Separate and Combined Effects of Supplemental CO2, Gibberellic Acid, and Light on Hop Quality and Yield
Abstract
:1. Introduction
2. Results
2.1. Separate Effects of CO2, GA3, and Light
2.2. Combined Effects of CO2, GA3, and Light
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Environmental Conditions
5.2. Plant Material
5.3. Treatments
5.4. Cone Mass, Quantity, and Yield
5.5. Cone Moisture Content
5.6. Cone Alpha- and Beta-Acid Content
5.7. Statistical Analyses
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauerle, W.L. Intracanopy CO2 and light interactions on Humulus lupulus L. net canopy carbon gain under current and future atmospheric CO2 concentrations. Agric. For. Meteorol. 2021, 310, 108621. [Google Scholar] [CrossRef]
- Bauerle, W.L. Gibberellin A3 induced flowering intensification in Humulus lupulus L.: Synchronizing vegetative phase change and photoperiod induction. Sci. Hortic. 2022, 302, 111183. [Google Scholar] [CrossRef]
- Bauerle, W.L. Humulus lupulus L. strobili photosynthetic capacity and carbon assimilation. Plants 2023, 12, 1816. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.S.; Mullaney, P.D. Commercial application of gibberellic acid to hops. Nature 1960, 185, 25. [Google Scholar] [CrossRef]
- Stevens, R.; Roberts, J.B.; Williams, I.H. Treatment of hops (Humulus lupulus L.) with gibberellic acid: Effect of spraying with gibberellic acid on yield and composition. Nature 1961, 191, 360–361. [Google Scholar] [CrossRef]
- Roberts, J.B.; Stevens, R. Effect of gibberellic acid on the growth of hops. J. Inst. Brew. 1962, 68, 247–250. [Google Scholar] [CrossRef]
- Zimmermann, C.E.; Brooks, S.N.; Likens, S.T. Gibberelin A3-induced growth responses of Fuggle hops (Humulus lupulus L.). Crop Sci. 1964, 4, 310–313. [Google Scholar] [CrossRef]
- Hartley, R.D.; Neve, R.A. The effect of gibberellic acid on development and yield of Fuggle hops. J. Am. Soc. Hortic. Sci. 1966, 41, 53–56. [Google Scholar] [CrossRef]
- Thomas, G.G.; Goldwin, G.K. Late applications of hormone mixtures to increase the yield of seedless hops (Humulus lupulus L.). J. Am. Soc. Hortic. Sci. 1976, 51, 515–523. [Google Scholar] [CrossRef]
- Neve, R.A. Hops; Chapman and Hall: Suffolk, UK, 1991. [Google Scholar]
- Rybaček, V. Hop Production; Elsevier Science: Amsterdam, The Netherlands; New York, NY, USA, 1991. [Google Scholar]
- Thomas, G.G.; Schwabe, W.W. Factors controlling flowering in the hop (Humulus lupulus L.). Ann. Bot. 1969, 33, 781–793. [Google Scholar] [CrossRef]
- Bauerle, W.L. Disentangling photoperiod from hop vernalization and dormancy for global production and speed breeding. Sci. Rep. 2019, 9, 16003. [Google Scholar] [CrossRef] [PubMed]
- Bauerle, W.L. Internode elongation and strobili production of Humulus lupulus cultivars in response to local strain sensing. Sci. Rep. 2021, 11, 9017. [Google Scholar] [CrossRef] [PubMed]
- Možný, M.; Trnka, M.; Vlach, V.; Zalud, Z.; Cejka, T.; Hajkova, L.; Potopová, V.; Semenov, M.A.; Semeradova, D.; Büntgen, U. Climate-induced decline in the quality and quantity of European hops calls for immediate adaptation measures. Nat. Commun. 2023, 14, 6028. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.S.; Handley, D.F. Thinning response of early, mid-, and late season peaches. J. Am. Soc. Hortic. Sci. 1989, 114, 852–855. [Google Scholar] [CrossRef]
- Kimball, B.A. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron. J. 1983, 75, 779–788. [Google Scholar] [CrossRef]
- Warrick, R.A.; Gifford, R.M.; Parry, M.L. CO2 climatic change and agriculture. In Scope 29: The Greenhouse Effect, Climatic Change and Ecosystems; Bolin, B., Doos, B.R., Jager, J., Warrick, R.A., Eds.; John Wiley & Sons: Chichester, UK, 1986; pp. 393–473. [Google Scholar]
- Mortensen, L. Review: CO2 enrichment in greenhouses. Crop responses. Sci. Hortic. 1987, 33, 1–25. [Google Scholar] [CrossRef]
- Jablonski, L.M.; Wang, X.; Curtis, P.S. Plant reproduction under elevated CO2 conditions: A meta-analysis of reports on 79 crop and wild species. New Phytol. 2002, 156, 9–26. [Google Scholar] [CrossRef]
- Endo, M.; Ikushima, I. Effects of CO2 enrichment on yields and preservability of cut flowers in Phalaenopsis. J. Jpn. Soc. Hortic. Sci. 1997, 66, 169–174. [Google Scholar] [CrossRef]
- Ushio, A.; Shimaji, H.; Fukuta, N. Effects of CO2 enrichment on the cut flower quality and economic efficiency of Eustoma grandiflorum (Raf.) Shinn. During the winter season production in a mild climate region with high sunshine in Japan. J. Sci. High. Technol. Agric. 2018, 30, 103–114. [Google Scholar] [CrossRef]
- Kinet, J.M. Effect of defoliation and growth substances on the development of the inflorescence in tomato. Sci. Hortic. 1977, 6, 27–35. [Google Scholar] [CrossRef]
- Kinet, J.M.; Hurdebise, D.; Parmentier, A.; Stainier, R. Promotion of inflorescence development by growth sub stance treatments to tomato plants grown in insufficient light conditions. J. Am. Soc. Hortic. Sci. 1978, 103, 724–729. [Google Scholar] [CrossRef]
- Leonard, M.; Kinet, J.M.; Bodson, M.; Bernier, G. Enhanced inflorescence development in tomato by growth substance treatments in relation to 14 C-assimilate distribution. Physiol. Plant 1983, 57, 85–89. [Google Scholar] [CrossRef]
- Bauerle, W.L.; Hazlett, M. Humulus lupulus L. strobilus in situ photosynthesis and respiration temperature responses. Plants 2023, 12, 2030. [Google Scholar] [CrossRef] [PubMed]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Roberts, D.D.; Kronstad, W.E.; Haunold, A. Genetic variability and association of maturity, yield, and quality characteristics of female hops. Crop Sci. 1980, 20, 523–527. [Google Scholar] [CrossRef]
- Ingestad, T. Nutrition and growth of forest trees. Tappi J. 1991, 74, 55–62. [Google Scholar]
- Linder, S. Responses to water and nutrients in coniferous ecosystems. In Potentials and Limitations of Ecosystem Analysis; Schulze, E.D., Zwölfer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; Volume 61, pp. 180–202. [Google Scholar] [CrossRef]
- Nakawuka, P.; Peters, T.R.; Kenny, S.; Walsh, D. Effect of deficit irrigation on yield quantity and quality, water productivity and economic returns of four cultivars of hops in the Yakima Valley, Washington State. Ind. Crops Prod. 2017, 98, 82–92. [Google Scholar] [CrossRef]
- Potopová, V.; Lhotka, O.; Možný, M.; Musiolková, M. Vulnerability of hop-yields due to compound drought and heat events over European key-hop regions. Int. J. Clim. 2021, 41, 2136–2158. [Google Scholar] [CrossRef]
- Haunold, A.; Nickerson, G.B. Hop yield stimulation by triploid males under field conditions. Crop Sci. 1979, 19, 27–31. [Google Scholar] [CrossRef]
- Nesvadba, V.; Hervert, J.; Krofta, K.; Charvátová, J. Evaluation of Czech hop varieties in beer. Kvas. Prum. 2021, 67, 529–536. [Google Scholar] [CrossRef]
- Nesvadba, V.; Olšovská, J.; Straková, L.; Charvátová, J.; Fritschová, G. Evaluation of yield and alpha acid content in selected hop varieties. Kvas. Prum. 2022, 68, 637–641. [Google Scholar] [CrossRef]
- Haunold, A.; Nickerson, G.B.; Likens, S.T. Yield and Quality Potential of Hop, Humulus lupulus L. J. Am. Soc. Brew. Chem. 1983, 41, 60–63. [Google Scholar] [CrossRef]
- USDA. National Hop Report. National Agricultural Statistics Service. 2009. Available online: www.nass.usda.gov/Statistics_by_State/Washington/Publications/Historic_Data/hops/wahops.pdf (accessed on 15 June 2024).
- USDA. National Hop Report. National Agricultural Statistics Service. 2019. Available online: www.nass.usda.gov/Publications/Todays_Reports/reports/cropan20.pdf (accessed on 15 June 2024).
- Anonymous. The hop record broken: The greatest yield ever known was made on Puget Sound. In New York Times (1857–1922); The New York Times Company: Manhattan, NY, USA, 1891; p. 10. [Google Scholar]
- Kenny, S.T.; Zimmermann, C.E. Registration of Centennial hop. Crop Sci. 1991, 31, 1092–1093. [Google Scholar] [CrossRef]
- Nagy, J.; Lewin, K.F.; Hendrey, G.R.; Hassinger, E.; LaMorte, R. FACE facility CO2 concentration control and CO2 use in 1990, and 1991. Agric. For. Meteorol. 1994, 70, 31–48. [Google Scholar] [CrossRef]
- American Society of Brewing Chemists. Methods of Analysis. Hops-6A α– and β-Acids by spectrophotometry. In ASBC, 14th ed.; American Society of Brewing Chemists: St. Paul, MN, USA, 2018. [Google Scholar]
Treatment | % 2197 (plants/ha) | % 1912 (plants/ha) |
---|---|---|
C | +12.2 | −1.7 |
GA3 | −27.5 | −41 |
CO2 | +31.9 | +18.3 |
L | +47.2 | +33.9 |
L + CO2 | +85.9 | +74.2 |
L + GA3 | +64.4 | +51.8 |
CO2 + GA3 | +42.3 | +28.9 |
CO2 + GA3 + L | +105.2 | +94.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauerle, W.L. Separate and Combined Effects of Supplemental CO2, Gibberellic Acid, and Light on Hop Quality and Yield. Plants 2024, 13, 1670. https://doi.org/10.3390/plants13121670
Bauerle WL. Separate and Combined Effects of Supplemental CO2, Gibberellic Acid, and Light on Hop Quality and Yield. Plants. 2024; 13(12):1670. https://doi.org/10.3390/plants13121670
Chicago/Turabian StyleBauerle, William L. 2024. "Separate and Combined Effects of Supplemental CO2, Gibberellic Acid, and Light on Hop Quality and Yield" Plants 13, no. 12: 1670. https://doi.org/10.3390/plants13121670
APA StyleBauerle, W. L. (2024). Separate and Combined Effects of Supplemental CO2, Gibberellic Acid, and Light on Hop Quality and Yield. Plants, 13(12), 1670. https://doi.org/10.3390/plants13121670