Dependent Pollination
2.3. Self-Compatible and Geitonogamous
2.4. Floral Resources and Pollinators
2.5. Bees, the Main Pollinators
3. Discussion
3.1. Anthesis and Floral Duration
3.2. Insect-Dependent Pollination
3.3. Self-Pollination
3.4. Pollen and Nectar; Generalized Floral Rewards
3.5. Native Pollinators Potentially at Risk
3.6. Conservation of the Dwarf Butiá
4. Materials and Methods
4.1. Study Area
4.2. Studied Species
4.3. Inflorescence, Anthesis, and Flower Duration
4.4. Test for Pollinator-Dependency
4.5. Breeding System Experiments
4.6. Floral Rewards and Floral Visitors
Pollinators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soriano, A. Rio de La Plata Grasslands. In Natural Grasslands: Introduction and Western Hemisphere. Ecosystems of the World 8A; Coupland, R., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 367–407. [Google Scholar]
- Andrade, B.; Bonilha, C.; Overbeck, G.; Vélez-Martin, E.; Rolim, R.; Bordignon, S.; Schneider, A.; Vogel, C.; Lucas, D.; Garcia, É.; et al. Classification of South Brazilian Grasslands: Implications for Conservation. Appl. Veg. Sci. 2019, 22, 168–184. [Google Scholar] [CrossRef]
- Overbeck, G.; Muller, S.; Fidelis, A.; Pfanderhauer, J.; Pillar, V.; Blanco, C.; Boldrini, I.; Both, R.; Forneck, E. Brazil’s Neglected Biome: The South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- Oyarzabal, M.; Andrade, B.; Pillar, V.; Paruelo, J. Temperate Subhumid Grasslands of Southern South America. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 577–593. [Google Scholar]
- Jenkins, C.; Alves, M.; Uezu, A.; Vale, M. Patterns of Vertebrate Diversity and Protection in Brazil. PLoS ONE 2015, 10, e0145064. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, G.; Vélez-Martin, E.; Scarano, F.; Lewinsohn, T.; Fonseca, C.; Meyer, S.; Müller, S.; Ceotto, P.; Dadalt, L.; Durigan, G.; et al. Conservation in Brazil Needs to Include Non-Forest Ecosystems. Divers. Distrib. 2015, 21, 1455–1460. [Google Scholar] [CrossRef]
- Roesch, L.; Vieira, F.; Pereira, V.; Schünemann, A.; Teixeira, I.; Senna, A.; Stefenon, V. The Brazilian Pampa: A Fragile Biome. Diversity 2009, 1, 182–198. [Google Scholar] [CrossRef]
- Andrade, B.; Dröse, W.; Aguiar, C.; Aires, E.; Alvares, D.; Barbieri, R.; Carvalho, C.; Bartz, M.; Becker, F.; Bencke, G.; et al. 12,500+ and Counting: Biodiversity of the Brazilian Pampa. Front. Biogeogr. 2023, 15, e59288. [Google Scholar] [CrossRef]
- da Silva Menezes, L.; Vogel, C.; Lucas, D.; Minervini Silva, G.; Boldrini, I.; Overbeck, G. Plant Species Richness Record in Brazilian Pampa Grasslands and Implications. Braz. J. Bot. 2018, 41, 817–823. [Google Scholar] [CrossRef]
- Pintaud, J.; Galeano, G.; Balslev, H.; Bernal, R.; Borchsenius, F.; Ferreira, E.; Granville, J.; Mejía, K.; Millán, B.; Moraes, M.; et al. Las Palmeras de América Del Sur: Diversidad, Distribución e Historia Evolutiva. Rev. Peru. Biol. 2008, 15, 7–29. [Google Scholar] [CrossRef]
- Soares, K.; Longhi, S.; Witeck, L.; Assis, L. Palmeiras (Arecaceae) No Rio Grande Do Sul, Brasil. Rodriguésia 2014, 65, 113–139. [Google Scholar] [CrossRef]
- Barfod, A.; Hagen, M.; Borchsenius, F. Twenty-Five Years of Progress in Understanding Pollination Mechanisms in Palms (Arecaceae). Ann. Bot. 2011, 108, 1503–1516. [Google Scholar] [CrossRef]
- Henderson, A. A Review of Pollination Studies in the Palmae. Bot. Rev. 1986, 52, 221–259. [Google Scholar] [CrossRef]
- Nuñez, L.; Carreño, J. Polinización por Abejas en Syagrus orinocensis (Arecaceae) en la Orinoquia Colombiana. Acta Biológica Colomb. 2017, 22, 221–223. [Google Scholar] [CrossRef]
- Silberbauer-Gottsberger, I.; Vanin, S.; Gottsberger, G. Interactions of the Cerrado Palms Butia paraguayensis and Syagrus petraea with Parasitic and Pollinating Insects. Sociobiology 2013, 60, 306–316. [Google Scholar] [CrossRef]
- Henderson, A. Evolution and Ecology of Palms; New York Botanical Garden Press: New York, NY, USA, 2002. [Google Scholar]
- Listabarth, C. Palm Pollination by Bees, Beetles and Flies: Why Pollinator Taxonomy Does Not Matter. The Case of Hyospathe elegans (Arecaceae, Arecoidae, Areceae, Euterpeinae). Plant Species Biol. 2001, 16, 165–181. [Google Scholar] [CrossRef]
- Borchsenius, F. Flowering Biology and Insect Visitation of Three Ecuadorean Aiphanes Species. Palms 1997, 37, 139–150. [Google Scholar]
- Nuñez-Avellaneda, A.; Rojas-Robles, R. Biología Reproductiva y Ecología de La Polinización de La Palma Milpesos Oenocarpus bataua En Los Andes Colombianos. Caldasia 2008, 30, 101–125. [Google Scholar]
- Deble, L.; Marchiori, J. Butia lallemantii, Uma Nova Arecaceae do Brasil. Balduinia 2014, 9, 01–03. [Google Scholar] [CrossRef]
- Silberbauer-Gottsberger, I. Pollination and Evolution in Palms. Phyton 1990, 30, 213–233. [Google Scholar]
- Dias, W.; Lopes, P.; Fonseca, R.; Ribeiro, L.; Gonçalves, A.; Ribeiro, B. Reproductive Biology of Butia capitata (Arecaceae) under Cultivation-Indicators for the Domestication of a Threatened Fruit Tree. Sci. Hortic. 2022, 304, 111297. [Google Scholar] [CrossRef]
- Nazareno, A.; dos Reis, M. Linking Phenology to Mating System: Exploring the Reproductive Biology of the Threatened Palm Species Butia eriospatha. J. Hered. 2012, 103, 842–852. [Google Scholar] [CrossRef]
- Cogo, M.; Osório, T.; Santos, N.; Bacega, A.; Souza, V. O Gênero Butia (Arecaceae) com ênfase nas espécies Butia exilata e Butia lallemantii: Uma revisão. Res. Soc. Dev. 2020, 9, e3691210675. [Google Scholar] [CrossRef]
- Silveira, T.; da Silva, P.; Kaster, M.; Goliva, J.; Gonsalez, J.; Goetten, J.; Lia, R. Use and Conservation of Butia Palm Groves: The Link That Goes beyond Borders. Ethnobot. Res. Appl. 2022, 23. [Google Scholar] [CrossRef]
- Paim, L.; Avrella, E.; Freitas, E.; Fior, C. Collection of Plants in Situ and Conditioning of Butia lallemantii Seedlings. Floresta Ambient. 2019, 26, e20170579. [Google Scholar] [CrossRef]
- Pinto Paim, L.; Demari Avrella, E.; de Freitas, E.; Sidnei Fior, C. Revegetación de suelo arenizado con Butia lallemantii en el suroeste del estado de Rio Grande Do Sul, Brasil. Bosque 2020, 41, 35–43. [Google Scholar] [CrossRef]
- Pinto Paim, L.; Demari Avrella, E.; Carlos Gonçalves, G.; Lazarotto, M.; Sidnei Fior, C. Growth and Development of Dwarf Butia Seedlings (Butia lallemantii): Substrate and Propagule Size. Rev. Acta Ambient. Catarinense 2021, 19, 1–11. [Google Scholar] [CrossRef]
- Stringari, L. Extração e Caracterização da Fibra do Pecíolo do Butiá Anão (Butia lallemantii); Magister, Universidade Federal do Pampa: São Paulo, Brazil, 2016. [Google Scholar]
- Hoffmann, J.; Barbieri, R.; Rombaldi, C.; Chaves, F. Butia spp. (Arecaceae): An overview. Sci. Hortic. 2014, 179, 122–131. [Google Scholar] [CrossRef]
- Sargent, R.; Otto, S. A phylogenetic analysis of pollination mode and the evolution of dichogamy in angiosperms. Evol. Ecol. Res. 2004, 6, 1183–1199. [Google Scholar]
- Barrett, S. Mating strategies in flowering plants: The outcrossing–selfing paradigm and beyond. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2003, 358, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Bertin, R. Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. Am. J. Bot. 1993, 80, 557–560. [Google Scholar] [CrossRef]
- Tomlinson, P. The Structural Biology of Palms; Oxford University Press: New York, NY, USA, 1990; p. 492. [Google Scholar]
- Uhl, N.; Dransfield, J. Genera Palmarum: A Classification of Palms Based on the Work of H.E. Moore, Jr.; L.H. The International Palm Society and Bailey Hortorium: Lawrence, KS, USA, 1987; p. 610. [Google Scholar]
- Eloy, J.; Lamela, C.; Malgarim, M. Influência da polinização na produção e qualidade de butiá. Rev. da Jorn. Pos-grad. e Pesqui. 2016, 13, 1–12. [Google Scholar]
- Mercadante-Simões, M.; Santos, R.; Monteiro, L.; Ferreira, Y. Biologia reprodutiva de Butia capitata (Mart.) Beccari (Arecaceae) em uma área de cerrado no norte de Minas Gerais. Rev. Unimontes Científica 2006, 8, 143–150. [Google Scholar]
- Sant’Anna-Santos, B. A New endemic and critically endangered species of Butia (Arecaceae) with comments on morpho-anatomical novelties in the genus. Plant Syst. Evol. 2021, 307, 4. [Google Scholar] [CrossRef]
- Loo, A.; Dransfield, J.; Chase, M.; Baker, W. Low-Copy Nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Mol. Phylogenet. Evol. 2006, 39, 598–618. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Marín, M.; Uyenoyama, M. On the evolutionary costs of self-incompatibility: Incomplete reproductive compensation due to pollen limitation. Evolution 2004, 58, 1924. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.; Webb, C. The Avoidance of Interference between the Presentation of Pollen and Stigmas in Angiosperms I. Dichogamy. N. Z. J. Bot. 1986, 24, 135–162. [Google Scholar] [CrossRef]
- Culley, T.; Weller, S.; Sakai, A. The Evolution of Wind Pollination in Angiosperms. Trends Ecol. Evol. 2002, 17, 361–369. [Google Scholar] [CrossRef]
- Whitehouse, H. Multiple-Allelomorph Incompatibility of Pollen and Style in the Evolution of the Angiosperms. Ann. Bot. 1950, 14, 199–216. [Google Scholar] [CrossRef]
- Whitton, J.; Sears, C.; Baack, E.; Otto, S. The Dynamic Nature of Apomixis in the Angiosperms. Int. J. Plant Sci. 2008, 169, 169–182. [Google Scholar] [CrossRef]
- Zamudio, F.; Gatti, M.; Hilgert, N.; Álvarez, L.; Mulieri, P.; Aguilar, R.; Ashworth, L. Insects or Wind? New Findings on the Pollination System of Euterpe edulis (Arecaceae). Arthropod. Plant. Interact. 2021, 15, 503–516. [Google Scholar] [CrossRef]
- Hojsgaard, D.; Klatt, S.; Baier, R.; Carman, J.; Hörandl, E. Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics. Crit. Rev. Plant Sci. 2014, 33, 414–427. [Google Scholar] [CrossRef]
- Mora-Urpí, J.; Weber, J.; Clement, C. Peach Palm, Bactris gasipaes Kunth; International Plant Genetic Resources Institute: Rome, Italy, 1997; p. 83. [Google Scholar]
- Khorsand Rosa, R.; Koptur, S. New Findings on the Pollination Biology of Mauritia flexuosa (Arecaceae) in Roraima, Brazil: Linking Dioecy, Wind, and Habitat. Am. J. Bot. 2013, 100, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Berry, E.; Gorchov, D. Reproductive Biology of the Dioecious Understorey Palm Chamaedorea radicalis in a Mexican Cloud Forest: Pollination Vector, Flowering Phenology and Female Fecundity. J. Trop. Ecol. 2004, 20, 369–376. [Google Scholar] [CrossRef]
- Brandenburg, A.; Olivo, A.; Bshary, R.; Kuhlemeier, C. The Sweetest Thing Advances in Nectar Research. Curr. Opin. Plant Biol. 2009, 12, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Faegri, K.; Van der Pijl, L. Principles of Pollination Ecology; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Goulson, D. Foraging Strategies of Insects for Gathering Nectar and Pollen, and Implications for Plant Ecology and Evolution. Perspect. Plant Ecol. Evol. Syst. 1999, 2, 185–209. [Google Scholar] [CrossRef]
- Wäckers, F.; Romeis, J.; van Rijn, P. Nectar and Pollen Feeding by Insect Herbivores and Implications for Multitrophic Interactions. Annu. Rev. Entomol. 2007, 52, 301–323. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Shibata, A.; Yasui, T.; Nagamasu, H. Impact of Introduced Honeybees, Apis mellifera, upon Native Bee Communities in the Bonin (Ogasawara) Islands. Popul. Ecol. 1999, 41, 217–228. [Google Scholar] [CrossRef]
- Pinkus-Rendon, M.; Parra-Tabla, V.; Meléndez-Ramírez, V. Floral Resource Use and Interactions between Apis mellifera and Native Bees in Cucurbit Crops in Yucatán, México. Can. Entomol. 2005, 137, 441–449. [Google Scholar] [CrossRef]
- Shavit, O.; Dafni, A.; Ne’eman, G. Competition between Honeybees (Apis mellifera) and Native Solitary Bees in the Mediterranean Region of Israel—Implications for Conservation. Isr. J. Plant Sci. 2009, 57, 171–183. [Google Scholar] [CrossRef]
- Paini, D.; Roberts, J. Commercial Honey Bees (Apis mellifera) reduce the fecundity of an Australian Native Bee (Hylaeus alcyoneus). Biol. Conserv. 2005, 123, 103–112. [Google Scholar] [CrossRef]
- Vanbergen, A.; Espíndola, A.; Aizen, M. Risks to Pollinators and Pollination from Invasive Alien Species. Nat. Ecol. Evol. 2017, 2, 16–25. [Google Scholar] [CrossRef]
- Russo, L.; de Keyzer, C.; Harmon-Threatt, A.; LeCroy, K.; MacIvor, J. The Managed-to-Invasive Species Continuum in Social and Solitary Bees and Impacts on Native Bee Conservation. Curr. Opin. Insect Sci. 2021, 46, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.; Imperatriz-Fonseca, V.; Ngo, H.; Aizen, M.; Biesmeijer, J.; Breeze, T.; Dicks, L.; Garibaldi, L.; Hill, R.; Settele, J.; et al. Safeguarding Pollinators and Their Values to Human Well-Being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Hernández, E.; Peña-Chora, G.; Hernández-Velazquez, V.; Lormendez, C.; Toribio-Jiménez, J.; Romero-Ramírez, Y.; León-Rodríguez, R. The Stingless Bees (Hymenoptera: Apidae: Meliponini): A Review of the Current Threats to Their Survival. Apidologie 2022, 53, 8. [Google Scholar] [CrossRef]
- Iwasaki, J.; Hogendoorn, K. Mounting evidence that managed and introduced bees have negative impacts on wild bees: An Updated Review. Curr. Res. Insect Sci. 2022, 2, 100043. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, K.S.; Dixon, K.W.; Bateman, P.W. The evidence for and against competition between the European honeybee and Australian native bees. Pac. Conserv. Biol. 2022, 29, 89–109. [Google Scholar] [CrossRef]
- Baeza, S.; Vélez-Martin, E.; De Abelleyra, D.; Banchero, S.; Gallego, F.; Schirmbeck, J.; Veron, S.; Vallejos, M.; Weber, E.; Oyarzabal, M.; et al. Two Decades of Land Cover Mapping in the Río de La Plata Grassland Region: The MapBiomas Pampa Initiative. Remote Sens. Appl. Soc. Environ. 2022, 28, 100834. [Google Scholar] [CrossRef]
- RS, Estado do Rio Grande do Sul. Decreto No. 52.109; 2014; p. 34. Available online: https://www.sema.rs.gov.br/upload/arquivos/201809/19150447-sigbio-dec-52-096-2014.pdf (accessed on 30 April 2024).
- Cruz, D.; Ferreira, F.; Pessoni, L. Biometria Aplicada Ao Estudo Da Diversidade Genética; UFV-FAPEMIG: Viçosa, MG, USA, 2020; ISBN 978-85-60249-70-1. [Google Scholar]
- Nazareno, A.; dos Reis, M. Where Did They Come from? Genetic Diversity and Forensic Investigation of the Threatened Palm Species Butia eriospatha. Conserv. Genet. 2014, 15, 441–452. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.; Kerr, R.; Barrios, E.; Gonçalves, A.; Sinclair, F. Agroecological Principles and Elements and Their Implications for Transitioning to Sustainable Food Systems. A Review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Duque-Trujillo, D.; Hincapié, C.; Osorio, M.; Zartha-Sossa, J. Strategies for the Attraction and Conservation of Natural Pollinators in Agroecosystems: A Systematic Review. Int. J. Environ. Sci. Technol. 2022, 20, 4499–4512. [Google Scholar] [CrossRef]
- Isbell, F.; Adler, P.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.; Liebman, M.; Polley, H.; Quijas, S.; et al. Benefits of Increasing Plant Diversity in Sustainable Agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Nicholls, C.; Altieri, M. Plant Biodiversity Enhances Bees and Other Insect Pollinators in Agroecosystems. A Review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef]
- Eslabão, M.; Ellert-Pereira, P.; Barbieri, R.; Heiden, G. Prioridades Para a Conservação de Butia (Arecaceae). Ciênc. Florest. 2022, 32, 1733–1758. [Google Scholar] [CrossRef]
- Zon, A.; Kouassi, E.; Ouédraogo, A. Current Knowledge and Future Directions on West African Wild Palms: An Analytical Review for Its Conservation and Domestication in the Context of Climate Change and Human Pressures. Genet. Resour. Crop Evol. 2021, 68, 1731–1745. [Google Scholar] [CrossRef]
- Sosinski, Ê.; Urruth, L.; Barbieri, R.; Marchi, M.; Martens, S. On the Ecological Recognition of Butia Palm Groves as Integral Ecosystems: Why Do We Need to Widen the Legal Protection and the in Situ/on-Farm Conservation Approaches? Land Use Policy 2019, 81, 124–130. [Google Scholar] [CrossRef]
- Faraco, P.; Barbieri, R. Conhecimento popular relacionado ao uso do Butiá-Anão (Butia lallemantii Deble & Marchiori) no Bioma Pampa. In II Encontro Internacional da Rota dos Butiazais; Editora UFRGS: Porto Alegre, Brazil, 2019; pp. 23–27. [Google Scholar]
- Rodrigues, C.; Schäfer, L.; Gregolon, J.; de Oliveira, J.; Perdomo, O.; Deolindo, C.; de Melo, A.; Singer, R.; Ledur Kist, T.; Hoff, R. Determination of Amino Acid Content, Fatty Acid Profiles, and Phenolic Compounds in Non-Conventional Edible Fruits of Seven Species of Palm Trees (Arecaceae) Native to the Southern Half of South America. Food Res. Int. 2022, 162, 111995. [Google Scholar] [CrossRef]
- Oliveira, N.; Lopes, P.; Ribeiro, L.; Mercandante-Simões, M.; Oliveira, L.; Silvério, F. Seed Structure, Germination, and Reserve Mobilization in Butia capitata (Arecaceae). Trees 2013, 27, 1633–1645. [Google Scholar] [CrossRef]
- Shahin, S.; Arafa, A. Germination of Butia Palm Seeds as Affected by Pregermination Treatments. J. Product. Dev. 2007, 12, 401–410. [Google Scholar] [CrossRef]
- Kinupp, V.; Lorenzi, H. Plantas Alimentícias Não Convencionais (PANC) No Brasil: Guia de Identificação, Aspectos Nutricionais e Receitas Ilustradas; Instituto Plantarum de Estudos da Flora: São Paulo, Brazil, 2014; p. 768. [Google Scholar]
- Büttow, M.; Barbieri, R.; Neitzke, R.; Heiden, G. Conhecimento tradicional associado ao uso de Butiás (Butia spp., Arecaceae) no sul do Brasil. Rev. Bras. Frutic. 2009, 31, 1069–1075. [Google Scholar] [CrossRef]
- Felini, A.; Grebin, C.; Bordignon, S. Butiazais—Paisagem cultural do Rio Grande Do Sul. Rev. Mem. Rede. 2020, 12, 292–400. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rubert, G.; Roberti, D.; Pereira, L.; Quadros, F.; Campos Velho, H.; Leal, O. Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors. Water 2018, 10, 1864. [Google Scholar] [CrossRef]
- Cogo, M.; Rosa, L.; Silveira, D.; Bacega, A.; Santos, N.; Lopes, A.; Souza, V. Caracterização Populacional de Butia exilata Deble & Marchiori e Butia lallemantii Deble & Marchiori (Arecaceae) Utilizando Dados Morfométricos. Res. Soc. Dev. 2022, 11, e19511830733. [Google Scholar] [CrossRef]
- Cogo, M.; Rosa, L.; Silveira, D.; Laindorf, B.; Bacega, A.; Santos, N.; Lopes, A.; Pereira, A.; Souza, V. Dissimilaridade Entre Variáveis Morfométricas de Butia lallemantii Deble & Marchiori e Butia exilata Deble & Marchiori (Arecaceae) Utilizando Análise Euclidiana. Res. Soc. Dev. 2022, 11, e424111032883. [Google Scholar] [CrossRef]
- IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria; Version 15; IUCN: Gland, Switzerland, 2022; p. 113. [Google Scholar]
- Chan, Y.; Lim, A.; Saw, L. Reproductive Biology of the Endangered and Endemic Palm Johannesteijsmannia lanceolata (Arecaceae). J. Trop. For. Sci. 2011, 23, 213–221. [Google Scholar]
- Melendez-Ramirez, V.; Parra-Tabla, V.; Kevan, P.G.; Ramirez-Morillo, I.; Harries, H.; Fernandez-Barrera, M.; Zizumbo-Villareal, D. Mixed Mating Strategies and Pollination by Insects and Wind in Coconut Palm (Cocos nucifera L. (Arecaceae)): Importance in Production and Selection. Agric. For. Entomol. 2004, 6, 155–163. [Google Scholar] [CrossRef]
- Ávila, M.; Azevedo, I.; Antunes, J.; Souza, C.; Santos, R.; Fonseca, R.; Nunes, Y. Temperature as the Main Factor Affecting the Reproductive Phenology of the Dioecious Palm Mauritiella armata (Arecaceae). Acta Bot. Brasilica 2022, 36, e2021abb0111. [Google Scholar] [CrossRef]
- Copete, J.; Flórez, D.; Núñez-Avellaneda, L. Pollination Ecology of the Manicaria saccifera (ARECACEAE): A Rare Case of Pollinator Exclusion. In Pollination in Plants; Mokwala, P., Ed.; InTech: Mankweng, Soth Africa, 2018; pp. 23–37. [Google Scholar]
- Brieva-Oviedo, E.; Maia, A.; Núñez-Avellaneda, L. Pollination of Bactris guineensis (Arecaceae), a Potential Economically Exploitable Fruit Palm from the Colombian Caribbean. Flora 2020, 269, 151628. [Google Scholar] [CrossRef]
- Brieva-Oviedo, E.; Núñez, L. Biología Reproductiva de La Palma Amarga (Sabal mauritiiformis: Arecaceae): Especie Económicamente Importante Para La Costa Caribe Colombiana. Caldasia 2020, 42, 278–293. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Gross, J.; Ligges, U. Package ‘Nortest’: Tests for Normality; CRAN: Bogotá, Colombia, 2015; p. 9. [Google Scholar]
- Escaravage, N.; Pornon, A.; Doche, B.; Till-Bottraud, I. Breeding System in an Alpine Species: Rhododendron ferrugineum L. (Ericaceae) in the French Northern Alps. Can. J. Bot. 1997, 75, 736–743. [Google Scholar] [CrossRef]
- Lloyd, D.; Schoen, D. Self- and Cross-Fertilization in Plants. I. Functional Dimensions. Int. J. Plant Sci. 1992, 153, 358–369. [Google Scholar] [CrossRef]
- Dafni, A. Pollination Ecology: A Practical Approach; Oxford University Press: Oxford, UK, 1992; p. 272. [Google Scholar]
Structure | Mean (±SE) | Max–Min. |
---|---|---|
Inflorescence length | 65.76 (±7.38) cm | 45.2–84.2 |
Peduncle length | 30.64 (±6.66) cm | 19.4–41.5 |
Peduncle diameter | 1.03 (±0.21) cm | 0.8–1.3 |
Rachis length | 30.22 (±3.62) cm | 21.7–47.3 |
Rachis diameter | 1.1 (±0.13) cm | 0.7–1.4 |
Rachillae number | 58.4 (±6.11) | 48–64 |
Total flowers | 80.36 (±9.99) | 51–124 |
Total pistillate flowers | 2.56 (±1.02) | 0–6 |
Total staminate flowers | 78.36 (±8.59) | 51–122 |
Spatha length | 65.67 (±6.21) cm | 45.2–84.2 |
Base diameter | 2.9 (±0.29) cm | 2.3–3.9 |
Maximum diameter | 8.38 (±0.95) cm | 5.6–10.5 |
Treatment | Flowers Treated | Fruits Formed | Fruits Formed (%) |
---|---|---|---|
Allogamy | 90 | 76 | 84.4 |
Natural pollination | 90 | 75 | 83.3 |
Autogamy | 90 | 70 | 77.8 |
Geitonogamy | 90 | 63 | 70 |
Spont. Self-pollination | 90 | 3 | 3.3 |
Apomixis | 90 | 0 | 0 |
Treatment | Autogamy | Geitonogamy | Allogamy | Natural Pollination |
---|---|---|---|---|
Autogamy | 1.00 | -- | -- | -- |
Geitonogamy | 0.478 | 1.00 | -- | -- |
Allogamy | 0.641 | 0.018 * | 1.00 | -- |
Natural pollination | 0.793 | 0.036 * | 0.999 | 1.00 |
Order/Family | Total | Staminate | Pistillate | Both | (%) Visitors | (%) Pollinators |
---|---|---|---|---|---|---|
Diptera | 9 | 3 | 8 | 1 | 14.8 | 3.7 |
Drosophilidae | 1 | 0 | 1 | 0 | 1.6 | 0.0 |
Phoridae | 1 | 0 | 1 | 0 | 1.6 | 0.0 |
Muscidae | 6 | 2 | 6 | 1 | 9.8 | 3.7 |
Syrphidae | 1 | 1 | 0 | 0 | 1.6 | 0.0 |
Coleoptera | 16 | 9 | 13 | 6 | 26.2 | 22.2 |
Cerambycidae | 1 | 1 | 0 | 0 | 1.6 | 0.0 |
Chrysomelidae | 3 | 2 | 2 | 1 | 4.9 | 3.7 |
Curculionidae | 7 | 5 | 7 | 5 | 11.5 | 18.5 |
Elateridae | 1 | 0 | 1 | 0 | 1.6 | 0.0 |
Lampyridae | 1 | 1 | 0 | 0 | 1.6 | 0.0 |
Nitidulidae | 2 | 0 | 2 | 0 | 3.3 | 0.0 |
Silvanidae | 1 | 0 | 1 | 0 | 1.6 | 0.0 |
Hemiptera | 2 | 2 | 1 | 1 | 3.3 | 3.7 |
Reduviidae * | 2 | 2 | 1 | 1 | 3.3 | 3.7 |
Hymenoptera | 34 | 23 | 29 | 19 | 55.7 | 70.4 |
Apidae | 9 | 5 | 11 | 6 | 11.2 | 22.2 |
Halictidae | 7 | 7 | 5 | 5 | 14.4 | 18.5 |
Formicidae | 10 | 7 | 7 | 4 | 16.4 | 14.8 |
Vespidae | 5 | 2 | 4 | 2 | 6.5 | 7.4 |
Tiphiidae | 2 | 1 | 1 | 1 | 3.3 | 3.7 |
Andrenidae | 1 | 1 | 1 | 1 | 1.6 | 3.7 |
Total | 61 | 37 | 51 | 27 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdomo, O.; Becker, R.; Singer, R.B. Pollination Ecology, Breeding System, and Conservation of Butia lallemantii Deble & Marchiori (Arecaceae): A Useful Dwarf Palm Tree from the Pampa. Plants 2024, 13, 1562. https://doi.org/10.3390/plants13111562
Perdomo O, Becker R, Singer RB. Pollination Ecology, Breeding System, and Conservation of Butia lallemantii Deble & Marchiori (Arecaceae): A Useful Dwarf Palm Tree from the Pampa. Plants. 2024; 13(11):1562. https://doi.org/10.3390/plants13111562
Chicago/Turabian StylePerdomo, Oscar, Rafael Becker, and Rodrigo Bustos Singer. 2024. "Pollination Ecology, Breeding System, and Conservation of Butia lallemantii Deble & Marchiori (Arecaceae): A Useful Dwarf Palm Tree from the Pampa" Plants 13, no. 11: 1562. https://doi.org/10.3390/plants13111562
APA StylePerdomo, O., Becker, R., & Singer, R. B. (2024). Pollination Ecology, Breeding System, and Conservation of Butia lallemantii Deble & Marchiori (Arecaceae): A Useful Dwarf Palm Tree from the Pampa. Plants, 13(11), 1562. https://doi.org/10.3390/plants13111562