A New Spectral Index for Monitoring Leaf Area Index of Winter Oilseed Rape (Brassica napus L.) under Different Coverage Methods and Nitrogen Treatments
Abstract
:1. Introduction
2. Results
2.1. Changes in the Canopy Reflectance and VIs of Feature Bands at Different VZAs
2.2. Relationship between LAI and VIs under Different VZAs
2.3. Comparison of VIs in Different Experimental Conditions across All VZAs
2.4. Estimating LAI by Different Machine Learning Algorithm
3. Materials and Methods
3.1. Experimental Design
3.2. Measuring Multi-Angular Spectra and LAI
3.3. Construction of the New Vegetation Index
3.4. Data Analysis
3.4.1. Preprocessing of Spectral Data and Construction of VIs
3.4.2. Training Dataset and Test Dataset
3.4.3. Support Vector Machines (SVM)
3.4.4. eXtreme Gradient Boost (XGBoost)
3.4.5. Random Forest (RF)
3.4.6. Evaluating Model Performance
3.4.7. Flowchart
4. Discussion
4.1. The Impact of View Zenith Angle on Band Information and VI
4.2. The Impact of Experimental Factors on the Relationship between VIs and LAI
4.3. The Suitable Algorithm for OPIVI to Monitor LAI
5. Conclusions
- (1)
- Multi-angle observations reveal that the relationship between the back-scatter direction and LAI is stronger than between the vertical and forward-scatter directions. Among the 16VIs tested, the OPIVI shows the highest potential for monitoring across different VZAs, performing best at an elevation angle of −15°.
- (2)
- Different experimental factors, such as growth stage, nitrogen fertilizer application, and coverage method, have varying effects on different VIs and the LAI. Notably, the OPIVI maintains a high correlation and angular stability under various experimental conditions.
- (3)
- For monitoring model selection, the combination of the RF model with clustering algorithms and multi-angle OPIVI provide optimal results in estimating winter oilseed rape LAI (R2 = 0.77; RMSE = 0.38 cm2·cm−2). This approach significantly improves accuracy compared to single-angle inversion models.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, A.; Ye, H.C.; Huang, W.J.; Qian, B.X.; Wang, J.J.; Lan, Y.B.; Wang, S.Z. Inversion of maize leaf area index from UAV hyperspectral and multispectral imagery. Comput. Electron. Agric. 2023, 212, 108020. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Zhang, J.; Guo, Y.; Yang, X.; Yu, G.; Bai, X.; Chen, J.; Chen, Y.; Shi, L. Improving estimation of maize leaf area index by combining of UAV-based multispectral and thermal infrared data: The potential of new texture index. Comput. Electron. Agric. 2023, 214, 108294. [Google Scholar] [CrossRef]
- Tang, H.; Brolly, M.; Zhao, F.; Strahler, A.H.; Schaaf, C.L.; Ganguly, S.; Zhang, G.; Dubayah, R. Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sens. Environ. 2014, 143, 131–141. [Google Scholar] [CrossRef]
- Li, L.; Jákli, B.; Lu, P.; Ren, T.; Ming, J.; Liu, S. Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution. Ind. Crop. Prod. 2018, 116, 1–14. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.-Y.; Zhang, Y.-S.; Song, X.; Feng, W.; Kang, G.-Z.; Wang, C.-Y.; Guo, T.-C. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 2016, 73, 170–185. [Google Scholar] [CrossRef]
- Song, X.; Feng, W.; He, L.; Xu, D.; Zhang, H.-Y.; Li, X.; Wang, Z.-J.; Coburn, C.A.; Wang, C.-Y.; Guo, T.-C. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy. Isprs J. Photogramm. 2016, 122, 57–67. [Google Scholar] [CrossRef]
- Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 2010, 114, 514–519. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Tian, T.; Cui, J.; Shi, X.; Song, J.; Li, T.; Li, W.; Zhong, M.; Zhang, W. Construction of spectral index based on multi-angle spectral data for estimating cotton leaf nitrogen concentration. Comput. Electron. Agric. 2022, 201, 107328. [Google Scholar] [CrossRef]
- Liu, Y.; An, L.; Wang, N.; Tang, W.; Liu, M.; Liu, G.; Sun, H.; Li, M.; Ma, Y. Leaf area index estimation under wheat powdery mildew stress by integrating UAV-based spectral, textural and structural features. Comput. Electron. Agric. 2023, 213, 108169. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Brown, L.; Chen, J.M.; Leblanc, S.G.; Cihlar, J. A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis. Remote Sens. Environ. 2000, 71, 16–25. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, D.; Zhao, R.; Tang, W.; An, L.; Li, M.; Sun, H. Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery. Comput. Electron. Agric. 2022, 192, 106603. [Google Scholar] [CrossRef]
- RAUTIAINEN, M. Retrieval of leaf area index for a coniferous forest by inverting a forest reflectance model. Remote Sens. Environ. 2005, 99, 295–303. [Google Scholar] [CrossRef]
- Almeida-Ñauñay, A.F.; Tarquis, A.M.; López-Herrera, J.; Pérez-Martín, E.; Pancorbo, J.L.; Raya-Sereno, M.D.; Quemada, M. Optimization of soil background removal to improve the prediction of wheat traits with UAV imagery. Comput. Electron. Agric. 2023, 205, 107559. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, Z.; Li, Q.; Guo, L.; Chen, W.H. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Galvão, L.S.; dos Santos, J.R.; Roberts, D.A.; Breunig, F.M.; Toomey, M.; de Moura, Y.M. On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data. Remote Sens. Environ. 2011, 115, 2350–2359. [Google Scholar] [CrossRef]
- Galvão, L.S.; Breunig, F.M.; dos Santos, J.R.; de Moura, Y.M. View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest. Int. J. Appl. Earth Obs. 2013, 21, 291–300. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubuehler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Hovi, A.; Schraik, D.; Kuusinen, N.; Fabiánek, T.; Hanuš, J.; Homolová, L.; Juola, J.; Lukeš, P.; Rautiainen, M. Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance. Remote Sens. Environ. 2023, 293, 113610. [Google Scholar] [CrossRef]
- He, L.; Song, X.; Feng, W.; Guo, B.B.; Zhang, Y.S.; Wang, Y.H.; Wang, C.Y.; Guo, T.C. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 2016, 174, 122–133. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Lu, S.; Omasa, K. A multi-angular invariant spectral index for the estimation of leaf water content across a wide range of plant species in different growth stages. Remote Sens. Environ. 2021, 253, 112230. [Google Scholar] [CrossRef]
- Li, L.; Ren, T.; Ma, Y.; Wei, Q.; Wang, S.; Li, X.; Cong, R.; Liu, S.; Lu, J. Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters. Comput. Electron. Agric. 2016, 126, 21–31. [Google Scholar] [CrossRef]
- Sandmeier, S.R.; Itten, K.I. A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data. IEEE Trans. Geosci. Remote 1999, 37, 978–986. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. For. Meteorol. 2011, 151, 1267–1276. [Google Scholar] [CrossRef]
- Li, L.; Lu, J.; Wang, S.; Ma, Y.; Wei, Q.; Li, X.; Cong, R.; Ren, T. Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Ind. Crop. Prod. 2016, 91, 194–204. [Google Scholar] [CrossRef]
- Flynn, K.C.; Baath, G.; Lee, T.O.; Gowda, P.; Northup, B. Hyperspectral reflectance and machine learning to monitor legume biomass and nitrogen accumulation. Comput. Electron. Agric. 2023, 211, 107991. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gupta, R.K.; Vijayan, D.; Prasad, T.S. Comparative analysis of red-edge hyperspectral indices. Adv. Space Res. 2003, 32, 2217–2222. [Google Scholar] [CrossRef]
- Yang, Z.; Rao, M.N.; Elliott, N.C.; Kindler, S.D.; Popham, T.W. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comput. Electron. Agric. 2005, 47, 121–135. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; Christensen, L.; Belford, R.; Sadras, V.; Clarke, T. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric. 2006, 7, 233–248. [Google Scholar] [CrossRef]
- Jensen, T.; Apan, A.; Young, F.; Zeller, L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Comput. Electron. Agric. 2007, 59, 66–77. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Hu, Y.; Yu, K. Hyperspectral indices optimization algorithms for estimating canopy nitrogen concentration in potato (Solanum tuberosum L.). Int. J. Appl. Earth Obs. 2021, 102, 102416. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Feng, W.; Guo, B.B.; Wang, Z.J.; He, L.; Song, X.; Wang, Y.H.; Guo, T.C. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crop. Res. 2014, 159, 43–52. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Ryckewaert, M.; Gorretta, N.; Henriot, F.; Gobrecht, A.; Héran, D.; Moura, D.; Bendoula, R.; Roger, J.-M. Potential of high-spectral resolution for field phenotyping in plant breeding: Application to maize under water stress. Comput. Electron. Agric. 2021, 189, 106385. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Wu, C.; Sun, L. Segmentation algorithm for overlap recognition of seedling lettuce and weeds based on SVM and image blocking. Comput. Electron. Agric. 2022, 201, 107284. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, S.; Xu, A.; Ye, J.; Zhao, A. Automatic scoring of postures in grouped pigs using depth image and CNN-SVM. Comput. Electron. Agric. 2022, 194, 106746. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, X.; Song, X.; Xu, B.; Li, Z.; Wu, J.; Yang, H.; Wu, J. An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images. Comput. Electron. Agric. 2022, 194, 106804. [Google Scholar] [CrossRef]
- Xiao, C.; Ji, Q.; Chen, J.; Zhang, F.; Li, Y.; Fan, J.; Wang, H. Prediction of soil salinity parameters using machine learning models in an arid region of northwest China. Comput. Electron. Agric. 2023, 204, 107512. [Google Scholar] [CrossRef]
- He, L.; Liu, M.; Guo, Y.; Wei, Y.; Zhang, H.; Song, X.; Feng, W.; Guo, T. Angular effect of algorithms for monitoring leaf nitrogen concentration of wheat using multi-angle remote sensing data. Comput. Electron. Agric. 2022, 195, 106815. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Ren, T.; Wei, Q.; Ming, J.; Li, J.; Li, X.; Cong, R.; Lu, J. Ability of models with effective wavelengths to monitor nitrogen and phosphorus status of winter oilseed rape leaves using in situ canopy spectroscopy. Field Crop. Res. 2018, 215, 173–186. [Google Scholar] [CrossRef]
- Guerrero, A.; Javadi, S.H.; Mouazen, A.M. Automatic detection of quality soil spectra in an online vis-NIR soil sensor. Comput. Electron. Agric. 2022, 196, 106857. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lang, M.; Mõttus, M.; Kuusk, A.; Nilson, T.; Kuusk, J.; Lükk, T. Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens. Environ. 2008, 112, 2627–2642. [Google Scholar] [CrossRef]
- Li, J.; Wijewardane, N.K.; Ge, Y.; Shi, Y. Improved chlorophyll and water content estimations at leaf level with a hybrid radiative transfer and machine learning model. Comput. Electron. Agric. 2023, 206, 107669. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Liu, M.-R.; Feng, Z.-H.; Song, L.; Li, X.; Liu, W.D.; Wang, C.Y.; Feng, W. Estimations of Water Use Efficiency in Winter Wheat Based on Multi-Angle Remote Sensing. Front. Plant Sci. 2021, 12, 614417. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Q.; Pu, R.; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat. Sensors 2014, 14, 20347–20359. [Google Scholar] [CrossRef]
- Bertheloot, J.; Martre, P.; Andrieu, B. Dynamics of Light and Nitrogen Distribution during Grain Filling within Wheat Canopy. Plant Physiol. 2008, 148, 1707–1720. [Google Scholar] [CrossRef]
- Kamiji, Y.; Pang, J.; Milroy, S.; Palta, J.A. Shoot biomass in wheat is the driver for nitrogen uptake under low nitrogen supply, but not under high nitrogen supply. Field Crop. Res. 2014, 165, 92–98. [Google Scholar] [CrossRef]
- Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds. Int. J. Appl. Earth Obs. 2014, 32, 114–124. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput. Electron. Agric. 2017, 139, 103–114. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, H. A least-squares support vector machine (LS-SVM) based on fractal analysis and CIELab parameters for the detection of browning degree on mango (Mangifera indica L.). Comput. Electron. Agric. 2012, 83, 47–51. [Google Scholar] [CrossRef]
- Yuan, W.; Meng, Y.; Li, Y.; Ji, Z.; Kong, Q.; Gao, R.; Su, Z. Research on rice leaf area index estimation based on fusion of texture and spectral information. Comput. Electron. Agric. 2023, 211, 108016. [Google Scholar] [CrossRef]
- Luo, K.; Lu, L.; Xie, Y.; Chen, F.; Yin, F.; Li, Q. Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Comput. Electron. Agric. 2023, 205, 107577. [Google Scholar] [CrossRef]
Index | −60° vs. Nadir | +60° vs. Nadir | ANOVA F Values (F8,1620) | ANOVA F Value (F2,360) |
---|---|---|---|---|
(%) | (%) | (−60°~+60°) | (30°~60°) | |
Two bands | ||||
PRI | 1.74 | −8.98 | 3.195 *** | 2.805 ** |
R1-dB | 2.33 | 8.72 | 7.129 *** | 1.509 |
SAVI | 12.52 | 5.47 | 3.248 *** | 1.160 |
NDRE | 3.23 | 21.18 | 5.723 *** | 1.298 |
DVI | 8.60 | −6.87 | 2.722 *** | 2.180 * |
Vlopt | 4.79 | 3.76 | 2.131 ** | 0.604 |
Three bands | ||||
mND705 | 6.64 | 18.19 | 6.555 *** | 1.226 |
NDDA | −29.77 | 95.42 | 3.901 *** | 3.228 ** |
MTCI | −2.52 | 18.12 | 6.119 *** | 1.297 |
EVI-1 | 11.81 | 3.90 | 1.819 * | 1.597 |
DDn | 20.22 | 17.21 | 1.947 * | 1.751 |
OPIVI | 1.60 | −6.61 | 1.735 * | 0.444 |
Four bands | ||||
VOG-2 | 6.35 | 36.14 | 5.951 *** | 3.447 ** |
DD | 19.31 | 19.16 | 4.877 *** | 2.062 * |
REP | −2.36 | 3.31 | 1.877 * | 0.760 |
CCII | −0.70 | 10.12 | 3.592 *** | 2.499 * |
Categories | Sub Datasets | VIs | −60° | −45° | −30° | −15° | 0° | 15° | 30° | 45° | 60° |
---|---|---|---|---|---|---|---|---|---|---|---|
Growth stages | Bolting stage | EVI-1 | 0.70 | 0.75 | 0.81 | 0.85 | 0.80 | 0.74 | 0.72 | 0.69 | 0.69 |
OPIVI | 0.74 | 0.78 | 0.81 | 0.82 | 0.81 | 0.81 | 0.78 | 0.75 | 0.74 | ||
REP | 0.72 | 0.74 | 0.80 | 0.81 | 0.80 | 0.76 | 0.72 | 0.69 | 0.68 | ||
Flowering stage | EVI-1 | 0.54 | 0.58 | 0.65 | 0.70 | 0.64 | 0.60 | 0.58 | 0.57 | 0.53 | |
OPIVI | 0.78 | 0.79 | 0.83 | 0.85 | 0.83 | 0.80 | 0.78 | 0.75 | 0.76 | ||
REP | 0.68 | 0.71 | 0.75 | 0.78 | 0.76 | 0.74 | 0.72 | 0.69 | 0.67 | ||
Treatments | N rates | EVI-1 | 0.62 | 0.67 | 0.72 | 0.74 | 0.70 | 0.64 | 0.62 | 0.60 | 0.59 |
OPIVI | 0.77 | 0.78 | 0.82 | 0.82 | 0.82 | 0.81 | 0.76 | 0.77 | 0.76 | ||
REP | 0.61 | 0.64 | 0.71 | 0.74 | 0.70 | 0.65 | 0.62 | 0.61 | 0.60 | ||
Overlay mode | EVI-1 | 0.72 | 0.76 | 0.81 | 0.82 | 0.81 | 0.75 | 0.72 | 0.70 | 0.69 | |
OPIVI | 0.80 | 0.82 | 0.85 | 0.86 | 0.85 | 0.84 | 0.81 | 0.79 | 0.77 | ||
REP | 0.76 | 0.78 | 0.80 | 0.85 | 0.82 | 0.76 | 0.74 | 0.72 | 0.73 |
Year | Date | Stage | Time | Solar Zenith Angle (°) | Solar Azimuth Angle (°) |
---|---|---|---|---|---|
2023 | 14 March | Budding | 12:30–13:20 | 48.90–52.77 | 148.68–167.55 |
18 March | Budding | 12:30–13:20 | 50.23–54.23 | 147.68–167.10 | |
22 April | Flowering | 12:30–13:20 | 61.52–67.06 | 135.46–160.89 | |
25 April | Flowering | 12:20–13:10 | 62.32–68.01 | 134.18–160.15 |
Index | Formula | References |
---|---|---|
Two bands | ||
PRI (photochemical reflectance index) | (R570 − R531)/(R570 + R531) | [32] |
RI-dB (redness index–decibels) | R735/R720 | [33] |
SAVI (soil-adjusted vegetation index) | 1.5 × (R870 − R680)/(R870 + R680 + 0.5) | [34] |
NDRE (normalized difference red edge) | (R790 − R720)/(R790 + R720) | [35] |
DVI (difference vegetation index) | R860 − R560 | [36] |
Vlopt (variable light optical properties) | (1 + 0.45) × (R8002 + 1)/(R670 + 0.45) | [37] |
Three bands | ||
mND705 (modified normalized difference at 705 nm) | (R750 − R705)/(R750 + R705 − 2 × R445) | [38] |
NDDA (normalized difference drought index) | (R680 + R756 – 2 × R718)/(R756 − R680) | [39] |
MTCI (meris terrestrial chlorophyll index) | (R754 − R709)/(R709 − R681) | [40] |
EVI-1 (enhanced vegetation index-1) | 2.5 × (R860 − R645)/(1 + R860 + 6 × R645 − 7.5 × R470) | [20] |
DDn (derivative difference normalized) | 2.5 × R710 − R660 − R760 | [41] |
OPIVI (observation perspective insensitivity vegetation index) | (R720 − R450)/(R660 − R450) | This paper |
Four bands | ||
VOG-2 (vogelmann red edge index 2) | (R734 − R747)/(R715 − R726) | [24] |
DD (difference vegetation index) | (R749 − R720) − (R701 − R672) | [41] |
REP (red edge position) | R700 + 40 × [(R670 + R780)/2 − R700]/(R740 − R700) | [42] |
CCII (canopy chlorophyll index integrated) | TCARI/OSAVI | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xiang, Y.; Chen, J.; Wu, Y.; Du, R.; Tang, Z.; Yang, N.; Shi, H.; Li, Z.; Zhang, F. A New Spectral Index for Monitoring Leaf Area Index of Winter Oilseed Rape (Brassica napus L.) under Different Coverage Methods and Nitrogen Treatments. Plants 2024, 13, 1901. https://doi.org/10.3390/plants13141901
Liu H, Xiang Y, Chen J, Wu Y, Du R, Tang Z, Yang N, Shi H, Li Z, Zhang F. A New Spectral Index for Monitoring Leaf Area Index of Winter Oilseed Rape (Brassica napus L.) under Different Coverage Methods and Nitrogen Treatments. Plants. 2024; 13(14):1901. https://doi.org/10.3390/plants13141901
Chicago/Turabian StyleLiu, Hao, Youzhen Xiang, Junying Chen, Yuxiao Wu, Ruiqi Du, Zijun Tang, Ning Yang, Hongzhao Shi, Zhijun Li, and Fucang Zhang. 2024. "A New Spectral Index for Monitoring Leaf Area Index of Winter Oilseed Rape (Brassica napus L.) under Different Coverage Methods and Nitrogen Treatments" Plants 13, no. 14: 1901. https://doi.org/10.3390/plants13141901
APA StyleLiu, H., Xiang, Y., Chen, J., Wu, Y., Du, R., Tang, Z., Yang, N., Shi, H., Li, Z., & Zhang, F. (2024). A New Spectral Index for Monitoring Leaf Area Index of Winter Oilseed Rape (Brassica napus L.) under Different Coverage Methods and Nitrogen Treatments. Plants, 13(14), 1901. https://doi.org/10.3390/plants13141901