Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment Conditions
2.2. Determination of Growth Indicators
2.3. Ion Content and Transcriptional Expression Assay of Key Genes of SOS Signaling Pathway
2.4. Proline (Pro) Content and Its Anabolic Key Enzyme Activities and Gene Expression Assays
2.5. Ascorbic Acid (AsA) Content and Its Anabolic Key Enzyme Activities and Gene Expression Assays
2.6. Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Exogenous AsA Promotes the Growth of Tomato Seedlings under Salt Stress
3.2. Exogenous AsA Increases the Content of Endogenous AsA of Tomato Seedlings under Salt Stress
3.3. Exogenous AsA Affects Key Enzyme Activities and the Gene Expression of AsA Anabolism of Tomato Seedlings under Salt Stress
3.4. Exogenous AsA Alleviates the Ionic Imbalance of Tomato Seedlings under Salt Stress
3.5. Exogenous AsA Affects the Ion Selective Absorption and Transportation Capacity of Tomato Seedlings under Salt Stress
3.6. Exogenous AsA Regulates the Expression of Genes Related to the SOS Pathway of Tomato Seedlings under Salt Stress
3.7. Exogenous AsA Regulates Proline (Pro) Content and Its Anabolic Key Enzyme Activities and Gene Expression in Tomato Seedlings under Salt Stress
3.8. Analysis of Correlation
3.9. Mechanism of AsA in Alleviating Salt Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alves, R.D.C.; Oliveira, K.R.; Lúcio, J.C.B.; Silva, J.D.S.; Carrega, W.C.; Queiroz, S.F.; Gratão, P.L. Exogenous foliar ascorbic acid applications enhance salt-stress tolerance in peanut plants throughout an increase in the activity of major antioxidant enzymes. S. Afr. J. Bot. 2022, 150, 759–767. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Z.; Zhao, B.; Yang, Y.; Mi, J.; Zhao, Z.; Liu, J. Physiological and Proteomic Analysis Responsive Mechanisms for Salt Stress in Oat. Front. Plant Sci. 2022, 13, 891674. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Pati, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life 2021, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Alam, M.U.; Hossain, M.S.; Mahmud, J.A.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Exogenous gallic acid confers salt tolerance in rice seedlings: Modulation of ion homeostasis, osmoregulation, antioxidant defense, and methylglyoxal detoxification systems. Agronomy 2023, 13, 16. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrão, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef] [PubMed]
- Delauney, A.J.; Verma, D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993, 4, 215–223. [Google Scholar] [CrossRef]
- Mansour, M.M.F.; Ali, E.F. Evaluation of proline functions in saline conditions. Phytochemistry 2017, 140, 52–68. [Google Scholar] [CrossRef]
- Yamada, M.; Morishita, H.; Urano, K.; Shiozaki, N.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Yoshiba, Y. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 2005, 56, 1975–1981. [Google Scholar] [CrossRef]
- Li, W.; Sun, J.; Zhang, X.; Ahmad, N.; Hou, L.; Zhao, C.; Pan, J.; Tian, R.; Wang, X.; Zhao, S. The Mechanisms Underlying Salt Resistance Mediated by Exogenous Application of 24-Epibrassinolide in Peanut. Int. J. Mol. Sci. 2022, 23, 6376. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, S.; Wang, J.; Lin, J. Exogenous Abscisic Acid Alleviates Harmful Effect of Salt and Alkali Stresses on Wheat Seedlings. Int. J. Environ. Res. Public Health 2020, 17, 3770. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhang, J.; Li, W.; Ding, Y.; Zhong, Q.; Xu, X.; Wei, H.; Li, G. Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiol. Biochem. 2021, 163, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.F.; Peng, X.F.; Han, X.; Ren, J.; Zhan, K.Y.; Zhu, M. The Stress Factor, Exogenous Ascorbic Acid, Affects Plant Growth and the Antioxidant System in Arabidopsis Thaliana. Russ. J. Plant Physiol. 2014, 61, 467–475. [Google Scholar] [CrossRef]
- Smirnoff, N. Ascorbic Acid Metabolism and Functions: A Comparison of Plants and Mammals. Free Radic. Biol. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Gallie, D.R. The Role of L-ascorbic acid Recycling in Responding to Environmental Stress and in Promoting Plant Growth. J. Exp. Bot. 2012, 64, 433–443. [Google Scholar] [CrossRef]
- Zahra, G.; Marjan, M.; Taher, B.; Ranjbar, M.E. Foliar Application of Ascorbic Acid and Gamma Aminobutyric Acid Can Improve Important Properties of Deficit Irrigated Cucumber Plants (Cucumis sativus cv. Us). Gesunde Pflanz. 2021, 73, 77–84. [Google Scholar] [CrossRef]
- Kakan, X.; Yu, Y.; Li, S.; Li, X.; Huang, R.; Wang, J. Ascorbic Acid Modulation by ABI4 Transcriptional Repression of VTC2 in the Salt Tolerance of Arabidopsis. BMC Plant Biol. 2021, 21, 112. [Google Scholar] [CrossRef]
- Crizel, R.L.; Perin, E.C.; Siebeneichler, T.J.; Borowski, J.M.; Messias, R.S.; Rombaldi, C.V.; Galli, V. Abscisic Acid and Stress Induced by Salt: Effect on the Phenylpropanoid, L-Ascorbic Acid and Abscisic Acid Metabolism of Strawberry Fruits. Plant Physiol. Biochem. 2020, 152, 211–220. [Google Scholar] [CrossRef]
- Elkelish, A.; Qari, S.H.; Mazrou, Y.S.A.; Abdelaal, K.A.A.; Hafez, Y.M.; Abu-Elsaoud, A.M.; Batiha, G.E.-S.; El-Esawi, M.A.; El Nahhas, N. Exogenous Ascorbic Acid Induced Chilling Tolerance in Tomato Plants through Modulating Metabolism, Osmolytes, Antioxidants, and Transcriptional Regulation of Catalase and Heat Shock Proteins. Plants 2020, 9, 431. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Siddique, A.; Ashraf, M.A.; Rasheed, R.; Ibrahim, M.; Iqbal, M.; Akbar, S.; Imran, M. Does Exogenous Application of Ascorbic Acid Modulate Growth, Photosynthetic Pigments and Oxidative Defense in Okra (Abelmoschus esculentus (L.) Moench) under Lead Stress? Acta Physiol. Plant. 2017, 39, 144. [Google Scholar] [CrossRef]
- Zhou, X.; Gu, Z.; Xu, H.; Chen, L.; Tao, G.; Yu, Y.; Li, K. The Effects of Exogenous Ascorbic Acid on the Mechanism of Physiological and Biochemical Responses to Nitrate Uptake in Two Rice Cultivars (Oryza sativa L.) under Aluminum Stress. J. Plant Growth Regul. 2016, 35, 1013–1024. [Google Scholar] [CrossRef]
- Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. Synergistic Effects of Drought and Ascorbic Acid on Growth, Mineral Nutrients and Oxidative Defense System in Canola (Brassica napus L.) Plants. Acta Physiol. Plant. 2014, 36, 1539–1553. [Google Scholar] [CrossRef]
- Hura, A.; Ak, B.; Ma, B. Exogenously Applied Ascorbic Acid Alleviates Salt-Induced Oxidative Stress in Wheat. Environ. Exp. Bot. 2008, 63, 224–231. [Google Scholar] [CrossRef]
- Shalata, A.; Neumann, P.M. Plants and the Environment. Exogenous Ascorbic Acid (Vitamin C) Increases Resistance to Salt Stress and Reduces Lipid Peroxidation. J. Exp. Bot. 2001, 52, 2207–2211. [Google Scholar] [CrossRef] [PubMed]
- Nagda, J.K.; Bhanu, N.A.; Katiyar, D.; Hemantaranjan, A.; Yadav, D.K. Mitigating Effect of Foliar Applied Ascorbic Acid on Morpho-Physiological, Biochemical Changes and Yield Attributes Induced by Salt Stress in Vigna radiate. Agric. Sci. Dig. Res. J. 2017, 37, 112–116. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Y.; Cong, Y.; Zhu, P.; Xing, J.; Cui, J.; Xu, W.; Shi, Q.; Diao, M.; Liu, H. Ascorbic Acid-Induced Photosynthetic Adaptability of Processing Tomatoes to Salt Stress Probed by Fast OJIP Fluorescence Rise. Front. Plant Sci. 2021, 12, 594400. [Google Scholar] [CrossRef] [PubMed]
- Van Echelpoel, W.; Boets, P.; Goethals, P.L. Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of Lemna minuta (Kunth). PLoS ONE 2016, 11, e0166132. [Google Scholar] [CrossRef]
- Li, H.S. Principles and Techniques of Plant Physiological Experiment; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N.A. Salicylic Acid Alleviates Decreases in Photosynthesis under Salt Stress by Enhancing Nitrogen and Sulfur Assimilation and Antioxidant Metabolism Differentially in Two Mungbean Cultivars. J. Plant Physiol. 2011, 168, 807–815. [Google Scholar] [CrossRef]
- Epstein, E. How calcium enhances plant salt tolerance. Science 1998, 280, 1906. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, P.A.F.; de Carvalho, H.H.; Costa, J.H.; Miranda, R.D.S.; Saraiva, K.D.D.C.; de Oliveira, F.D.B.; Coelho, D.G.; Prisco, J.T.; Gomes-Filho, E. Salt acclimation in sorghum plants by exogenous proline: Physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep. 2019, 38, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Q.; Lei, Y.B.; Tian, X.R. Proline Metabolism and Cross-Tolerance to Salinity and Heat Stress in Germinating Wheat Seeds. Russ. J. Plant Physiol. 2005, 52, 793–800. [Google Scholar] [CrossRef]
- Kim, H.R.; Rho, H.W.; Park, J.W.; Park, B.H.; Kim, J.S.; Lee, M.W. Assay of Ornithine Aminotransferase with Ninhydrin. Anal. Biochem. 1994, 223, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl-induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, J. Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. Plant Cell Physiol. 2001, 42, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Gatzek, S.; Wheeler, G.L.; Smirnoff, N. Antisense Suppression of L-galactose Dehydrogenase in Arabidopsis thaliana Provides Evidence for Its Role in Ascorbate Synthesis and Reveals Light Modulated L-galactose Synthesis. Plant J. 2002, 30, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Ôba, K.; Ishikawa, S.; Nishikawa, M.; Mizuno, H.; Yamamoto, T. Purification and Properties of L-Galactono-γ-Lactone Dehydrogenase, a Key Enzyme for Ascorbic Acid Biosynthesis, from Sweet Potato Roots. J. Biochem. 1995, 117, 120–124. [Google Scholar] [CrossRef]
- Esaka, M.; Hattori, T.; Fujisawa, K.; Sakajo, S.; Asahi, T. Molecular Cloning and Nucleotide Sequence of fullFull-length cDNA for Ascorbate Oxidase from Cultured Pumpkin Cells. Eur. J. Biochem. 1990, 191, 537–541. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Chen, X.; Cong, Y.; Cui, J.; Shi, Q.; Liu, H.; Diao, M. The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Sci. Hortic. 2022, 299, 111016. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Chen, X.; Han, H.; Shen, B.; Diao, M.; Liu, H.Y. Exogenous selenium promotes the growth of salt-stressed tomato seedlings by regulating ionic homeostasis, activation energy allocation and CO2 assimilation. Front. Plant Sci. 2023, 14, 1206246. [Google Scholar] [CrossRef] [PubMed]
- Ntanasi, T.; Karavidas, I.; Zioviris, G.; Ziogas, I.; Karaolani, M.; Fortis, D.; Conesa, M.À.; Schubert, A.; Savvas, D.; Ntatsi, G. Assessment of Growth, Yield, and Nutrient Uptake of Mediterranean Tomato Landraces in Response to Salinity Stress. Plants 2023, 12, 3551. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.J. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress. Methods Mol. Biol. 2010, 639, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Pateraki, I.; Sanmartin, M.; Kalamaki, M.S.; Gerasopoulos, D.; Kanellis, A.K. Molecular Characterization and Expression Studies during Melon Fruit Development and Ripening of L-galactono-1, 4-lactone Dehydrogenase. J. Exp. Bot. 2004, 55, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Tabata, K.; Takaoka, T.; Esaka, M. Gene Expression of Ascorbic Acid-Related Enzymes in Tobacco. Phytochemistry 2002, 61, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Yang, Z.; Zhang, X.; Zhang, F.; Hao, L.Z. Effects of drought stress on ascorbic acid contents and metabolism related enzymes of Pugionium cornutum and P. dolabratum. Plant Physiol. J. 2018, 54, 1865–1874. [Google Scholar] [CrossRef]
- Arrigoni, O.; Gara, L.D.; Paciolla, C.; Evidente, A.; de Pinto, M.C.; Liso, R. Lycorine: A powerful inhibitor of L-galactono-γ-lactone dehydrogenase activity. J. Plant Physiol. 1997, 150, 362–364. [Google Scholar] [CrossRef]
- Yamamoto, A.; Bhuiyan, M.N.; Waditee, R.; Tanaka, Y.; Esaka, M.; Oba, K.; Jagendorf, A.; Takabe, T. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J. Exp. Bot. 2005, 56, 1785–1796. [Google Scholar] [CrossRef]
- Toranj, S.; Aliabad, K.K.; Abbaspour, H.; Saeedpour, A. Effect of Salt Stress on the Genes Expression of the Vacuolar H+ -Pyrophosphatase and Na+/H+ Antiporter in Rubia tinctorum. Mol. Biol. Rep. 2020, 47, 235–245. [Google Scholar] [CrossRef]
- Yunus, Q.; Zari, M. Effect of Exogenous Silicon on Ion Distribution of Tomato Plants under Salt Stress. Commun. Soil Sci. Plant Anal. 2017, 48, 1843–1851. [Google Scholar] [CrossRef]
- Ren, J.; Ye, J.; Yin, L.; Li, G.; Deng, X.; Wang, S. Exogenous Melatonin Improves Salt Tolerance by Mitigating Osmotic, Ion, and Oxidative Stresses in Maize Seedlings. Agronomy 2020, 10, 663. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Z.; Zhang, X.; Zheng, S.; Wang, J.; Mo, J. Alleviating Effects of Exogenous Melatonin on Salt Stress in Cucumber. Sci. Hortic. 2020, 262, 109070. [Google Scholar] [CrossRef]
- Dong, X.; Sun, L.; Guo, J.; Liu, L.; Han, G.; Wang, B. Exogenous Boron Alleviates Growth Inhibition by NaCl Stress by Reducing Cl-Uptake in Sugar Beet (Beta vulgaris). Plant Soil 2021, 464, 423–439. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, N.; Wang, P.; Zhang, W.; Yang, X.; Chen, M.; Wang, B.; Sun, J. Na+ Compartmentation Strategy of Chinese Cabbage in Response to Salt Stress. Plant Physiol. Biochem. 2019, 140, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, J.; Liao, W.; Xie, J.; Niu, L.; Zhang, G.; Lv, J.; Xiao, X.; Wu, Y. Ethylene was involved in Ca2+-regulated Na+ homeostasis, Na+ transport and cell ultrastructure during adventitious rooting in cucumber explants under salt stress. J. Plant Biol. 2020, 63, 311–320. [Google Scholar] [CrossRef]
- Brenes, M.; Solana, A.; Boscaiu, M.; Fita, A.; Vicente, O.; Calatayud, Á.; Prohens, J.; Plazas, M. Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L. a Close Wild Relative. Agronomy 2020, 10, 651. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Ghoulam, C.; Foursy, A.; Fares, K. Effects of Salt Stress on Growth, Inorganic Ions and Proline Accumulation in Relation to Osmotic Adjustment in Five Sugar Beet Cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Hinai, M.S.A.; Ullah, A.; Al-Rajhi, R.S.; Farooq, M. Proline Accumulation, Ion Homeostasis and Antioxidant Defence System Alleviate Salt Stress and Protect Carbon Assimilation in Bread Wheat Genotypes of Omani Origin. Environ. Exp. Bot. 2022, 193, 104687. [Google Scholar] [CrossRef]
- Mattioli, R.; Palombi, N.; Funck, D.; Trovato, M. Proline Accumulation in Pollen Grains as Potential Target for Improved Yield Stability Under Salt Stress. Front. Plant Sci. 2020, 11, 582877. [Google Scholar] [CrossRef] [PubMed]
- El-Bassiouny HM, S.; Sadak, M.S. Impact of Foliar Application of Ascorbic Acid and α-Tocopherol on Antioxidant Activity and Some Biochemical Aspects of Flax Cultivars under Salinity Stress. Acta Biológica Colomb. 2014, 20, 209–222. [Google Scholar] [CrossRef]
- Farooq, M.; Irfan, M.; Aziz, T.; Ahmad, I.; Cheema, S.A. Seed Priming with Ascorbic Acid Improves Drought Resistance of Wheat. J. Agron. Crop Sci. 2013, 199, 12–22. [Google Scholar] [CrossRef]
- Darvishan, M.; Tohidi Moghadam, H.R.; Zahedi, H. The Effects of Foliar Application of Ascorbic Acid (Vitamin C) on Physiological and Biochemical Changes of Corn (Zea mays L.) under Irrigation Withholding in Different Growth Stages. Maydica 2013, 58, 195–200. [Google Scholar]
- Terzi, R.; Kalaycıoglu, E.; Demiralay, M.; Saglam, A.; Kadioglu, A. Exogenous Ascorbic Acid Mitigates Accumulation of Abscisic Acid, Proline and Polyamine under Osmotic Stress in Maize Leaves. Acta Physiol. Plant. 2015, 37, 43. [Google Scholar] [CrossRef]
- Kavi Kishor, P.B.; Sreenivasulu, N. Is Proline Accumulation Per Se Correlated with Stress Tolerance or is Proline Homeostasis a More Critical Issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Méndez, S.J.; Urbano-Gálvez, A.; Mahouachi, J. Mitigation of salt stress damages in Carica papaya L. seedlings through exogenous pretreatments of gibberellic acid and proline. Chil. J. Agric. Res. 2022, 82, 167–176. [Google Scholar] [CrossRef]
- Naliwajski, M.; Skłodowska, M. The Relationship between the Antioxidant System and Proline Metabolism in the Leaves of Cucumber Plants Acclimated to Salt Stress. Cells 2021, 10, 609. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Cho, M.C.; Yang, E.Y.; Lee, J.G. Response to Salt Stress in Lettuce: Changes in Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities. Agronomy 2020, 10, 1627. [Google Scholar] [CrossRef]
- Suekawa, M.; Fujikawa, Y.; Esaka, M. Exogenous Proline Has Favorable Effects on Growth and Browning Suppression in Rice but Not in Tobacco. Plant Physiol. Biochem. 2019, 142, 1–7. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′ to 3′) |
---|---|---|
Actin (NM_001323002.1) | FORWARD | TGGTCGGAATGGGAAAG |
REVERSE | CTCAGTCAGGAGAACAGGGT | |
SOS1 (AJ717346.1) | FORWARD | GCTGATGTCTCTGGTGTCTTGACTG |
REVERSE | TTGATGACTCTCGCCCTTGAAAGC | |
SOS2 (NM_001247281.2) | FORWARD | TATTTCCCGCCAACCTGCTAAAGTC |
REVERSE | GACCAGCCCTATTTGCCGTTACC | |
SOS3 (AJ717347.1) | FORWARD | TATTCCACCCAAATGCACCAGTAGC |
REVERSE | CATTCAGCAGCGCCAAAACCATC | |
NHX1 (NM_001246987.1) | FORWARD | CTTGGTCTGGTTCTGGTTGGAAGG |
REVERSE | AGCCCACCATATCGTGACCTGTAG | |
NHX2 (NM_001328634.1) | FORWARD | TCACTGCTACCACTGCCATTGTTG |
REVERSE | ACCATCACCCACAACTTCCAAAGC | |
NHX3 (NM_001247326.2) | FORWARD | TGGTTGGAAGGGCAGCATTTGTC |
REVERSE | TGAAACAGCACCTCGCATAAGTCC | |
HKT1;2 (NM_001302904.1) | FORWARD | CCTACCGTCTTTTCGTCCTCA |
REVERSE | GCTTCCCCACCAAGAAACATC | |
VP1 (NM_001278976.2) | FORWARD | GATGGTTGAGGAAGTGCGTAGGC |
REVERSE | CACAGGTGGCATAGTCAGGCTTG | |
CLC (NM_001247096.2) | FORWARD | CGTCGCCTTCGCCTTCTAATCG |
REVERSE | CAACAAGCAACATCGCCCATTCC | |
P5CS (NM_001246978.2) | FORWARD | TGGAAGATTAGGAGCCCTCTGTGAG |
REVERSE | CTAAGCCGCTGACGACCAACAC | |
OAT (NM_001247674.3) | FORWARD | GGCTCTCATTGTCTCGTGCTGTG |
REVERSE | GGGCAACCGAATCTCCAAAATCAAC | |
ProDH (NM_001347105.1) | FORWARD | CCACCACCACGACCATCACAAC |
REVERSE | CATTACCCACATGCCCAAATCAACC | |
AAO (NM_001247900.2) | FORWARD | ACAAGCAGGACTACAAGGAATGATG |
REVERSE | AGGCAATGAAGCAAGACCAGTTG | |
GalDH (XM_004230609.4) | FORWARD | CAACGACTGGAATGGACGAAGAAG |
REVERSE | AACAGGAGATCACAATTCACAAGACC | |
GalLDH (NM_001247674.3) | FORWARD | GTTGAGAGGCAGGAGCTTGTAGAAC |
REVERSE | TGTCACAACCACAACGGCATCAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Han, H.; Cong, Y.; Li, X.; Zhang, W.; Cui, J.; Xu, W.; Pang, S.; Liu, H. Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. Plants 2024, 13, 1672. https://doi.org/10.3390/plants13121672
Chen X, Han H, Cong Y, Li X, Zhang W, Cui J, Xu W, Pang S, Liu H. Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. Plants. 2024; 13(12):1672. https://doi.org/10.3390/plants13121672
Chicago/Turabian StyleChen, Xianjun, Hongwei Han, Yundan Cong, Xuezhen Li, Wenbo Zhang, Jinxia Cui, Wei Xu, Shengqun Pang, and Huiying Liu. 2024. "Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis" Plants 13, no. 12: 1672. https://doi.org/10.3390/plants13121672
APA StyleChen, X., Han, H., Cong, Y., Li, X., Zhang, W., Cui, J., Xu, W., Pang, S., & Liu, H. (2024). Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. Plants, 13(12), 1672. https://doi.org/10.3390/plants13121672