Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Measurements
2.2.1. Meteorological Data
2.2.2. Fruit Quality Parameters
Appearance Quality Parameters
Taste Quality Parameters
Nutrient Quality Parameters
2.3. Comprehensive Evaluation Method of Tomato Fruit Quality
2.3.1. Determination of Factor (Subjective) Weights via AHP
2.3.2. Determination of Sub-Factor (Objective) Weights Using the Entropy Method
2.3.3. Calculation of Combined Weights
2.3.4. Comprehensive Evaluation Based on TOPSIS
2.4. Evaluation of Simulated Performance
2.5. Statistical Analysis
3. Results
3.1. Environmental Data and Growth Characteristics of Tomato Quality
3.1.1. Variations in Environmental Factors in the Solar Greenhouse throughout the Year
3.1.2. Tomato Fruit Quality at Different Planting Periods
3.2. Development of the Simulation Model for Tomato Quality
3.2.1. Development of Tomato Quality Indices
3.2.2. Development of the Simulation Model for Tomato Fruit Single-Quality Indices
3.2.3. Development of the Simulation Model for Tomato Comprehensive-Quality Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mesa, T.; Polo, J.; Arabia, A.; Caselles, V.; Munne-Bosch, S. Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. J. Plant Physiol. 2022, 268, 153581. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Xiang, C.Y.; Wang, X.X.; Guo, Y.M.; Huang, Z.J.; Liu, L.; Li, X.; Du, Y.C. Current situation of tomato industry in china during ‘The Thirteenth Five-year Plan’ period and future prospect. China Veg. 2021, 2, 13–20. [Google Scholar] [CrossRef]
- Erba, D.; Casiraghi, M.C.; Ribas-Agustí, A.; Cáceres, R.; Marfà, O.; Castellari, M. Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Compos. Anal. 2013, 31, 245–251. [Google Scholar] [CrossRef]
- Massot, C.; Genard, M.; Stevens, R.; Gautier, H. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit. Plant Physiol. Biochem. 2010, 48, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.R.; Cockshull, K.E.; Cave, C.R.J. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 2001, 88, 869–877. [Google Scholar] [CrossRef]
- Alsamir, M.; Mahmood, T.; Trethowan, R.; Ahmad, N. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi J. Biol. Sci. 2021, 28, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Angosto, T.; Gómez, P.; Payán, C.; Capel, J.; Huijser, P.; Salinas, J.; Martınez-Zapater, J.M. Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-Box genes1. Plant Physiol. 1998, 117, 91–100. [Google Scholar] [CrossRef]
- Meena, Y.K.; Khurana, D.S.; Kaur, N.; Singh, K. Towards enhanced low temperature stress tolerance in tomato: An approach. J. Environ. Biol. 2018, 39, 529–535. [Google Scholar] [CrossRef]
- Truffault, V.; Fifel, F.; Longuenesse, J.-J.; Vercambre, G.; Le Quillec, S.; Gautier, H. Impact of temperature integration under greenhouse on energy use efficiency, plant growth and development and tomato fruit quality depending on cultivar rootstock combination. II Int. Symp. Hortic. Eur. 2012, 1099, 95–100. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Rosales, M.A.; Cervilla, L.M.; Sanchez-Rodriguez, E.; Rubio-Wilhelmi, M.D.; Blasco, B.; Rios, J.J.; Soriano, T.; Castilla, N.; Romero, L.; Ruiz, J.M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Shaji, S.; Beena, R.; Sarada, S.; Rani, T.S.; Stephen, R.; Manju, R.V.; Viji, M.M. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon 2021, 7, e05988. [Google Scholar] [CrossRef] [PubMed]
- Dannehl, D.; Huber, C.; Rocksch, T.; Huyskens-Keil, S.; Schmidt, U. Interactions between changing climate conditions in a semi-closed greenhouse and plant development, fruit yield, and health-promoting plant compounds of tomatoes. Sci. Hortic. 2012, 138, 235–243. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Fenoll, J.; Molina, M.V.; Garrido, I.; Flores, P. Impact of high temperature stress on ascorbic acid concentration in tomato. VIII Int. Postharvest Symp. Enhancing Supply Chain. Consum. Benefits-Ethical Technol. Issues 2016, 1194, 985–990. [Google Scholar] [CrossRef]
- Petridis, A.; van der Kaay, J.; Chrysanthou, E.; McCallum, S.; Graham, J.; Hancock, R.D. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment. J. Exp. Bot. 2018, 69, 3069–3080. [Google Scholar] [CrossRef] [PubMed]
- Aliniaeifard, S.; van Meeteren, U. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Sci. Hortic. 2016, 205, 84–89. [Google Scholar] [CrossRef]
- Arve, L.E.; Kruse, O.M.; Tanino, K.K.; Olsen, J.E.; Futsaether, C.; Torre, S. Daily changes in VPD during leaf development in high air humidity increase the stomatal responsiveness to darkness and dry air. J. Plant Physiol. 2017, 211, 63–69. [Google Scholar] [CrossRef]
- Mei, Z.; Li, Z.; Lu, X.; Zhang, S.; Liu, W.; Zou, Q.; Yu, L.; Fang, H.; Zhang, Z.; Mao, Z.J.E.; et al. Supplementation of natural light duration promotes accumulation of sugar and anthocyanins in apple (Malus domestica Borkh.) fruit. Environ. Exp. Bot. 2023, 205, 105133. [Google Scholar] [CrossRef]
- Demers, D.-A.; Dorais, M.; Wien, C.H.; Gosselin, A.J.S.H. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 1998, 74, 295–306. [Google Scholar] [CrossRef]
- Zou, L.M.; Zhong, G.Y.; Wu, B.H.; Yang, Y.Z.; Li, S.H.; Liang, Z.C. Effects of sunlight on anthocyanin accumulation and associated co-expression gene networks in developing grape berries. Environ. Exp. Bot. 2019, 166, 103811. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wei, H.; Jeong, B.R. A Long-Day Photoperiod and 6-Benzyladenine Promote Runner Formation through Upregulation of Soluble Sugar Content in Strawberry. Int. J. Mol. Sci. 2020, 21, 4917. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Toledo-Ortiz, G.; Pyott, D.E.; Halliday, K.J. Interaction of light and temperature signaling. J. Exp. Bot. 2014, 65, 2859–2871. [Google Scholar] [CrossRef] [PubMed]
- Gerganova, M.; Popova, A.V.; Stanoeva, D.; Velitchkova, M. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. Plant Physiol. Bioch. 2016, 104, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.H.; Du, T.S.; Li, X.N.; Fang, L.; Liu, F.L. Interactive effects of elevated CO2 and N fertilization on yield and quality of tomato grown under reduced irrigation regimes. Front. Plant Sci. 2018, 9, 326830. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.C.; Tanaka, M. Relationships between Tomato Cluster Growth Indices and Cumulative Environmental Factors during Greenhouse Cultivation. Sci. Hortic. 2018, 295, 110803. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.C.; Fan, J.L.; Zhang, F.C.; Xiang, Y.Z.; Zheng, J.; Guo, J.J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Zhou, T.M.; Wu, Z.; Wang, Y.C.; Su, X.J.; Qin, C.X.; Huo, H.Q.; Jiang, F.L. Modelling seedling development using thermal effectiveness and photosynthetically active radiation. J. Integr. Agric. 2019, 18, 2521–2533. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhang, J.H.; Zhang, B.; Wang, Z.S.; Xing, L.B.; Zhang, H.H.; Hu, J. Obtaining a light intensity regulation target value based on the tomato dry weight model. Sci. Hortic. 2022, 295, 110879. [Google Scholar] [CrossRef]
- He, Z.H.; Su, C.J.; Cai, Z.L.; Wang, Z.; Li, R.; Liu, J.C.; He, J.Q.; Zhang, Z. Multi-factor coupling regulation of greenhouse environment based on comprehensive growth of cherry tomato seedlings. Sci. Hortic. 2022, 297, 110960. [Google Scholar] [CrossRef]
- Wang, F.; Kang, S.Z.; Du, T.S.; Li, F.S.; Qiu, R.J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric. Water Manag. 2011, 98, 1228–1238. [Google Scholar] [CrossRef]
- Wang, C.X.; Gu, F.; Chen, J.L.; Yang, H.; Jiang, J.J.; Du, T.S.; Zhang, J.H. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agric. Water Manag. 2015, 161, 9–19. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.R.; Bertin, N. Water shortage and quality of fleshy fruits-making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef]
- Marti, R.; Rosello, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef]
- Araya, N.A.; Chiloane, T.S.; Rakuambo, J.Z.; Maboko, M.M.; du Plooy, C.P.; Amoo, S.O. Effect of environmental variability on fruit quality and phytochemical content of soilless grown tomato cultivars in a non-temperature-controlled high tunnel. Sci. Hortic. 2021, 288, 110378. [Google Scholar] [CrossRef]
- Zhou, D.X.; Su, Y.; Ning, Y.C.; Rong, G.H.; Wang, G.D.; Liu, D.; Liu, L.Y. Estimation of the Effects of Maize Straw Return on Soil Carbon and Nutrients Using Response Surface Methodology. Pedosphere 2018, 28, 411–421. [Google Scholar] [CrossRef]
- Jiang, X.L.; Zhao, Y.L.; Tong, L.; Wang, R.; Zhao, S. Quantitative analysis of tomato yield and comprehensive fruit quality in response to deficit irrigation at different growth stages. Hortscience 2019, 54, 1409–1417. [Google Scholar] [CrossRef]
- He, Z.H.; Li, M.N.; Cai, Z.L.; Zhao, R.S.; Hong, T.T.; Yang, Z.; Zhang, Z. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato. Agric. Water Manag. 2020, 243, 106360. [Google Scholar] [CrossRef]
- Tian, Y.N.; Cao, L.L.; Zhao, L.Q.; Cao, C.H. Effect of different nutrient solution formulas on quality of tomato seedling in tidal irrigation. China Fruit Veg. 2021, 41, 83–87. [Google Scholar] [CrossRef]
- Teng, L.; Cheng, Z.; Chen, X.; Lai, L. Study on simulation models of tomato fruit quality related to cultivation environmental factors. Acta Ecol. Sin. 2021, 32, 111–116. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Shi, Y.K.; Qin, Y.D.; Xuan, G.T.; Li, J.; Li, Q.K.; Yang, F.J.; Hu, Z.C. A new quantitative index for the assessment of tomato quality using Vis-NIR hyperspectral imaging. Food Chem. 2022, 386, 132864. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP). Ecol. Inform. 2017, 42, 100–113. [Google Scholar] [CrossRef]
- Fleming, A.; Schenkel, F.S.; Chen, J.; Malchiodi, F.; Bonfatti, V.; Ali, R.A.; Mallard, B.; Corredig, M.; Miglior, F. Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets. J. Dairy Sci. 2017, 100, 5073–5081. [Google Scholar] [CrossRef]
- Fang, S.-L.; Kuo, Y.-H.; Kang, L.; Chen, C.-C.; Hsieh, C.-Y.; Yao, M.-H.; Kuo, B.-J. Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development. Horticulturae 2022, 8, 1021. [Google Scholar] [CrossRef]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H.P. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Ding, D.Y.; Feng, H.; Zhao, Y.; Hill, R.L.; Yan, H.M.; Chen, H.X.; Hou, H.J.; Chu, X.S.; Liu, J.C.; Wang, N.J.; et al. Effects of continuous plastic mulching on crop growth in a winter wheat-summer maize rotation system on the Loess Plateau of China. Agric. Forest Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Jia, B.; He, H.B.; Ma, F.Y.; Diao, M.; Jiang, G.Y.; Zheng, Z.; Cui, J.; Fan, H. Modeling aboveground biomass accumulation of cotton. J. Anim. Plant Sci. 2014, 24, 280–289. [Google Scholar] [CrossRef]
- Wang, D.; Li, G.-r.; Zhou, B.-y.; Zhan, M.; Cao, C.-g.; Meng, Q.-f.; Xia, F.; Ma, W.; Zhao, M. Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain. J. Integr. Agric. 2020, 19, 2997–3012. [Google Scholar] [CrossRef]
- Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Adv. Agron. 2020, 159, 237–273. [Google Scholar] [CrossRef]
- Xu, R.; Dai, J.; Luo, W.; Yin, X.; Li, Y.; Tai, X.; Han, L.; Chen, Y.; Lin, L.; Li, G. A photothermal model of leaf area index for greenhouse crops. Agric. Forest. Meteorol. 2010, 150, 541–552. [Google Scholar] [CrossRef]
Planting Dates | Planting Date | ||
---|---|---|---|
T1 | 18 March 2021 | T6 | 13 August 2021 |
T2 | 30 March 2021 | T7 | 28 August 2021 |
T3 | 13 April 2021 | T8 | 8 September 2021 |
T4 | 25 April 2021 | T9 | 19 September 2021 |
T5 | 8 May 2021 | T10 | 30 September 2021 |
L* | a* | b* | CI | SSC (g/100 g) | OAC (g/100 g) | SSC/OAC | Vc (mg/100g) | Lycopene (mg/kg) | Fruit Firmness (kg/cm2) | Comprehensive Quality | |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 42.10 ± 2.00a | 14.95 ± 2.61bc | 13.69 ± 2.07abc | 35.03 ± 2.94bc | 3.26 ± 0.23a | 0.52 ± 0.1cd | 6.32 | 29.70 ± 1.21bc | 21.57 ± 1.94ab | 5.98 ± 1.51d | 0.865 |
T2 | 41.13 ± 3.83ab | 11.06 ± 1.33d | 12.05 ± 3.61cd | 32.87 ± 8.66c | 3.19 ± 0.13ab | 0.51 ± 0.02d | 6.31 | 29.15 ± 0.90cd | 19.97 ± 1.13bc | 6.57 ± 1.05d | 0.843 |
T3 | 41.68 ± 1.42a | 16.27 ± 2.15abc | 13.37 ± 1.85abc | 37.08 ± 3.91abc | 3.07 ± 0.12ab | 0.60 ± 0.02b | 5.12 | 26.75 ± 0.53d | 19.60 ± 0.27c | 7.98 ± 0.70bc | 0.422 |
T4 | 39.24 ± 2.05c | 14.21 ± 1.73c | 11.28 ± 2.12d | 39.93 ± 3.83a | 3.10 ± 0.05ab | 0.60 ± 0.04b | 5.18 | 23.25 ± 1.91e | 15.22 ± 0.29e | 9.60 ± 2.30a | 0.391 |
T5 | 41.67 ± 1.29a | 14.91 ± 3.58bc | 13.57 ± 2.56abc | 35.50 ± 7.86bc | 3.00 ± 0.04b | 0.71 ± 0.04a | 4.22 | 22.95 ± 1.91e | 13.45 ± 2.15f | 9.52 ± 1.01a | 0.016 |
T6 | 41.30 ± 2.08ab | 16.74 ± 2.06ab | 13.99 ± 2.63abc | 37.16 ± 4.85abc | 3.17 ± 0.16ab | 0.50 ± 0.03d | 6.34 | 32.90 ± 0.76a | 22.72 ± 0.65a | 6.77 ± 1.04cd | 0.895 |
T7 | 40.69 ± 1.64abc | 17.67 ± 1.93a | 14.27 ± 1.39ab | 38.24 ± 2.66ab | 3.10 ± 0.25ab | 0.59 ± 0.02b | 5.25 | 31.20 ± 4.07abc | 22.37 ± 0.38a | 8.03 ± 1.51bc | 0.517 |
T8 | 40.72 ± 1.62abc | 17.75 ± 2.64a | 15.16 ± 2.63a | 37.34 ± 2.83abc | 3.09 ± 0.04ab | 0.52 ± 0.01cd | 5.94 | 32.60 ± 1.13ab | 22.33 ± 1.81a | 6.61 ± 0.33d | 0.830 |
T9 | 39.58 ± 1.19bc | 15.38 ± 2.46bc | 12.91 ± 1.12bcd | 38.71 ± 3.01ab | 3.00 ± 0.22b | 0.53 ± 0.02cd | 5.66 | 32.25 ± 0.57ab | 20.08 ± 1.17bc | 7.35 ± 0.36bcd | 0.749 |
T10 | 38.99 ± 1.15c | 17.90 ± 1.21a | 13.52 ± 1.29abc | 40.93 ± 1.63a | 3.15 ± 0.06ab | 0.54 ± 0.03c | 5.82 | 31.60 ± 1.62abc | 17.79 ± 0.90d | 8.33 ± 1.23ab | 0.666 |
Factor | wQ1 | wQ2 | wQ3 | ||||
---|---|---|---|---|---|---|---|
Sub-Factor | wQ11 | wQ12 | wQ21 | wQ22 | wQ23 | wQ31 | wQ32 |
0.158 | 0.680 | 0.162 | |||||
0.457 | 0.543 | 0.320 | 0.519 | 0.161 | 0.426 | 0.574 | |
Weight | 0.072 | 0.086 | 0.218 | 0.353 | 0.109 | 0.069 | 0.093 |
Daily Mean Temperature (°C) | Daytime Mean Temperature (°C) | Night-Time Mean Temperature (°C) | PAR (μmol·m−2·s−1) | Insolation Duration (h·d−1) |
---|---|---|---|---|
18.69 ± 1.35 | 26.30 ± 2.67 | 14.30 ± 1.21 | 592.34 ± 88.74 | 9.86 ± 0.94 |
Treatments | Stages | T6 | T7 | T8 | T9 | T10 |
---|---|---|---|---|---|---|
TEP | GM | 249.70 | 232.49 | 248.64 | 245.40 | 260.16 |
V1 | 267.65 | 247.68 | 258.81 | 260.16 | 266.53 | |
V2 | 269.87 | 266.53 | 271.29 | |||
V3 | 280.41 | 271.29 | 276.58 | |||
RR | 283.39 | 263.97 | 290.10 | 276.58 | 278.11 | |
L* | GM | 47.02 ± 1.84bcd | 48.83 ± 1.81ab | 48.19 ± 1.20bc | 46.69 ± 1.06cde | 45.58 ± 1.85def |
V1 | 45.10 ± 3.58ef | 44.38 ± 3.53fg | 50.07 ± 2.22a | 46.48 ± 2.62cde | 47.58 ± 3.26bc | |
V2 | 47.36 ± 1.98bcd | 47.90 ± 1.29bc | 43.78 ± 2.23fgh | |||
V3 | 42.19 ± 1.12hij | 44.65 ± 1.71f | 42.86 ± 1.95ghi | |||
RR | 41.30 ± 2.08ijk | 40.69 ± 1.64jkl | 40.72 ± 1.62jkl | 39.58 ± 1.19kl | 38.99 ± 1.15l | |
a* | GM | −6.54 ± 0.62g | −6.95 ± 0.95g | −6.64 ± 0.43g | −6.49 ± 0.58g | −6.63 ± 0.64g |
V1 | 7.30 ± 5.05d | 12.14 ± 3.30c | −6.98 ± 0.87g | −6.41 ± 1.12g | −5.17 ± 1.09g | |
V2 | −2.29 ± 1.14f | −0.09 ± 2.03e | 7.84 ± 1.98d | |||
V3 | 17.73 ± 2.12a | 11.77 ± 2.84c | 16.58 ± 1.76ab | |||
RR | 16.74 ± 2.06ab | 17.67 ± 1.93a | 17.75 ± 2.64a | 15.38 ± 2.46b | 17.90 ± 1.21a | |
b* | GM | 22.51 ± 1.69abc | 23.30 ± 1.79ab | 23.19 ± 2.15ab | 20.65 ± 2.39cde | 20.35 ± 2.24de |
V1 | 19.23 ± 2.37e | 16.34 ± 2.94f | 23.73 ± 1.96a | 20.73 ± 2.81cde | 21.64 ± 2.44bcd | |
V2 | 24.53 ± 3.41a | 23.26 ± 3.22ab | 15.38 ± 1.64fg | |||
V3 | 14.74 ± 1.61fgh | 14.51 ± 1.80fgh | 14.27 ± 1.95gh | |||
RR | 13.99 ± 2.63gh | 14.27 ± 1.39gh | 15.16 ± 2.63fg | 12.91 ± 1.12h | 13.52 ± 1.29gh | |
CI | GM | −11.94 ± 1.75hi | −11.77 ± 0.92hi | −11.51 ± 8.48hi | −12.91 ± 3.38hi | −13.69 ± 4.85i |
V1 | 15.23 ± 1.80e | 27.27 ± 1.62c | −11.29 ± 1.11hi | −12.93 ± 4.04hi | −9.84 ± 2.66h | |
V2 | −3.89 ± 2.80g | −0.40 ± 3.54f | 20.49 ± 2.83d | |||
V3 | 36.34 ± 2.05b | 27.87 ± 4.60c | 35.42 ± 3.01b | |||
RR | 37.16 ± 1.39b | 38.24 ± 9.84ab | 37.34 ± 1.78b | 38.71 ± 3.35ab | 40.93 ± 1.63a | |
SSC (g/100 g) | GM | 2.60 ± 0.12f | 2.57 ± 0.24f | 2.59 ± 0.12f | 2.61 ± 0.10ef | 2.85 ± 0.26bcdef |
V1 | 2.86 ± 0.18abcde | 2.80 ± 0.03bcdef | 2.69 ± 0.12def | 2.81 ± 0.20bcdef | 2.93 ± 0.14abcd | |
V2 | 2.79 ± 0.16cdef | 2.84 ± 0.22bcdef | 2.95 ± 0.18abcd | |||
V3 | 3.05 ± 0.09abc | 2.85 ± 0.11bcdef | 3.06 ± 0.34abc | |||
RR | 3.17 ± 0.16a | 3.10 ± 0.25ab | 3.09 ± 0.04abc | 3.00 ± 0.22abc | 3.15 ± 0.06a | |
OAC (g/100 g) | GM | 0.69 ± 0.05cde | 0.80 ± 0.01a | 0.78 ± 0.03ab | 0.73 ± 0.13bc | 0.71 ± 0.02cd |
V1 | 0.64 ± 0.03efg | 0.67 ± 0.04de | 0.70 ± 0.02cd | 0.59 ± 0.03fghi | 0.65 ± 0.01def | |
V2 | 0.60 ± 0.03fgh | 0.55 ± 0.01hijk | 0.60 ± 0.03fgh | |||
V3 | 0.56 ± 0.02hij | 0.54 ± 0.01ijk | 0.57 ± 0.03hij | |||
RR | 0.50 ± 0.03k | 0.59 ± 0.02ghi | 0.52 ± 0.01jk | 0.53 ± 0.02jk | 0.54 ± 0.03hijk | |
SSC/OAC | GM | 3.76 | 3.21 | 3.32 | 3.56 | 4.01 |
V1 | 4.49 | 4.20 | 3.85 | 4.72 | 4.51 | |
V2 | 4.65 | 5.16 | 4.93 | |||
V3 | 5.44 | 5.30 | 5.39 | |||
RR | 6.34 | 5.25 | 5.94 | 5.66 | 5.82 | |
Vc (mg/100 g) | GM | 16.15 ± 0.53e | 16.95 ± 0.50e | 16.85 ± 0.53e | 15.30 ± 1.64e | 17.35 ± 0.90e |
V1 | 26.25 ± 0.30bc | 24.00 ± 1.23c | 20.85 ± 3.92d | 20.05 ± 0.62d | 26.10 ± 0.82bc | |
V2 | 25.90 ± 0.77bc | 28.30 ± 2.61b | 28.15 ± 1.62b | |||
V3 | 31.65 ± 0.25a | 31.65 ± 0.82a | 31.60 ± 1.40a | |||
RR | 32.90 ± 0.76a | 31.20 ± 4.07a | 32.60 ± 1.13a | 32.25 ± 0.57a | 31.60 ± 1.62a | |
Lycopene (mg/kg) | GM | 4.40 ± 0.22i | 4.18 ± 0.22i | 6.75 ± 0.46h | 7.32 ± 0.13gh | 6.84 ± 0.53h |
V1 | 9.90 ± 2.91ef | 11.44 ± 0.90e | 6.93 ± 0.58h | 7.23 ± 0.11gh | 7.93 ± 0.52gh | |
V2 | 10.90 ± 0.56e | 8.96 ± 0.81fg | 10.26 ± 0.32ef | |||
V3 | 21.89 ± 3.80a | 16.37 ± 0.26c | 13.78 ± 0.58d | |||
RR | 22.72 ± 0.65a | 22.37 ± 0.38a | 22.32 ± 1.81a | 20.08 ± 1.17b | 17.79 ± 0.90c | |
Fruit firmness (kg/cm2) | GM | 13.53 ± 1.50bc | 15.39 ± 0.92a | 15.03 ± 0.27a | 14.99 ± 0.53a | 14.64 ± 0.77ab |
V1 | 10.18 ± 1.12e | 11.57 ± 0.90d | 13.68 ± 0.49bc | 13.53 ± 0.59bc | 13.57 ± 1.05bc | |
V2 | 8.76 ± 1.14fg | 13.10 ± 0.59c | 12.46 ± 1.47cd | |||
V3 | 7.45 ± 0.98hi | 8.78 ± 1.08fg | 9.82 ± 2.83ef | |||
RR | 6.77 ± 1.04j | 8.03 ± 1.51gh | 6.60 ± 0.33ij | 7.35 ± 0.36hi | 8.33 ± 1.23gh |
CI | SSC | OAC | SSC/OAC | Lycopene | Vc | Fruit Firmness | |
---|---|---|---|---|---|---|---|
TEP | 0.709 ** | 0.869 ** | −0.897 ** | 0.917 ** | 0.774 ** | 0.869 ** | −0.823 ** |
Fruit Quality | Model Equations | a | b | R2 | RMSE |
---|---|---|---|---|---|
SSC | 0.031 | 0.139 | 0.750 | 0.09% | |
OAC | −5 × 10−5 | 0.021 | 0.808 | 0.14% | |
SSC/OAC | 14.989 | −78.874 | 0.833 | 0.358 |
Factor | wQ1 | wQ2 | wQ3 | ||||
---|---|---|---|---|---|---|---|
Sub-Factor | wQ11 | wQ12 | wQ21 | wQ22 | wQ23 | wQ31 | wQ32 |
0.158 | 0.680 | 0.162 | |||||
0.628 | 0.372 | 0.335 | 0.374 | 0.290 | 0.567 | 0.432 | |
Weight | 0.099 | 0.059 | 0.228 | 0.254 | 0.197 | 0.092 | 0.070 |
The Green Mature Stage | The Veraison Stage | The Red-Ripening Stage | |||
---|---|---|---|---|---|
T6 | 0.120 | 0.458 | 0.953 | ||
T7 | 0.028 | 0.531 | 0.799 | ||
T8 | 0.065 | 0.145 | 0.346 | 0.831 | 0.920 |
T9 | 0.098 | 0.275 | 0.409 | 0.720 | 0.870 |
T10 | 0.151 | 0.254 | 0.546 | 0.733 | 0.852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Gong, A.; Liu, X.; Li, N.; Ji, T.; Li, J.; Yang, F. Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses. Plants 2024, 13, 1662. https://doi.org/10.3390/plants13121662
Qin Y, Gong A, Liu X, Li N, Ji T, Li J, Yang F. Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses. Plants. 2024; 13(12):1662. https://doi.org/10.3390/plants13121662
Chicago/Turabian StyleQin, Yongdong, Ao Gong, Xigang Liu, Nan Li, Tuo Ji, Jing Li, and Fengjuan Yang. 2024. "Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses" Plants 13, no. 12: 1662. https://doi.org/10.3390/plants13121662
APA StyleQin, Y., Gong, A., Liu, X., Li, N., Ji, T., Li, J., & Yang, F. (2024). Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses. Plants, 13(12), 1662. https://doi.org/10.3390/plants13121662