Functional Characterization of PoEP1 in Regulating the Flowering Stage of Tree Peony
Abstract
:1. Introduction
2. Results
2.1. Expression Analysis of PoEP1 in the Petals of MU and FD at Different Flowering Stages
2.2. Construction of Overexpression Vector for PoEP1
2.3. Bioinformatics Analysis of PoEP1
2.4. Subcellular Localization of PoEP1
2.5. Identification and Phenotypic Observation of Transgenic Arabidopsis thaliana
2.6. Analysis of the Expression Pattern of PoEP1 Overexpression on Tree Peony
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. RNA Extraction and Expression Analysis
4.3. Cloning and Identification of the PoEP1 Gene Sequence in Tree Peony RNA
4.4. Bioinformatics Analysis of PoEP1 in Tree Peony
4.5. Construction of the PoEP1 Gene Overexpression Vector
4.6. Subcellular Localization of PoEP1
4.7. Agrobacterium tumefaciens-Mediated Overexpression of Arabidopsis thaliana
4.8. Agrobacterium tumefaciens-Mediated Transient Overexpression of Tree Peony
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.Y.; Guo, L.L.; Sun, G.R.; Guo, D.L.; Fan, M.Y.; Zhang, X.X.; Hou, X.G. Analysis of DNA methylation during seed development of Paeonia ostii ‘Feng Dan’ using methylation sensitive amplification polymorphism (MSAP). J. Hortic. Sci. Biotechnol. 2022, 97, 437–455. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, L.L.; Wang, Z.Y.; Zhao, D.H.; Guo, D.L.; Carlson, J.E.; Yin, W.L.; Hou, X.G. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony (Paeonia Section Moutan DC.) reveals five genes known to regulate flowering time. Hortic. Res. 2023, 10, uhac263. [Google Scholar] [CrossRef] [PubMed]
- Kamenetsky-Goldstein, R.; Yu, X.N. Cut Peony Industry: The first 30 years of research and new horizons. Hortic. Res. 2022, 9, uhac079. [Google Scholar] [CrossRef] [PubMed]
- Fornara, F.; De Montaigu, A.; Coupland, G. SnapShot: Control of flowering in Arabidopsis. Cell 2010, 141, 550. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Staiger, D. Time to flower: Interplay between photoperiod and the circadian clock. J. Exp. Bot. 2015, 66, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.L.; Zhou, H.R.; Zhao, Q.Q.; Feng, C.; Ning, Y.Q.; Su, Y.N.; Cai, X.W.; Yuan, D.Y.; Zhang, Z.C.; Su, X.M.; et al. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res. 2022, 50, 7380–7395. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.; Liu, Y.W.; Liu, H.T. Flowering responses to light and temperature. Sci. China Life Sci. 2016, 59, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, O.J.; Riechmann, J.L. Arabidopsis transcription factors and the regulation of flowering time: A genomic perspective. Curr. Issues Mol. Biol. 2002, 4, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Valverde, F.; Mouradov, A.; Soppe, W.; Ravenscroft, D.; Samach, A.; Coupland, G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004, 303, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Putterill, J.; Laurie, R.; Macknight, R. It’s time to flower: The genetic control of flowering time. BioEssays 2004, 26, 363–373. [Google Scholar] [CrossRef]
- Fan, M.Y.; Chen, L.F.; Wang, E.Q.; Xue, X.; Guo, Q.; Guo, D.L.; Guo, L.L.; Hou, X.G. Identification and characterization of flowering time regulatory Gene FLC of Paeonia ostii ‘Fengdan’. Sci. Hortic. 2023, 310, 111748. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.P.; Zhao, S.Q. Integraiton pathway of flowering time control in Arabidopsis. Plant Physiol. Commun. 2007, 5, 799–804. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.Y. The miR156/SPL Module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 2015, 8, 677–688. [Google Scholar] [CrossRef]
- Wang, J.W.; Czech, B.; Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009, 138, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Yong, X.; Zheng, T.C.; Han, Y.; Cong, T.C.; Li, P.; Liu, W.C.; Ding, A.Q.; Cheng, T.R.; Wang, J.; Zhang, Q.X. The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN (PmSBP) transcription factor regulates the flowering time by binding to the promoter of SUPPRESSOR OF overexpression OF CO1 (PmSOC1) in Prunus Mume. Int. J. Mol. Sci. 2022, 23, 11976. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Wang, L.; Ma, N.; Zhou, C.M.; Han, L.; Zhang, T.Q.; Wang, J.W. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol. 2021, 19, e3001044. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Gao, L.Q.; Wang, Y.Y.; Niu, D.M.; Yuan, Y.C.; Liu, C.Y.; Zhan, X.M.; Gai, S.P. Dual functions of PsmiR172b-PsTOE3 module in dormancy release and flowering in tree peony (Paeonia suffruticosa). Hortic. Res. 2023, 10, uhad033. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, C.; Guo, Q.; Song, C.W.; Wang, X.; Guo, L.L.; Hou, X.G. Characteristics of PoVIN3, a key gene of vernalization pathway, affects flowering time. Int. J. Mol. Sci. 2022, 23, 14003. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.J.; Ma, Y.; Qi, S.; Guo, X.F.; Chen, J.Q. Cloning and functional analysis of peony PlSVP gene in regulating flowering. Acta Hortic. Sin. 2022, 49, 2367–2376. [Google Scholar] [CrossRef]
- Zhao, N.; Su, X.M.; Liu, Z.W.; Zhou, J.X.; Su, Y.N.; Cai, X.W.; Chen, L.; Wu, Z.; He, X.J. The RNA recognition motif-containing protein UBA2c prevents early flowering by promoting transcription of the flowering repressor FLM in Arabidopsis. New Phytol. 2022, 233, 751–765. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, H.S.; Chung, K.S.; Posé, D.; Kim, S.; Schmid, M.; Ahn, J.H. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 2013, 342, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Posé, D.; Verhage, L.; Ott, F.; Yant, L.; Mathieu, J.; Angenent, G.C.; Immink, R.G.H.; Schmid, M. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 2013, 503, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Lutz, U.; Posé, D.; Pfeifer, M.; Gundlach, H.; Hagmann, J.; Wang, C.; Weigel, D.; Mayer, K.F.X.; Schmid, M.; Schwechheimer, C. Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M. PLoS Genet. 2015, 11, e1005588. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Li, G.X.; Wang, X.; Huang, R.W.; Luo, J.H.; Li, M.Y.; Liu, D.F.; Sui, S.Z. Overexpression of a senescence-related gene CpSRG1 from wintersweet (Chimonanthus praecox) promoted growth and flowering, and delayed senescence in transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 13971. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.P.; Zhao, L.Y.; Liu, X.; Liu, S.E.; Wang, K.H.; Wang, Z.X.; Geng, J.Y.; Guo, B.S. Cloning and functional analysis of epidermis-specific secreted glycoprotein EP1-like gene GhA01EP1 in cotton. Cott. Sci. 2021, 33, 448–458. [Google Scholar] [CrossRef]
- Amasino, R.M.; Michaels, S.D. The timing of flowering. Plant Physiol. 2010, 154, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Barre, A.; Bourne, Y.; Van Damme, E.J.M.; Peumans, W.J.; Rougé, P.; Plant, M.B. Mannose-binding plant lectins: Different structural scaffolds for a common sugar-recognition process. Biochimie 2001, 83, 645–651. [Google Scholar] [CrossRef]
- Vijayan, M.; Chandra, N. Lectins. Curr. Opin. Struct. Biol. 1999, 9, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Ramachandraiah, G.; Chandra, N.R. Sequence and structural determinants of mannose recognition. Proteins 2000, 39, 358–364. [Google Scholar] [CrossRef]
- Bai, S.H.; Li, B.H.; Dai, H.Y. Cloning of a Mannose-binding Protein 2 Gene (MdMBP2) from Malus domestica and Identification of Its Biological Activity. J. Agric. Biotechnol. 2013, 21, 282–291. [Google Scholar] [CrossRef]
- Hiscock, S.J.; McInnis, S.M. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci. 2003, 8, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Vaid, N.; Macovei, A.; Tuteja, N. Knights in action: Lectin receptor-like kinases in plant development and stress responses. Mol. Plant 2013, 6, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.Q.; Zou, Y.Q.; Luo, S.W.; Zhang, L.; Tan, S.R.; Wang, M.L. Research progress on lectin receptor-ike kinases and their roles in mediation of plant disease resistance. Plant Sci. J. 2022, 40, 105–114. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Wu, Y.; Guo, J.P.; Du, B.; Chen, R.Z.; Zhu, L.L.; He, G.C. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant J. 2013, 76, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.M.; Wang, C.L.; Wang, F.J.; Liu, Y.P.; Li, M.; Wang, H.J.; Zheng, Y.H.; Zhao, K.J.; Ji, Z.Y. PWL1, a G-type lectin receptor-like kinase, positively regulates leaf senescence and heat tolerance but negatively regulates resistance to Xanthomonas oryzae in Rice. Plant Biotechnol. J. 2023, 21, 2525–2545. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.J.; Hu, S.; Zou, X.X.; Cai, R.Q.; Liao, R.; Lin, X.X.; Yao, R.F.; Guo, X.H. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. Plant Physiol. 2021, 187, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.J.; Gardner, R.C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 1990, 14, 61–72. [Google Scholar] [CrossRef]
- Meng, N.; Liu, Y.L.; Dou, X.X.; Liu, H.L.; Li, F.Y. Transient Gene Expression in Phalaenopsis aphrodite Petals via Agrobacterium tumefaciens Infiltration. Acta Bot. Boreal.-Occident. Sin. 2018, 38, 1017–1023. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.C.; Feng, M.; Chen, J.W.; Qin, M.Z.; Wang, W.R.; Bao, Y.; Xu, Q.; Ye, Y.; Ma, C.; et al. The circadian-controlled PIF8–BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS Homeostasis at night. Plant Cell 2021, 33, 2716–2735. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, C.Y.; Liu, Y.; Gao, Y.R.; Lu, J.Y.; Aiwaili, P.; Fei, Z.J.; Jiang, C.Z.; Hong, B.; Ma, C.; et al. Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). Plant Cell 2020, 32, 3485–3499. [Google Scholar] [CrossRef]
- Ben-Amar, A.; Cobanov, P.; Buchholz, G.; Mliki, A.; Reustle, G. In planta agro-infiltration system for transient gene expression in grapevine (Vitis spp.). Acta Physiol. Plant. 2013, 35, 3147–3156. [Google Scholar] [CrossRef]
- Carvalho, R.F.; Carvalho, S.D.; O’Grady, K.; Folta, K.M. Agroinfiltration of strawberry fruit—A powerful transient expression system for gene validation. Curr. Plant Biol. 2016, 6, 19–37. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, M.M.; Wang, S.Q.; Feng, S.; Wang, Y.; Wang, T.; Zhu, C.L.; Jiang, X.Y.; Wang, H.Y.; Wang, R.M.; et al. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.). Plant Biotechnol. J. 2023, 21, 2307–2321. [Google Scholar] [CrossRef]
- Zeng, H.Q.; Xie, Y.W.; Liu, G.Y.; Wei, Y.X.; Hu, W.; Shi, H.T.; Gene, A.M. Agrobacterium-mediated gene transient overexpression and tobacco rattle virus (TRV)-based gene silencing in cassava. Int. J. Mol. Sci. 2019, 20, 3976. [Google Scholar] [CrossRef] [PubMed]
Primer | Forward Sequence | Reverse Sequence | Usage |
---|---|---|---|
EF1α | CCGCCAGAGAGGCTGCTAAT | GCAATGTGGGAAGTGTGGCA | Internal reference genes |
qPCR-PoEP1 | ACCACCCCAAATGCTTACAC | CAGCAGAGTCAAGCAGAACCA | Real-time fluorescence quantification |
pTOPO-PoEP1 | CTGAGAACCAGACTTTCCATTT | CCCAATAAATAGAATCTCTCCTA | Gene cloning |
pCAMBIA2300-PoEP1 | CGGGGATCCTCTAGAGTCGACATGCTGAGCATCTTTAGTTCTCCA | AGGGCATGCCTGCAGGTCGACTTAATTGGATACCTTGATATAAGCCAC | Construct overexpression vector |
pCAMBIA2300-PoEP1-GFP | CGGGGATCCTCTAGAGTCGACATGCTGAGCATCTTTAGTTCTCCA | TTCTCCTTTGCCCATGTCGACATTGGATACCTTGATATAAGCCACG | Constructing subcellular localization vectors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Gao, J.; Li, Y.; Song, C.; Guo, Q.; Guo, L.; Hou, X. Functional Characterization of PoEP1 in Regulating the Flowering Stage of Tree Peony. Plants 2024, 13, 1642. https://doi.org/10.3390/plants13121642
Lei Y, Gao J, Li Y, Song C, Guo Q, Guo L, Hou X. Functional Characterization of PoEP1 in Regulating the Flowering Stage of Tree Peony. Plants. 2024; 13(12):1642. https://doi.org/10.3390/plants13121642
Chicago/Turabian StyleLei, Yang, Jingshan Gao, Yuying Li, Chengwei Song, Qi Guo, Lili Guo, and Xiaogai Hou. 2024. "Functional Characterization of PoEP1 in Regulating the Flowering Stage of Tree Peony" Plants 13, no. 12: 1642. https://doi.org/10.3390/plants13121642
APA StyleLei, Y., Gao, J., Li, Y., Song, C., Guo, Q., Guo, L., & Hou, X. (2024). Functional Characterization of PoEP1 in Regulating the Flowering Stage of Tree Peony. Plants, 13(12), 1642. https://doi.org/10.3390/plants13121642