Low-Potassium Fruits and Vegetables: Research Progress and Prospects
Abstract
:1. Introduction
2. Cultivation Methods of LK Fruits and Vegetables
2.1. LKEC Method
2.2. LKQM Method
3. Optimization of the Cultivation Methods of LK Fruits and Vegetables
3.1. Utilizing High K Utilization Efficiency (KUE) Varieties
3.2. Optimize the Cultivation Temperatures
3.3. Optimize Light Conditions
Light Condition | Variation Trend | Plant Variety | K Uptake | K Concentration | References | |
---|---|---|---|---|---|---|
Light intensity | Went from 7 to 15 (DLI, mol·m−2·d−1) | Basil | ↓ | [68] | ||
Went from 105 to 315 (PPFD, μmol·m−2·s−1) | Brassica microgreens | ↓ | [69] | |||
Went from 120 to 240 (PPFD, μmol·m−2·s−1) | Cucumber | ↑ | [104] | |||
Went from 100 to 600 (PPFD, μmol·m−2·s−1) | Lettuce | First↑ then ↓, highest on 500 | ↓ | [54] | ||
Went from 300 to 450 (PPFD, μmol·m−2·s−1) | Lettuce | — | [87] | |||
Went from 150 to 450 (PPFD, μmol·m−2·s−1) | Lettuce | ↓ | [70] | |||
Went from 65 to 446 (PPFD, μmol·m−2·s−1) | New Guinea impatiens | Irregularity | [67] | |||
90% to 0% shading | Dactylis glomerata, Festuca ovina, Trifolium subterraneum, Medicago lupulina | ↓ | [71] | |||
15% to 100% full light | Erythrophleum fordii Oliv. | ↓ | [73] | |||
33% to 100% full sunlight | Tomato | ↓ | [105] | |||
40% to 0% shading | Tulbaghia violacea L. | ↓ | [72] | |||
Light quality | Monochromatic light vs. compound light | R, B, G, 7R1B, 13R2B1Fr | Coriandrum sativum L. | The sequence from high to low: R, B, G, 13R2B1Fr, 7R1B | [75] | |
R, B, 8R1B, W FL | Cucumber | The sequence from high to low: R, B, 8R1B, W | [76] | |||
R, B, 3R1B, 7R1B, W FL | Chinese chive | The sequence from high to low: B, 3R1B, 7R1B, W, R | [77] | |||
R, B, 3R1B, W FL | Garlic seedling | The sequence from high to low: B, 3R1B, W, R | [78] | |||
R, B, RB, UV-A, W FL | Lettuce (Lactuca sativa L. ‘Lollo Rosa’) | — | [81] | |||
R, B, RB, UV-A, W FL | Lettuce (Lactuca sativa L. ‘Chung Chi Ma’) | — | [82] | |||
R, B, 8R1B, W FL | Lettuce | — | [79] | |||
R, B, G, RB, YR, W FL | Michaelmas daisy | — | [80] | |||
R/B light ratio | R/B light ratio from 100:0 decreased to 0:100 | Lettuce | First ↑ then ↓, highest on 70:30, lowest on 100:0 | — | [84] | |
R/B light ratio from 100:0 decreased to 60:40 | Lettuce | ↓ | [85] | |||
R/B light ratio from 3:1 decreased to 1:3 | Lettuce | First ↑ then ↓, highest on 1:1, lowest on 3:1 | [86] | |||
R/B light ratio from 8:1 decreased to 1:1 | Lettuce | — | [87] | |||
R/B light ratio from 4:1 decreased to 1:2 | Sweet basil | First ↑ then ↓, highest on 3:1, lowest on 1:2 | First ↑ then ↓, highest on 3:1, lowest on 1:2 | [83] | ||
W LED, RB400, RB420, RB450, RB470 | Brassica oleracea var. acephala | The sequence from high to low is: W, RB470, RB450, RB420, RB400 | [88] | |||
G light | G light ratio rose | Lettuce | ↓ | [85] | ||
G/R light ratio rose | Flowering Chinese cabbage | ↓ | [89] | |||
W FL vs. RB | Broccoli | ↓ | [90] | |||
W FL vs. RB | Sweet basil | ↓ | [83] | |||
W HPS vs. RB | Lettuce | ↓ | [91] | |||
Far-red Light | Supplement far-red light | Chinese Kale | ↓ | [93] | ||
Supplement B, R, Fr LED to W FL | Lettuce | — | [106] | |||
Far-red/red light ratio rose | Lettuce | ↑ | [91] | |||
Supplement Fr to W LED light | Spinach | ↓ | [94] | |||
Supplement Fr | Tomato | ↑ | [92] | |||
Supplement Fr to R LED light | Tomato | — | — | [107] | ||
UV | Supplement UV-A | Basil | ↓ | [95] | ||
Supplement UV-B | Soybean seedlings | Root ↓, steam ↓, leaf ↑ | [108] | |||
Supplement UV-B | Spring wheat | ↑ | [109] | |||
Supplement UV-B | Soybean | ↓ | [96] | |||
Supplement UV-B | Mono-maple seedlings | Root ↑, steam ↓, leaf ↑ | [110] | |||
Supplement UV-B | Mung bean seedlings | Root ↑, steam ↓, leaf ↑ | [111] | |||
Photoperiod | Supplementary illumination duration from 0 h increased to 12 h | Cucumber | ↑ | Irregularity, lowest on 3 h | [98] | |
12 h extends to 24 h | Lettuce | — | ↓ | [86] | ||
12 h extends to 16 h | Lettuce | ↑ | [100] | |||
Continuous lighting before harvest | Lettuce | ↑ | ↓ | [99] | ||
8/4 h (T12), 16/8 h (CK), 24/12 h (T36), 32/16 h (T48) | Lettuce | — | The sequence from high to low is: T12, T36, CK, T48 | [102] | ||
Lengthen | Sweet Pepper | ↑ | [97] | |||
12 h extends to 16 h | Tomato | Leaf ↑, Fruit ↓ | [101] |
3.4. Optimizing Harvest Timing and Plant Parts Selections
3.5. Application of Exogenous Substances
4. Shortcomings and Prospects of Research on LK Fruits and Vegetables
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Sustr, M.; Soukup, A.; Tylova, E. Potassium in Root Growth and Development. Plants 2019, 8, 435. [Google Scholar] [CrossRef]
- De La Guardia, M.D.; Benlloch, M. Effects of potassium and gibberellic acid on stem growth of whole sunflower plants. Physiol. Plant. 1980, 49, 443–448. [Google Scholar] [CrossRef]
- Tränker, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant 2018, 163, 414–431. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Cleaver, T.J.; Turner, M.K.; Hunt, J.; Niendorf, K.B.; Loquens, S.M.H. Comparison of the effects of potassium fertilizer on the yield, potassium content and quality of 22 different vegetable and agricultural crops. J. Agric. Sci. 1980, 95, 441–456. [Google Scholar] [CrossRef]
- Javaria, S.; Khan, M.Q.; Bakhsh, I. Effect of potassium on chemical and sensory attributes of tomato fruit. J. Anim. Plant Sci. 2012, 22, 1081–1085. [Google Scholar]
- Ruiz, R. Effects of different potassium fertilizers on yield, fruit quality and nutritional status of ‘Fairlane’ nectarine trees and on soil fertility. Acta Hortic. 2006, 721, 185–190. [Google Scholar] [CrossRef]
- Ogawa, A.; Fujita, S.; Toyofuku, K. A cultivation method for lettuce and spinach with high levels of vitamin C using potassium restriction. Environ. Control Biol. 2014, 52, 95–99. [Google Scholar] [CrossRef]
- Okada, H.; Abedin, T.; Yamamoto, A.; Hayashi, T.; Hosokawa, M. Production of low-potassium onions based on mineral absorption patterns during growth and development. Sci. Hortic. 2020, 267, 109252. [Google Scholar] [CrossRef]
- Delanaye, P.; Glassock, R.J.; De Broe, M.E. Epidemiology of chronic kidney disease: Think (at least) twice! Clin. Kidney J. 2017, 10, 370–374. [Google Scholar] [CrossRef]
- Talukder, M.R.; Asaduzzaman, M.; Ueno, M.; Kawaguchi, M.; Yano, S.; Ban, T.; Tanaka, H.; Asao, T. Low potassium content vegetables research for chronic kidney disease patients in Japan. Nephrol. Open J. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Kes, P. Hyperkalemia: A potentially lethal clinical condition. Acta Clin. Croat. 2001, 40, 215–225. [Google Scholar]
- Spital, A.; Stems, R.H. Potassium homeostasis in dialysis patients. Semin. Dial. 1988, 1, 14–20. [Google Scholar] [CrossRef]
- Bajwa, S.J.S.; Kwatra, I.S. Nutritional needs and dietary modifications in patients on dialysis and chronic kidney disease. J. Med. Nutr. Nutraceuticals 2013, 2, 46. [Google Scholar] [CrossRef]
- Zhang, G.; Yan, Z.; Wang, Y.; Feng, Y.; Yuan, Q. Exogenous proline improve the growth and yield of lettuce with low potassium content. Sci. Hortic. 2020, 271, 109469. [Google Scholar] [CrossRef]
- Cupisti, A.; Kovesdy, C.; D’Alessandro, C.; Kalantar-Zadeh, K. Dietary approach to recurrent or chronic hyperkalaemia in patients with decreased kidney function. Nutrients 2018, 10, 261. [Google Scholar] [CrossRef]
- Renna, M.; Castellino, M.; Leoni, B.; Paradiso, V.; Santamaria, P. Microgreens production with low potassium content for patients with impaired kidney function. Nutrients 2018, 10, 675. [Google Scholar] [CrossRef]
- Tsukagoshi, S.; Hamano, E.; Hohjo, M.; Ikegami, F. Hydroponic production of low-potassium tomato fruit for dialysis patients. Int. J. Veg. Sci. 2015, 22, 451–460. [Google Scholar] [CrossRef]
- Ogawa, A.; Taguchi, S.; Kawashima, C. A cultivation method of spinach with a low potassium content for patients on dialysis. Jpn. J. Crop Sci. 2007, 76, 232–237. [Google Scholar] [CrossRef]
- Zhang, G.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. Plant growth and photosynthesis response to low potassium conditions in three lettuce (Lactuca sativa) types. Hortic. J. 2017, 86, 229–237. [Google Scholar] [CrossRef]
- Fuad Mondal, M.; Asaduzzaman, M.; Ueno, M.; Kawaguchi, M.; Yano, S.; Ban, T.; Tanaka, H.; Asao, T. Reduction of potassium (K) content in strawberry fruits through KNO3 management of hydroponics. Hortic. J. 2017, 86, 26–36. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Talukder, M.R.; Tanaka, H.; Ueno, M.; Kawaguchi, M.; Yano, S.; Ban, T.; Asao, T. Production of low-potassium content melon through hydroponic nutrient management using perlite substrate. Front. Plant Sci. 2018, 9, 1382. [Google Scholar] [CrossRef]
- Tsukagoshi, S.; Aoki, M.; Johkan, M.; Hohjo, M.; Maruo, T. A quantitative management of potassium supply for hydroponic production of low-potassium cherry-type tomato fruit for chronic kidney disease patients. Horticulturae 2021, 7, 87. [Google Scholar] [CrossRef]
- Liu, X. Effect of Low-Potassium Nutrition on the Quality and Potassium Content of Leafy Vegetables. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Son, Y.J.; Park, J.E.; Kim, J.; Yoo, G.; Lee, T.S.; Nho, C.W. Production of low potassium kale with increased glucosinolate content from vertical farming as a novel dietary option for renal dysfunction patients. Food Chem. 2021, 339, 128092. [Google Scholar] [CrossRef]
- Xu, H.; Johkan, M.; Tsukagoshi, S.; Maruo, T. Effect of nutrient quantitative management on potassium and sodium concentration in low-potassium lettuce. Hortic. J. 2021, 90, 154–160. [Google Scholar] [CrossRef]
- Flowers, T.J.; Läuchli, A. Sodium versus potassium: Substitution and compartmentation. In Encyclopedia of Plant Physiology; Läuchli, A., Pirson, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Liu, G.; Liu, G. The effects of partial replacement of potassium by sodium or calcium in Indica rice (O. Sativa). Acta Agron. Sin. 1996, 22, 313–319. [Google Scholar]
- Ogawa, A.; Eguchi, T.; Toyofuku, K. Cultivation methods for leaf vegetables and tomatoes with low potassium content for dialysis patients. Environ. Control Biol. 2012, 50, 407–414. [Google Scholar] [CrossRef]
- Terabayashi, S.; Asaka, T.; Tomatsuri, A.; Date, S.; Fujime, Y. Effect of the limited supply of nitrate and phosphate on nutrient uptake and fruit production of tomato (Lycopersicon esculentum Mill.) in hydroponic culture. Hortic. Res. 2004, 3, 195–200. [Google Scholar] [CrossRef]
- Maruo, T.; Takagaki, M.; Shinohara, Y. Critical nutrient concentrations for absorption of some vegetables. Acta Hortic. 2004, 644, 493–499. [Google Scholar] [CrossRef]
- He, J.; See, X.E.; Qin, L.; Choong, T.W. Effects of root-zone temperature on photosynthesis, productivity and nutritional quality of aeroponically grown salad rocket (Eruca sativa) vegetable. Am. J. Plant Sci. 2016, 7, 1993–2005. [Google Scholar] [CrossRef]
- Teng, W.; He, X.; Tong, Y. Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. J. Integr. Agric. 2017, 16, 2657–2673. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Zhang, Y.; Zhou, J.; Chen, X. Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Field Crops Res. 2015, 170, 76–82. [Google Scholar] [CrossRef]
- Yang, H.; Peng, L.; Chen, L.; Zhang, L.; Kan, L.; Shi, Y.; Mei, X.; Malladi, A.; Xu, Y.; Dong, C. Efficient potassium (K) recycling and root carbon (C) metabolism improve K use efficiency in pear rootstock genotypes. Plant Physiol. Biochem. 2023, 196, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Mou, B. Nutrient content of lettuce and its improvement. Curr. Nutr. Food Sci. 2009, 5, 242–248. [Google Scholar] [CrossRef]
- Yang, X.E.; Liu, J.X.; Wang, W.M.; Ye, Z.Q.; Luo, A.C. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J. Plant Nutr. 2004, 27, 837–852. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Li, T.; Yu, H.; Huang, P. Differences in the efficiency of potassium (K) uptake and use in barley varieties. Agric. Sci. China 2011, 10, 101–108. [Google Scholar] [CrossRef]
- Figdore, S.S.; Gabelman, W.H.; Gerloff, G.C. The accumulation and distribution of sodium in tomato strains differing in potassium efficiency when grown under low-K stress. Plant Soil 1987, 99, 85–92. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wei, K.; Ruan, L.; Wang, L.; Cheng, H.; Zhang, F.; Wu, L.; Bai, P. Differential transcriptomic changes in low-potassium sensitive and low-potassium tolerant tea plant (Camellia sinensis) genotypes under potassium deprivation. Sci. Hortic. 2019, 256, 108570. [Google Scholar] [CrossRef]
- George, M.S.; Lu, G.; Zhou, W. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.). Field Crops Res. 2002, 77, 7–15. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, F.; Gao, X.; Lu, J.; Wan, K.; Nian, F.; Wang, Y. Study on the nutrition characteristics of different K use efficiency cotton genotypes to K deficiency stress. Agric. Sci. China 2008, 7, 740–745. [Google Scholar] [CrossRef]
- Jiang, C.; Xia, Y.; Chen, F.; Lu, J.; Wang, Y. Plant growth, yield components, economic responses, and soil indigenous K uptake of two cotton genotypes with different K-efficiencies. Agric. Sci. China 2011, 10, 705–713. [Google Scholar] [CrossRef]
- Wang, J.; Hou, P.; Zhu, G.; Dong, Y.; Hui, Z.; Ma, H.; Xu, X.; Nin, Y.; Ai, Y.; Zhang, Y. Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato (Ipomoea batatas L.). Field Crops Res. 2017, 211, 147–154. [Google Scholar] [CrossRef]
- Liang, S. Stress Screening of Potassium-Efficient Germplasm Resources of Proso Millet (Panicum miliaceum L.) and Study on Physiological Mechanism. Master’s Thesis, Northwest Agriculture & Forestry University, Yangling, China, 2022. [Google Scholar]
- Fan, M.; Bie, Z.; Xie, H.; Zhang, F.; Zhao, S.; Zhang, H. Genotypic variation for potassium efficiency in wild and domesticated watermelons under ample and limited potassium supply. J. Plant Nutr. Soil Sci. 2013, 176, 466–473. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, J.; Eshetu, T.A. Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr. Cycl. Agroecosyst. 1999, 54, 41–48. [Google Scholar]
- Deng, Z. Screening High Potassium Efficiency Potato Genotypes and Physiological Responses in Different Potassium Level. Master’s Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar]
- Meng, X.; Liang, T.; Liu, F.; Yu, H.; Hu, L.; Zhang, Y.; Zhou, H.; Zhang, S.; Yin, Q. Potassium absorption and kinetics by different tobacco varieties at different potassium efficiency. Tob. Sci. Technol. 2019, 52, 1–7. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C. Root zone temperature, plant growth and yield of broccoli [Brassica oleracea (Plenck) var. italica] as affected by plastic film mulches. Sci. Hortic. 2009, 123, 156–163. [Google Scholar] [CrossRef]
- Yan, Q.; Duan, Z.; Mao, J.; Li, X.; Dong, F. Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics. Soil Sci. Plant Nutr. 2012, 58, 707–717. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J.; Fu, W. Growth, photosynthesis, and nutrient uptake at different light intensities and temperatures in lettuce. HortScience 2019, 54, 1925–1933. [Google Scholar] [CrossRef]
- Hood, T.M.; Mills, H.A. Root-zone temperature affects nutrient uptake and growth of snapdragon. J. Plant Nutr. 1994, 17, 279–291. [Google Scholar] [CrossRef]
- Turner, D.W.; Lahav, E. Temperature influences nutrient absorption and uptake rates of bananas grown in controlled environments. Sci. Hortic. 1985, 26, 311–322. [Google Scholar] [CrossRef]
- Xia, Z.; Wu, M.; Bai, J.; Zhang, S.; Zhang, G.; Gong, Y.; Yang, Y.; Lu, H. Root zone temperature regulates potassium absorption and photosynthesis in maize (Zea mays). Plant Physiol. Biochem. 2023, 198, 107694. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Matsuo, S.; Kanayama, Y.; Kanahama, K. Effect of root-zone heating on root growth and activity, nutrient uptake, and fruit yield of tomato at low air temperatures. J. Jpn. Soc. Hortic. Sci. 2014, 83, 295–301. [Google Scholar] [CrossRef]
- Clarke, S.J.; Lamont, K.J.; Pan, H.Y.; Barry, L.A.; Hall, A.; Rogiers, S.Y. Spring root-zone temperature regulates root growth, nutrient uptake and shoot growth dynamics in grapevines. Aust. J. Grape Wine Res. 2015, 21, 479–489. [Google Scholar] [CrossRef]
- Giri, A.; Heckathorn, S.; Mishra, S.; Krause, C. Heat stress decreases levels of nutrient-uptake and assimilation proteins in tomato roots. Plants 2017, 6, 6. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B. Root physiological factors involved in cool-season grass response to high soil temperature. Environ. Exp. Bot. 2005, 53, 233–245. [Google Scholar] [CrossRef]
- Tan, L.P.; He, J.; Lee, S.K. Effects of root-zone temperature on the root development and nutrient uptake of Lactuca sativa L. “Panama” grown in an aeroponic system in the tropics. J. Plant Nutr. 2002, 25, 297–314. [Google Scholar] [CrossRef]
- Du, Y.C.; Tachibana, S. Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants. Sci. Hortic. 1994, 58, 289–301. [Google Scholar] [CrossRef]
- Boatwright, G.O.; Ferguson, H.; Sims, J.R. Soil temperature around the crown node influences early growth, nutrient uptake, and nutrient translocation of spring wheat. Agron. J. 1976, 68, 227–231. [Google Scholar] [CrossRef]
- Matías, J.; Rodríguez, M.J.; Cruz, V.; Calvo, P.; Reguera, M. Heat stress lowers yields, alters nutrient uptake and changes seed quality in quinoa grown under Mediterranean field conditions. J. Agron. Crop Sci. 2021, 207, 481–491. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Chen, Y.; Liu, C.; Yang, Y. Light regulation of potassium in plants. Plant Physiol. Biochem. 2022, 170, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Mankin, K.R.; Fynn, R.P. Nutrient uptake response of New Guinea impatiens to light, temperature, and nutrient solution concentration. J. Am. Soc. Hortic. Sci. 1996, 121, 826–830. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Gerovac, J.R.; Craver, J.K.; Boldt, J.K.; Lopez, R.G. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of brassica microgreens. HortScience 2016, 51, 497–503. [Google Scholar] [CrossRef]
- Song, J.; Huang, H.; Hao, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Sci. Rep. 2020, 10, 2796. [Google Scholar] [CrossRef]
- Koukoura, Z.; Kyriazopoulos, A.P.; Parissi, Z.M. Growth characteristics and nutrient content of some herbaceous species under shade and fertilization. Span. J. Agric. Res. SJAR 2009, 7, 431–438. [Google Scholar] [CrossRef]
- Ncise, W.; Daniels, C.W.; Nchu, F. Effects of light intensities and varying watering intervals on growth, tissue nutrient content and antifungal activity of hydroponic cultivated Tulbaghia violacea L. under greenhouse conditions. Heliyon 2020, 6, e03906. [Google Scholar] [CrossRef]
- Ma, S.; Lin, J.; Long, Q.; Fan, W.; Cheng, F.; Yang, M. The changes and correlations of mineral nutrition and endogenous hormones in Erythrophleum fordii seedlings under different illumination levels. Hubei Agric. Sci. 2016, 55, 2815–2819. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Z.; Jiang, X.; Ahammed, G.J.; Zhou, Y. Light regulation of horticultural crop nutrient uptake and utilization. Hortic. Plant J. 2021, 7, 367–379. [Google Scholar] [CrossRef]
- Nguyen, D.T.P.; Kitayama, M.; Lu, N.; Takagaki, M. Improving secondary metabolite accumulation, mineral content, and growth of coriander (Coriandrum sativum L.) by regulating light quality in a plant factory. J. Hortic. Sci. Biotechnol. 2019, 95, 356–363. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Sci. Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Chen, X. Effects of Different Light Emitting Diode Sources on Physiological Characteristics and Quality in Chinese Chive. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2012. [Google Scholar]
- Yang, X. Effects of Light Quality on the Physiological Characteristics and Quality in Garlic Seedling. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2011. [Google Scholar]
- Zheng, X. Effects of Different Light Quality and Nutrient Composition on the Growth and Tipburn Incidence of Lettuce. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2011. [Google Scholar]
- Schroeter-Zakrzewska, A.; Kleiber, T. The effect of light colour and type of lamps on rooting and nutrient status in cuttings of michaelmas daisy. Bulg. J. Agric. Sci. 2014, 20, 1426–1434. [Google Scholar]
- Shin, Y.S.; Lee, M.J.; Lee, E.S.; Ahn, J.H.; Lim, J.H.; Kim, H.J.; Park, H.W.; Um, Y.G.; Park, S.D.; Chai, J.H. Effect of LEDs (light emitting diodes) irradiation on growth and mineral absorption of lettuce (Lactuca sativa L. ‘Lollo Rosa’). J. Bio-Environ. Control 2012, 21, 180–185. [Google Scholar]
- Shin, Y.S.; Lee, M.J.; Lee, E.S.; Ahn, J.H.; Do, H.W.; Choi, D.W.; Jeong, J.D.; Lee, J.E.; Kim, M.K.; Park, J.U.; et al. Effect of light emitting diodes treatment on growth and mineral contents of lettuce (Lactuca sativa L. ‘Chung Chi Ma’). Korean J. Org. Agric. 2013, 21, 659–668. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Unraveling the role of red:blue led lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, W.; Xue, X.; Beauty, M.M. Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce. Spectrosc. Spectr. Anal. 2014, 34, 1394–1397. [Google Scholar]
- Wu, J. Effect of Light Quality Ratio on Growth, Quality and Nutrient Absorption of Lettuce. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Liu, W.; Zha, L.; Zhang, Y. Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities. Agronomy 2020, 10, 1678. [Google Scholar] [CrossRef]
- Tian, J. Effects of Light Conditions and Nutrient Solution Concentration on the Content of Potassium in Lettuce. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2018. [Google Scholar]
- Kopsell, D.A.; Sams, C.E.; Metallo, R.M.; Waterland, N.L.; Kopsell, D.E. Biomass, carbohydrates, pigments, and mineral elements in kale (Brassica oleracea var. acephala) microgreens respond to LED blue-light wavelength. Sci. Hortic. 2024, 328, 112929. [Google Scholar] [CrossRef]
- Wei, D. Effects of LED Light Environment on Growth, Quality and Nutrient Absorption of Flowering Chinese Cabbage. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2019. [Google Scholar]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Morrow, R.C. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. J. Am. Soc. Hortic. Sci. 2014, 139, 469–477. [Google Scholar] [CrossRef]
- Pinho, P.; Jokinen, K.; Halonen, L. The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Light. Res. Technol. 2017, 49, 866–881. [Google Scholar] [CrossRef]
- Cao, K.; Yu, J.; Ye, L.; Zhao, H.; Zou, Z. Optimal LED far-red light intensity in end-of-day promoting tomato growth and development in greenhouse. Trans. Chin. Soc. Agric. Eng. 2016, 32, 171–176. [Google Scholar] [CrossRef]
- Li, Y. Transcriptomic Analysis of the Morphology and Glucosinolate Metabolism in Chinese Kale with Supplemental Far-Red Light. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2020. [Google Scholar]
- Lőrinc, U.; István, M.; Balázs, V.; Zoltán, P.; Éva, D. Effects of light intensity and spectral composition on the growth and metabolism of spinach (Spinacia oleracea L.). Acta Biol. Plant. Agriensis 2019, 7, 3–18. [Google Scholar] [CrossRef]
- Viršilė, A.; Laužikė, K.; Sutulienė, R.; Brazaitytė, A.; Kudirka, G.; Samuolienė, G. Distinct impacts of UV-A Light wavelengths on nutraceutical and mineral contents in green and purple basil cultivated in a controlled environment. Horticulturae 2023, 9, 1168. [Google Scholar] [CrossRef]
- Peng, Q.; Zhou, Q. Effects of enhanced UV-B radiation on the distribution of mineral elements in soybean (Glycine max) seedlings. Chemosphere 2010, 78, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Zhang, Z.; Chang, P.; Zhang, L.; Wang, J.; He, H. Effects of supplemental light quality and durations of illumination on mineral nutrient absorption and distribution of greenhouse-grown sweet pepper. J. Nucl. Agric. Sci. 2020, 34, 1814–1825. [Google Scholar]
- Li, H.; Liu, H. Effects of supplementary illumination at night on hormones content and nutrient absorption of cucumber seedlings. Chin. Agric. Sci. Bull. 2013, 29, 74–78. [Google Scholar]
- Liu, W.; Zhang, Y.; Zha, L. Effect of LED red and blue continuous lighting before harvest on growth and nutrient absorption of hydroponic lettuce cultivated under different nitrogen forms and light quality. Spectrosc. Spectr. Anal. 2020, 40, 2215–2221. [Google Scholar]
- Mao, J.; Qiu, Q.; Zhang, F.; Li, N.; Hu, Y.; Xue, X. Impact of different photoperiods on the morphological index, quality and absorptive amount to ions of lettuce in fluorescent light source. North. Hortic. 2013, 15, 24–28. [Google Scholar]
- Han, J. Effects of Exogenous Iron on Growth and Fruit Quality of Tomato under Different Photoperiod. Master’s Thesis, Shanxi Agricultural University, Taigu, China, 2020. [Google Scholar]
- Shao, M.; Liu, W.; Zhou, C.; Wang, Q.; Li, B. Effects of light-dark cycle altered at pre-harvest stage on the growth and nutrient element contents of hydroponic lettuce cultivated under led red and blue light. China Illum. Eng. J. 2020, 31, 126–130. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Cafiero, G.; Pisante, M. Application of photo-selective films to manipulate wavelength of transmitted radiation and photosynthate composition in red beet (Beta vulgaris var. conditiva Alef.). J. Sci. Food Agric. 2013, 94, 713–720. [Google Scholar] [CrossRef]
- Grygoray, E.E.; Tabalenkova, G.N.; Dalke, I.V.; Golovko, T.K. Mineral nutrition and productivity of the greenhousecucumber crop depending on lighting. Agrokhimiya 2015, 4, 74–79. [Google Scholar]
- Magalhaes, J.R.; Wilcox, G.E. Tomato growth and nutrient uptake patterns as influenced by nitrogen form and light intensity. J. Plant Nutr. 2008, 6, 941–956. [Google Scholar] [CrossRef]
- Lee, M.; Xu, J.; Wang, W.; Rajashekar, C.B. The effect of supplemental blue, red and far-red light on the growth and the nutritional quality of red and green leaf lettuce. Am. J. Plant Sci. 2019, 10, 2219–2235. [Google Scholar] [CrossRef]
- Kim, H.; Yang, T.; Choi, S.; Wang, Y.; Lin, M.; Liceaga, A.M. Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Sci. Hortic. 2020, 261, 108985. [Google Scholar] [CrossRef]
- Shen, X.; Li, Z.; Duan, L.; Eneji, A.E.; Li, J. Silicon effects on the partitioning of mineral elements in soybean seedlings under drought and ultraviolet-B radiation. J. Plant Nutr. 2014, 37, 828–836. [Google Scholar] [CrossRef]
- Yue, M.; Li, Y.; Wang, X. Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environ. Exp. Bot. 1998, 40, 187–196. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Q. Responses in some growth and mineral elements of mono maple seedlings to enhanced ultraviolet-B and to nitrogen supply. J. Plant Nutr. 2009, 32, 772–784. [Google Scholar] [CrossRef]
- Zhang, Y. Effects of the Combination of Enhanced UV-B Radiation and Cd2+ on Photosynthesis and Metal Elements Absorption in Mung Bean Seedlings at the Initial Stage of Growth. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2005. [Google Scholar]
- Marschner, H. Functions of mineral nutrients: Micronutrients. In Mineral Nutrition of Higher Plants; Marschner, R., Ed.; Academic Press: London, UK, 1995; pp. 313–404. [Google Scholar]
- Karley, A.J.; White, P.J. Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Curr. Opin. Plant Biol. 2009, 12, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture—Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Zhao, K.; Xu, K.; Xu, N.; Wang, Y. Absorption and distribution of nitrogen, phosphorus and potassium in onion. Plant J. Fertil. Sci. 2009, 15, 241–246. [Google Scholar]
- Wang, X.; Luo, J.F.; Liu, R.; Liu, X.; Jiang, J. Gibberellins regulate root growth by antagonizing the jasmonate pathway in tomato plants in response to potassium deficiency. Sci. Hortic. 2023, 309, 111693. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Y.; Jin, R.; Zhao, P.; Zhang, Q.; Zhu, X.; Wang, J.; Tang, Z. Exogenous IAA enhances low potassium tolerance of sweetpotato by regulating root response strategy. Arch. Agron. Soil Sci. 2023, 70, 1–15. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Y.; Dong, Q.; Wang, K.; Zhang, H.; Du, Q.; Wang, J.; Wang, X.; Yu, H.; Zhao, X. Integrated transcriptomic and metabolomic analysis of exogenous NAA effects on maize seedling root systems under potassium deficiency. Int. J. Mol. Sci. 2024, 25, 3366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shan, D.; Liu, S.; You, B.; Guo, J.; Chen, X. Protective role of theanine on tobacco seedlings under low potassium stress. J. Anhui Agric. Univ. 2016, 43, 282–287. [Google Scholar] [CrossRef]
- Guo, M.; Zhu, Y.; Huang, W.; Si, D.; Li, H. Effects of exogenous salicylic acid on the growth of Zinnia elegans seedlings under low potassium stress. J. Henan Agric. Sci. 2019, 48, 146–150. [Google Scholar] [CrossRef]
- Yang, R.; Guo, S.; Yang, X.; Zhang, Y.; Shi, Y. Effects of silicon on growth and physiological characteristics of tomato seedlings under low potassium stress. Shandong Agric. Sci. 2022, 54, 55–63. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, A.; Chen, X.; Sun, H.; Jin, R.; Li, H.; Tang, Z. Regulation of leaf and root physiology of sweet potato (Ipomoea batatas [L.] Lam.) with exogenous hormones under potassium deficiency stress. Arch. Agron. Soil Sci. 2019, 66, 600–613. [Google Scholar] [CrossRef]
- Clase, C.M.; Carrero, J.J.; Ellison, D.H.; Grams, M.E.; Hemmelgarn, B.R.; Jardine, M.J.; Kovesdy, C.P.; Kline, G.A.; Lindner, G.; Obrador, G.T.; et al. Potassium homeostasis and management of dyskalemia in kidney diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 42–61. [Google Scholar] [CrossRef]
Plant Variety | K-Efficient Genotype | K-Inefficient Genotype | Phenotype of K-Efficient Genotype Cultivar | References |
---|---|---|---|---|
Barley | Sandrime | AC Westech | Higher K uptake, K dry matter production index, K dry matter production, efficiency, and dry matter weight | [40] |
Cotton | 103 | 122 | Developed root systems, higher LK tolerance, better nutrition uptake capability, and stronger transport organs | [44,45] |
Pear | Pyrus ussuriensis | Pyrus betulifolia | Higher LK tolerance, more efficiently recycles and reuses K | [37] |
Potato | Huayu 5, Zhengshu 5 | 08CA0710, 09307-830, B20-7, Liangshu 2 | Lower leaf and stem K content | [50] |
Proso millet | Var 87, Var 189 | Var 116 | Developed and dense roots, higher photosynthetic pigments, and higher LK tolerance | [47] |
Rice | HA-88, EJF, JNZ | KQ47, 81-280, TLHZ | Greater efficient translocation and distribution of both K and carbohydrate; higher relative net photosynthetic rate under LK supply; greater relative tillering rate during the tillering stage and a greater relative grain-filling rate during the late grain-filling stage | [39] |
Sweet potato | Nan 88, Xushu 18, Shang 52-7, Zhe 6025 | Zi 892, Meiguohong, Zi 1 | Higher root weight and root: top ratio and harvest index (HI), and lower K concentration and accumulation | [43] |
Sweet potato | Xu28, Wan5 | Ji 22 | Higher relative root weight per plant, lower K concentrations in the roots or whole plants at maturity, and better K translocation in the shoots and roots | [36,46] |
Tea plant | 1511 | 1601 | Developed root systems and higher LK tolerance | [42] |
Tobacco | Qinyan 96, Yuyan 6, Yunyan 87, Cuibi 1, Zhongyan 100 | Eyan 1, RG17, Honghua Dajinyuan, G28, K326 | Lower leaf and stem K content, root vigor, and K+ influxes | [51] |
Tomato | 576, 571 | 349, 203, 546 | Higher Na substitution capacity | [41] |
Watermelon | ZXG0516, ZXG1553, ZXG0620, YS | WFL, 8424, NBT, HJX1 | Higher relative shoot dry weight (ratio between shoot growth at limited K and that at adequate K), higher K uptake ability, and lower K concentration | [48] |
Wheat | Yunmei 5 | 94-18 | Higher grain weight per spike and harvest index, lower stem K concentration at maturity | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Zhang, Y.; Zhang, H.; Jin, H.; He, L.; Wang, H.; Lu, P.; Miao, C.; Yu, J.; Ding, X. Low-Potassium Fruits and Vegetables: Research Progress and Prospects. Plants 2024, 13, 1893. https://doi.org/10.3390/plants13141893
Cui J, Zhang Y, Zhang H, Jin H, He L, Wang H, Lu P, Miao C, Yu J, Ding X. Low-Potassium Fruits and Vegetables: Research Progress and Prospects. Plants. 2024; 13(14):1893. https://doi.org/10.3390/plants13141893
Chicago/Turabian StyleCui, Jiawei, Yongxue Zhang, Hongmei Zhang, Haijun Jin, Lizhong He, Hong Wang, Panling Lu, Chen Miao, Jizhu Yu, and Xiaotao Ding. 2024. "Low-Potassium Fruits and Vegetables: Research Progress and Prospects" Plants 13, no. 14: 1893. https://doi.org/10.3390/plants13141893
APA StyleCui, J., Zhang, Y., Zhang, H., Jin, H., He, L., Wang, H., Lu, P., Miao, C., Yu, J., & Ding, X. (2024). Low-Potassium Fruits and Vegetables: Research Progress and Prospects. Plants, 13(14), 1893. https://doi.org/10.3390/plants13141893