Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L.
Abstract
:1. Introduction
2. Results
2.1. FindTFnet Implements a New Approach for Computational Reconstruction of TFRNs
2.2. Auxin-Induced Reprogramming of Transcriptional Network in the A. thaliana Root
2.3. The Functions of Some TFs within the TFRN May Depend on the Co-Occurrence of Their Binding Loci in Target Promoters
2.4. Auxin-Regulated TFRN Is Associated with Biological Processes Affected by Auxin Treatment
2.4.1. Auxin-Dependent Repression of Biological Processes
2.4.2. Auxin-Regulated TFRN Controls Activation of Ribosome Biogenesis
3. Discussion
3.1. Auxin TFRN Comprises Both Primary and Secondary ARF Targets
3.2. For Several TFRN TFs the Key Role in Auxin Response Have Been Previously Shown
3.3. For Several TFRN TFs the Key Role in Auxin Regulated Processes Have Been Previously Shown
3.4. The Highly Connective TFRN Targets Play the Key Role in Auxin-Regulated Processes
3.5. Auxin-Regulated TFRN Implements a Trade-Off between Plant Development and Response to Environmental Cues
4. Methods
4.1. Publicly Available Datasets Used in the Study
4.2. Implementation of FindTFnet as a Part of CisCross Web-Server
4.3. Reconstruction of Auxin-Induced TFRN
4.4. Functional Annotation of DEGs and Establishing a Relationship between TFRN and BPs
4.5. Raw ARF3/ETT ChIP-seq Data Analysis
4.6. DNA Motif Search
4.7. Accession Numbers, Full Names and Other Names for Genes Encoding TFs from the Auxin Induced TFRN
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, S.; He, C.; Zhao, X.; Yu, R.; Li, Y.; Fang, W.; Zhang, C.-Y.; Yan, W.; Chen, D. Comprehensive Integration of Single-Cell Transcriptomic Data Illuminates the Regulatory Network Architecture of Plant Cell Fate Specification. Plant Divers. 2024, 46, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wei, H. Deciphering the Intricate Hierarchical Gene Regulatory Network: Unraveling Multi-Level Regulation and Modifications Driving Secondary Cell Wall Formation. Hortic. Res. 2024, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- van Es, S.W.; Muñoz-Gasca, A.; Romero-Campero, F.J.; González-Grandío, E.; de Los Reyes, P.; Tarancón, C.; van Dijk, A.D.J.; van Esse, W.; Pascual-García, A.; Angenent, G.C.; et al. A Gene Regulatory Network Critical for Axillary Bud Dormancy Directly Controlled by Arabidopsis BRANCHED1. New Phytol. 2024, 241, 1193–1209. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Huang, S.-S.C.; Wise, A.; Castanon, R.; Nery, J.R.; Chen, H.; Watanabe, M.; Thomas, J.; Bar-Joseph, Z.; Ecker, J.R. A Transcription Factor Hierarchy Defines an Environmental Stress Response Network. Science 2016, 354, 1550. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T.W.; Gaudinier, A.; Young, N.F.; Trabucco, G.M.; Veling, M.T.; Lamothe, R.; et al. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis. Nature 2015, 517, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Brent, M.R. Past Roadblocks and New Opportunities in Transcription Factor Network Mapping. Trends Genet. TIG 2016, 32, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Hecker, D.; Lauber, M.; Behjati Ardakani, F.; Ashrafiyan, S.; Manz, Q.; Kersting, J.; Hoffmann, M.; Schulz, M.H.; List, M. Computational Tools for Inferring Transcription Factor Activity. Proteomics 2023, 23, 2200462. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, J. Why Do Hubs Tend to Be Essential in Protein Networks? PLoS Genet. 2006, 2, 88. [Google Scholar] [CrossRef] [PubMed]
- Marbach, D.; Roy, S.; Ay, F.; Meyer, P.E.; Candeias, R.; Kahveci, T.; Bristow, C.A.; Kellis, M. Predictive Regulatory Models in Drosophila Melanogaster by Integrative Inference of Transcriptional Networks. Genome Res. 2012, 22, 1334–1349. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Vaneechoutte, D.; Van de Velde, J.; Vandepoele, K. TF2Network: Predicting Transcription Factor Regulators and Gene Regulatory Networks in Arabidopsis Using Publicly Available Binding Site Information. Nucleic Acids Res. 2018, 46, e31. [Google Scholar] [CrossRef]
- Su, K.; Katebi, A.; Kohar, V.; Clauss, B.; Gordin, D.; Qin, Z.S.; Karuturi, R.K.M.; Li, S.; Lu, M. NetAct: A Computational Platform to Construct Core Transcription Factor Regulatory Networks Using Gene Activity. Genome Biol. 2022, 23, 270. [Google Scholar] [CrossRef]
- Caumon, H.; Vernoux, T. A Matter of Time: Auxin Signaling Dynamics and the Regulation of Auxin Responses during Plant Development. J. Exp. Bot. 2023, 74, 3887–3902. [Google Scholar] [CrossRef]
- Oh, E.; Zhu, J.-Y.; Bai, M.-Y.; Arenhart, R.A.; Sun, Y.; Wang, Z.-Y. Cell Elongation Is Regulated through a Central Circuit of Interacting Transcription Factors in the Arabidopsis Hypocotyl. eLife 2014, 3, 03031. [Google Scholar] [CrossRef]
- Simonini, S.; Bencivenga, S.; Trick, M.; Østergaard, L. Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis. Plant Cell 2017, 29, 1864–1882. [Google Scholar] [CrossRef]
- Xie, M.; Huang, L.; Song, L.; O’Neil, R.; Lewsey, M.; Chen, H.; Chen, H.; Zhuo, R.; Shokhirev, M.; Alonso, J.; et al. Defining in vivo transcriptional responses to auxin. Res. Sq. 2022. [Google Scholar] [CrossRef]
- O’Malley, R.C.; Huang, S.C.; Song, L.; Lewsey, M.G.; Bartlett, A.; Nery, J.R.; Galli, M.; Gallavotti, A.; Ecker, J.R. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell 2016, 165, 1280–1292. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Khakhar, A.; Lu, Z.; Chen, Z.; Sen, S.; Joshi, T.; Nemhauser, J.L.; Schmitz, R.J.; Gallavotti, A. The DNA Binding Landscape of The Maize AUXIN RESPONSE FACTOR Family. Nat. Commun. 2018, 9, 4526. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.R.; Olex, A.L.; Lundy, S.R.; Turkett, W.H.; Fetrow, J.S.; Muday, G.K. A Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins That Modulate Lateral Root Development in Arabidopsis. Plant Cell 2013, 25, 3329–3346. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, B.O.R.; Vanneste, S.; Krouk, G.; Nawy, T.; Efroni, I.; Shani, E.; Choe, G.; Friml, J.; Bergmann, D.C.; Estelle, M.; et al. A Map of Cell Type-Specific Auxin Responses. Mol. Syst. Biol. 2013, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 Regulate Lateral Root Formation via Direct Activation of LBD/ASL Genes in Arabidopsis. Plant Cell 2007, 19, 118–130. [Google Scholar] [CrossRef]
- Berckmans, B.; Vassileva, V.; Schmid, S.P.C.; Maes, S.; Parizot, B.; Naramoto, S.; Magyar, Z.; Alvim Kamei, C.L.; Koncz, C.; Bögre, L.; et al. Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of Arabidopsis E2Fa by Lateral Organ Boundary Proteins. Plant Cell 2011, 23, 3671–3683. [Google Scholar] [CrossRef] [PubMed]
- De Rybel, B.; Vassileva, V.; Parizot, B.; Demeulenaere, M.; Grunewald, W.; Audenaert, D.; Van Campenhout, J.; Overvoorde, P.; Jansen, L.; Vanneste, S.; et al. A Novel Aux/IAA28 Signaling Cascade Activates GATA23-dependent Specification of Lateral Root Founder Cell Identity. Curr. Biol. 2010, 20, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Schlereth, A.; Möller, B.; Liu, W.; Kientz, M.; Flipse, J.; Rademacher, E.H.; Schmid, M.; Jürgens, G.; Weijers, D. MONOPTEROS Controls Embryonic Root Initiation by Regulating a Mobile Transcription Factor. Nature 2010, 464, 913–916. [Google Scholar] [CrossRef]
- Konishi, M.; Donner, T.J.; Scarpella, E.; Yanagisawa, S. MONOPTEROS Directly Activates the Auxin-Inducible Promoter of the Dof5.8 Transcription Factor Gene in Arabidopsis thaliana Leaf Provascular Cells. J. Exp. Bot. 2015, 66, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Goh, T.; Toyokura, K.; Yamaguchi, N.; Okamoto, Y.; Uehara, T.; Kaneko, S.; Takebayashi, Y.; Kasahara, H.; Ikeyama, Y.; Okushima, Y.; et al. Lateral Root Initiation Requires the Sequential Induction of Transcription Factors LBD16 and PUCHI in Arabidopsis thaliana. New Phytol. 2019, 224, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Mönke, G.; Seifert, M.; Keilwagen, J.; Mohr, M.; Grosse, I.; Hähnel, U.; Junker, A.; Weisshaar, B.; Conrad, U.; Bäumlein, H.; et al. Toward the Identification and Regulation of the Arabidopsis thaliana ABI3 Regulon. Nucleic Acids Res. 2012, 40, 8240–8254. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, N.; Yilmaz, A.; Mejia-Guerra, M.K.; Morohashi, K.; O’Connor, D.; Grotewold, E.; Hake, S. Unraveling the KNOTTED1 Regulatory Network in Maize Meristems. Genes Dev. 2012, 26, 1685–1690. [Google Scholar] [CrossRef]
- Delker, C.; Pöschl, Y.; Raschke, A.; Ullrich, K.; Ettingshausen, S.; Hauptmann, V.; Grosse, I.; Quint, M. Natural Variation of Transcriptional Auxin Response Networks in Arabidopsis thaliana. Plant Cell 2010, 22, 2184–2200. [Google Scholar] [CrossRef] [PubMed]
- Vernoux, T.; Brunoud, G.; Farcot, E.; Morin, V.; Van den Daele, H.; Legrand, J.; Oliva, M.; Das, P.; Larrieu, A.; Wells, D.; et al. The Auxin Signalling Network Translates Dynamic Input into Robust Patterning at the Shoot Apex. Mol. Syst. Biol. 2011, 7, 508. [Google Scholar] [CrossRef]
- Farcot, E.; Lavedrine, C.; Vernoux, T. A Modular Analysis of the Auxin Signalling Network. PLoS ONE 2015, 10, e122231. [Google Scholar] [CrossRef]
- McReynolds, M.R.; Dash, L.; Montes, C.; Draves, M.A.; Lang, M.G.; Walley, J.W.; Kelley, D.R. Temporal and Spatial Auxin Responsive Networks in Maize Primary Roots. Quant. Plant Biol. 2022, 3, e21. [Google Scholar] [CrossRef] [PubMed]
- Lavrekha, V.V.; Levitsky, V.G.; Tsukanov, A.V.; Bogomolov, A.G.; Grigorovich, D.A.; Omelyanchuk, N.; Ubogoeva, E.V.; Zemlyanskaya, E.V.; Mironova, V. CisCross: A Gene List Enrichment Analysis to Predict Upstream Regulators in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 942710. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.; Després, C. Dual-Function Transcription Factors and Their Entourage. Plant Signal. Behav. 2010, 5, 629–634. [Google Scholar] [CrossRef] [PubMed]
- De Rybel, B.; Audenaert, D.; Xuan, W.; Overvoorde, P.; Strader, L.C.; Kepinski, S.; Hoye, R.; Brisbois, R.; Parizot, B.; Vanneste, S.; et al. A Role for the Root Cap in Root Branching Revealed by the Non-Auxin Probe Naxillin. Nat. Chem. Biol. 2012, 8, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Tyapkin, A.V.; Lavrekha, V.V.; Ubogoeva, E.V.; Oshchepkov, D.Y.; Omelyanchuk, N.A.; Zemlyanskaya, E.V. InterTransViewer: A Comparative Description of Differential Gene Expression Profiles from Different Experiments. Vavilov J. Genet. Breed. 2023, 27, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Ronemus, M.J.; Galbiati, M.; Ticknor, C.; Chen, J.; Dellaporta, S.L. Demethylation-Induced Developmental Pleiotropy in Arabidopsis. Science 1996, 273, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, E.J.; Peacock, W.J.; Dennis, E.S. Reduced DNA Methylation in Arabidopsis thaliana Results in Abnormal Plant Development. Proc. Natl. Acad. Sci. USA 1996, 93, 8449–8454. [Google Scholar] [CrossRef]
- Kakutani, T.; Jeddeloh, J.A.; Flowers, S.K.; Munakata, K.; Richards, E.J. Developmental Abnormalities and Epimutations Associated with DNA Hypomethylation Mutations. Proc. Natl. Acad. Sci. USA 1996, 93, 12406–12411. [Google Scholar] [CrossRef] [PubMed]
- Eichten, S.R.; Vaughn, M.W.; Hermanson, P.J.; Springer, N.M. Variation in DNA Methylation Patterns Is More Common among Maize Inbreds than among Tissues. Plant Genome 2013, 6, 20133329045. [Google Scholar] [CrossRef]
- Crisp, P.A.; Marand, A.P.; Noshay, J.M.; Zhou, P.; Lu, Z.; Schmitz, R.J.; Springer, N.M. Stable Unmethylated DNA Demarcates Expressed Genes and Their Cis-Regulatory Space in Plant Genomes. Proc. Natl. Acad. Sci. USA 2020, 117, 23991–24000. [Google Scholar] [CrossRef]
- Hummel, N.F.C.; Zhou, A.; Li, B.; Markel, K.; Ornelas, I.J.; Shih, P.M. The Trans-Regulatory Landscape of Gene Networks in Plants. Cell Syst. 2023, 14, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Rose, W.; Hansen, U. Active Repression Mechanisms of Eukaryotic Transcription Repressors. Trends Genet. TIG 1996, 12, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Espinosa-Ruíz, A.; de Lucas, M.; Bernardo-García, S.; Franco-Zorrilla, J.M.; Prat, S. PIF4-Induced BR Synthesis Is Critical to Diurnal and Thermomorphogenic Growth. EMBO J. 2018, 37, 99552. [Google Scholar] [CrossRef] [PubMed]
- Nagahage, I.S.P.; Sakamoto, S.; Nagano, M.; Ishikawa, T.; Kawai-Yamada, M.; Mitsuda, N.; Yamaguchi, M. An NAC Domain Transcription Factor ATAF2 Acts as Transcriptional Activator or Repressor Dependent on Promoter Context. Plant Biotechnol. 2018, 35, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Brackmann, K.; Qi, J.; Gebert, M.; Jouannet, V.; Schlamp, T.; Grünwald, K.; Wallner, E.-S.; Novikova, D.D.; Levitsky, V.G.; Agustí, J.; et al. Spatial Specificity of Auxin Responses Coordinates Wood Formation. Nat. Commun. 2018, 9, 875. [Google Scholar] [CrossRef]
- Wang, L.; Ko, E.E.; Tran, J.; Qiao, H. TREE1-EIN3–Mediated Transcriptional Repression Inhibits Shoot Growth in Response to Ethylene. Proc. Natl. Acad. Sci. USA 2020, 117, 29178–29189. [Google Scholar] [CrossRef]
- Veerabagu, M.; Kirchler, T.; Elgass, K.; Stadelhofer, B.; Stahl, M.; Harter, K.; Mira-Rodado, V.; Chaban, C. The Interaction of the Arabidopsis Response Regulator ARR18 with bZIP63 Mediates the Regulation of PROLINE DEHYDROGENASE Expression. Mol. Plant 2014, 7, 1560–1577. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, R.; Zhang, P.; Sun, L.; Ju, Q.; Huang, H.; Lü, S.; Tran, L.-S.; Xu, J. MYB70 Modulates Seed Germination and Root System Development in Arabidopsis. iScience 2021, 24, 103228. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wang, T.; Persson, S.; Mueller-Roeber, B.; Schippers, J.H.M. Transcriptional Control of ROS Homeostasis by KUODA1 Regulates Cell Expansion during Leaf Development. Nat. Commun. 2014, 5, 3767. [Google Scholar] [CrossRef]
- Riester, L.; Köster-Hofmann, S.; Doll, J.; Berendzen, K.W.; Zentgraf, U. Impact of Alternatively Polyadenylated Isoforms of ETHYLENE RESPONSE FACTOR4 with Activator and Repressor Function on Senescence in Arabidopsis thaliana L. Genes 2019, 10, 91. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Yu, Y.; Quan, R.; Zhang, Z.; Zhang, H.; Huang, R. The Ethylene Response Factor AtERF11 That Is Transcriptionally Modulated by the bZIP Transcription Factor HY5 Is a Crucial Repressor for Ethylene Biosynthesis in Arabidopsis. Plant J. 2011, 68, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Aida, M.; Vernoux, T.; Furutani, M.; Traas, J.; Tasaka, M. Roles of PIN-FORMED1 and MONOPTEROS in Pattern Formation of the Apical Region of the Arabidopsis Embryo. Dev. Camb. Engl. 2002, 129, 3965–3974. [Google Scholar] [CrossRef]
- Kobayashi, K.; Baba, S.; Obayashi, T.; Sato, M.; Toyooka, K.; Keränen, M.; Aro, E.-M.; Fukaki, H.; Ohta, H.; Sugimoto, K.; et al. Regulation of Root Greening by Light and Auxin/Cytokinin Signaling in Arabidopsis. Plant Cell 2012, 24, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.-G.; Liang, Q.-W.; Su, Y.; Huang, C.; Mo, B.-X.; Yu, Y.; Xiao, L.-T. Auxin Inhibits Chlorophyll Accumulation through ARF7-IAA14-Mediated Repression of Chlorophyll Biosynthesis Genes in Arabidopsis. Front. Plant Sci. 2023, 14, 1172059. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Sun, M.; Yao, J.-L.; Liu, X.; Xue, Y.; Yang, G.; Zhu, R.; Jiang, W.; Wang, R.; Xue, C.; et al. Auxin Inhibits Lignin and Cellulose Biosynthesis in Stone Cells of Pear Fruit via the PbrARF13-PbrNSC-PbrMYB132 Transcriptional Regulatory Cascade. Plant Biotechnol. J. 2023, 21, 1408–1425. [Google Scholar] [CrossRef] [PubMed]
- Khadr, A.; Wang, G.-L.; Wang, Y.-H.; Zhang, R.-R.; Wang, X.-R.; Xu, Z.-S.; Tian, Y.-S.; Xiong, A.-S. Effects of Auxin (Indole-3-Butyric Acid) on Growth Characteristics, Lignification, and Expression Profiles of Genes Involved in Lignin Biosynthesis in Carrot Taproot. PeerJ 2020, 8, 10492. [Google Scholar] [CrossRef]
- Qu, G.; Peng, D.; Yu, Z.; Chen, X.; Cheng, X.; Yang, Y.; Zhou, B. Advances in the Role of Auxin for Transcriptional Regulation of Lignin Biosynthesis. Funct. Plant Biol. 2021, 48, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.M.; Sarkar, S.F.; Bonetta, D.; McCourt, P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) Gene Is Modulated by Farnesylation and Is Involved in Auxin Signaling and Lateral Root Development in Arabidopsis. Plant J. Cell Mol. Biol. 2003, 34, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.; Zhao, Y.; Feng, Z.; Li, Q.; Yang, H.-Q.; Luan, S.; Li, J.; He, Z.-H. Auxin Controls Seed Dormancy through Stimulation of Abscisic Acid Signaling by Inducing ARF-Mediated ABI3 Activation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15485–15490. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Weng, J.-K.; Chapple, C. The Origin and Evolution of Lignin Biosynthesis. New Phytol. 2010, 187, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Barros, J. Lignin Biosynthesis: Old Roads Revisited and New Roads Explored. Open Biol. 2019, 9, 190215. [Google Scholar] [CrossRef] [PubMed]
- MacKay, J.J.; O’Malley, D.M.; Presnell, T.; Booker, F.L.; Campbell, M.M.; Whetten, R.W.; Sederoff, R.R. Inheritance, Gene Expression, and Lignin Characterization in a Mutant Pine Deficient in Cinnamyl Alcohol Dehydrogenase. Proc. Natl. Acad. Sci. USA 1997, 94, 8255–8260. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Escamilla-Trevino, L.; Song, L.; Rao, X.; Serrani-Yarce, J.C.; Palacios, M.D.; Engle, N.; Choudhury, F.K.; Tschaplinski, T.J.; Venables, B.J.; et al. 4-Coumarate 3-Hydroxylase in the Lignin Biosynthesis Pathway Is a Cytosolic Ascorbate Peroxidase. Nat. Commun. 2019, 10, 1994. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Treviño, L.L.; Chen, W.; Card, M.L.; Shih, M.C.; Cheng, C.L.; Poulton, J.E. Arabidopsis thaliana β-glucosidases BGLU45 and BGLU46 Hydrolyse Monolignol Glucosides. Phytochemistry 2006, 67, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-S.; Huang, X.-X.; Li, Q.; Cao, Y.; Bao, Y.; Meng, X.-F.; Li, Y.-J.; Fu, C.; Hou, B.-K. UDP-Glycosyltransferase 72B1 Catalyzes the Glucose Conjugation of Monolignols and Is Essential for the Normal Cell Wall Lignification in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2016, 88, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.C.; Chen, F.; Ray, T.; Pattathil, S.; Peña, M.J.; Avci, U.; Li, H.; Huhman, D.V.; Backe, J.; Urbanowicz, B.; et al. Loss of Function of Folylpolyglutamate Synthetase 1 Reduces Lignin Content and Improves Cell Wall Digestibility in Arabidopsis. Biotechnol. Biofuels 2015, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Li, C.; Tarczynski, M.C. High Free-methionine and Decreased Lignin Content Result from a Mutation in the Arabidopsis S-adenosyl-L-methionine Synthetase 3 Gene. Plant J. 2002, 29, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Xu, Z.-Y.; Kim, S.Y.; Lee, J.; Choi, B.; Lee, J.; Kim, H.; Sim, H.-J.; Hwang, I. Spatial Regulation of ABCG25, an ABA Exporter, Is an Important Component of the Mechanism Controlling Cellular ABA Levels. Plant Cell 2016, 28, 2528–2544. [Google Scholar] [CrossRef]
- Kang, J.; Hwang, J.-U.; Lee, M.; Kim, Y.-Y.; Assmann, S.M.; Martinoia, E.; Lee, Y. PDR-Type ABC Transporter Mediates Cellular Uptake of the Phytohormone Abscisic Acid. Proc. Natl. Acad. Sci. USA 2010, 107, 2355–2360. [Google Scholar] [CrossRef]
- Lee, K.H.; Piao, H.L.; Kim, H.-Y.; Choi, S.M.; Jiang, F.; Hartung, W.; Hwang, I.; Kwak, J.M.; Lee, I.-J.; Hwang, I. Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid. Cell 2006, 126, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Née, G.; Krüger, T. Dry Side of the Core: A Meta-Analysis Addressing the Original Nature of the ABA Signalosome at the Onset of Seed Imbibition. Front. Plant Sci. 2023, 14, 1192652. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Gonzalez-Guzman, M.; Diaz, M.; Rodrigues, A.; Izquierdo-Garcia, A.C.; Peirats-Llobet, M.; Fernandez, M.A.; Antoni, R.; Fernandez, D.; Marquez, J.A.; et al. C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. Plant Cell 2014, 26, 4802–4820. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.E.; Overnäs, E.; Johansson, H.; Rada-Iglesias, A.; Engström, P. The Homeodomain-Leucine Zipper (HD-Zip) Class I Transcription Factors ATHB7 and ATHB12 Modulate Abscisic Acid Signalling by Regulating Protein Phosphatase 2C and Abscisic Acid Receptor Gene Activities. Plant Mol. Biol. 2012, 80, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xiong, L.; Song, C.-P.; Gong, D.; Halfter, U.; Zhu, J.-K. A Calcium Sensor and Its Interacting Protein Kinase Are Global Regulators of Abscisic Acid Signaling in Arabidopsis. Dev. Cell 2002, 3, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Qian, L.; Nibau, C.; Duan, Q.; Kita, D.; Levasseur, K.; Li, X.; Lu, C.; Li, H.; Hou, C.; et al. FERONIA Receptor Kinase Pathway Suppresses Abscisic Acid Signaling in Arabidopsis by Activating ABI2 Phosphatase. Proc. Natl. Acad. Sci. USA 2012, 109, 14693–14698. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Peng, T.; Yang, T.; Yan, J.; Yang, K.; Meng, D.; Hsu, Y.-F. Arabidopsis MHP1, a Homologue of Yeast Mpo1, Is Involved in ABA Signaling. Plant Sci. Int. J. Exp. Plant Biol. 2021, 304, 110732. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Lv, D.; Wang, P.; Wang, X.-C.; Chen, J.; Miao, C.; Song, C.-P. An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. Plant Cell 2006, 18, 2749–2766. [Google Scholar] [CrossRef]
- Choi, H.; Park, H.-J.; Park, J.H.; Kim, S.; Im, M.-Y.; Seo, H.-H.; Kim, Y.-W.; Hwang, I.; Kim, S.Y. Arabidopsis Calcium-Dependent Protein Kinase AtCPK32 Interacts with ABF4, a Transcriptional Regulator of Abscisic Acid-Responsive Gene Expression, and Modulates Its Activity. Plant Physiol. 2005, 139, 1750–1761. [Google Scholar] [CrossRef]
- Pandey, G.K.; Cheong, Y.H.; Kim, K.-N.; Grant, J.J.; Li, L.; Hung, W.; D’Angelo, C.; Weinl, S.; Kudla, J.; Luan, S. The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis. Plant Cell 2004, 16, 1912–1924. [Google Scholar] [CrossRef]
- Dutilleul, C.; Ribeiro, I.; Blanc, N.; Nezames, C.D.; Deng, X.W.; Zglobicki, P.; Palacio Barrera, A.M.; Atehortùa, L.; Courtois, M.; Labas, V.; et al. ASG2 Is a Farnesylated DWD Protein That Acts as ABA Negative Regulator in Arabidopsis. Plant Cell Environ. 2016, 39, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Molina, L.; Mongrand, S.; Kinoshita, N.; Chua, N.-H. AFP Is a Novel Negative Regulator of ABA Signaling That Promotes ABI5 Protein Degradation. Genes Dev. 2003, 17, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, X.; Song, P.; Wang, Y.; Ma, J. Studies on the Interactions of AFPs and bZIP Transcription Factor ABI5. Biochem. Biophys. Res. Commun. 2022, 590, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Yoon, H.-J.; Terzaghi, W.; Martinez, C.; Dai, M.; Li, J.; Byun, M.-O.; Deng, X.W. DWA1 and DWA2, Two Arabidopsis DWD Protein Components of CUL4-Based E3 Ligases, Act Together as Negative Regulators in ABA Signal Transduction. Plant Cell 2010, 22, 1716–1732. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Stone, S.L. Cytoplasmic Degradation of the Arabidopsis Transcription Factor ABSCISIC ACID INSENSITIVE 5 Is Mediated by the RING-Type E3 Ligase KEEP ON GOING. J. Biol. Chem. 2013, 288, 20267–20279. [Google Scholar] [CrossRef] [PubMed]
- Wawrzynska, A.; Christiansen, K.M.; Lan, Y.; Rodibaugh, N.L.; Innes, R.W. Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in KEEP ON GOING, a Regulator of Abscisic Acid Signaling. Plant Physiol. 2008, 148, 1510–1522. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Mudgil, Y.; Salt, J.N.; Delmas, F.; Ramachandran, S.; Chilelli, A.; Goring, D.R. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis. Plant Physiol. 2008, 147, 2084–2095. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, A.A.; Ortega-Amaro, M.A.; Delgado-Sánchez, P.; Salinas, J.; Jiménez-Bremont, J.F. AtGRDP1 Gene Encoding a Glycine-Rich Domain Protein Is Involved in Germination and Responds to ABA Signalling. Plant Mol. Biol. Rep. 2014, 32, 1187–1202. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, L. Role of HY5 in Abscisic Acid Response in Seeds and Seedlings. Plant Signal. Behav. 2008, 3, 986–988. [Google Scholar] [CrossRef]
- Kumimoto, R.W.; Siriwardana, C.L.; Gayler, K.K.; Risinger, J.R.; Siefers, N.; Holt, B.F. NUCLEAR FACTOR Y Transcription Factors Have Both Opposing and Additive Roles in ABA-Mediated Seed Germination. PLoS ONE 2013, 8, e59481. [Google Scholar] [CrossRef]
- Bi, C.; Ma, Y.; Wang, X.-F.; Zhang, D.-P. Overexpression of the Transcription Factor NF-YC9 Confers Abscisic Acid Hypersensitivity in Arabidopsis. Plant Mol. Biol. 2017, 95, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Vásquez, J.; Delseny, M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. Plant Cell 2019, 31, 1945–1967. [Google Scholar] [CrossRef]
- Ream, T.S.; Haag, J.R.; Pontvianne, F.; Nicora, C.D.; Norbeck, A.D.; Paša-Tolić, L.; Pikaard, C.S. Subunit Compositions of Arabidopsis RNA Polymerases I and III Reveal Pol I- and Pol III-Specific Forms of the AC40 Subunit and Alternative Forms of the C53 Subunit. Nucleic Acids Res. 2015, 43, 4163–4178. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.M.; Schinke, A.-L.; Brooks, M.D.; Pasquino, A.; Leonelli, L.; Varala, K.; Safi, A.; Krouk, G.; Krapp, A.; Coruzzi, G.M. Transient Genome-Wide Interactions of the Master Transcription Factor NLP7 Initiate a Rapid Nitrogen-Response Cascade. Nat. Commun. 2020, 11, 1157. [Google Scholar] [CrossRef] [PubMed]
- Korver, R.A.; Koevoets, I.T.; Testerink, C. Out of Shape During Stress: A Key Role for Auxin. Trends Plant Sci. 2018, 23, 783–793. [Google Scholar] [CrossRef] [PubMed]
- De Smet, I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G. Transcriptional Repression of BODENLOS by HD-ZIP Transcription Factor HB5 in Arabidopsis thaliana. J. Exp. Bot. 2013, 64, 3009–3019. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Kim, J.H.; Nguyen, H.N.; Jikumaru, Y.; Kamiya, Y.; Hong, S.-W.; Lee, H. A Novel Arabidopsis MYB-like Transcription Factor, MYBH, Regulates Hypocotyl Elongation by Enhancing Auxin Accumulation. J. Exp. Bot. 2013, 64, 3911–3922. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-K.; Lo, P.-C.; Huang, L.-F.; Wu, S.-J.; Yeh, C.-H.; Lu, C.-A. A Single-Repeat MYB Transcription Repressor, MYBH, Participates in Regulation of Leaf Senescence in Arabidopsis. Plant Mol. Biol. 2015, 88, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xing, L.; Wang, X.; Hou, Y.-J.; Gao, J.; Wang, P.; Duan, C.-G.; Zhu, X.; Zhu, J.-K. The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Sci. Signal. 2014, 7, ra53. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Chen, P.; Liang, T.; Li, X.; Liu, H. UV-B Photoreceptor UVR8 Interacts with MYB73/MYB77 to Regulate Auxin Responses and Lateral Root Development. EMBO J. 2020, 39, 101928. [Google Scholar] [CrossRef]
- Galon, Y.; Aloni, R.; Nachmias, D.; Snir, O.; Feldmesser, E.; Scrase-Field, S.; Boyce, J.M.; Bouché, N.; Knight, M.R.; Fromm, H. Calmodulin-Binding Transcription Activator 1 Mediates Auxin Signaling and Responds to Stresses in Arabidopsis. Planta 2010, 232, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Galon, Y.; Snir, O.; Fromm, H. How Calmodulin Binding Transcription Activators (CAMTAs) Mediate Auxin Responses. Plant Signal. Behav. 2010, 5, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.E.; Romani, F.; Chan, R.L. Arabidopsis thaliana Homeodomain-Leucine Zipper Type I Transcription Factors Contribute to Control Leaf Venation Patterning. Plant Signal. Behav. 2018, 13, 1448334. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, H.; Soyk, S.; Šimková, K.; Hostettler, C.; Marafino, J.; Mainiero, S.; Vaughan, C.K.; Monroe, J.D.; Zeeman, S.C. β-Amylase–Like Proteins Function as Transcription Factors in Arabidopsis, Controlling Shoot Growth and Development. Plant Cell 2011, 23, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Low, P.M.; Lim, A.R.Q.; Yang, Y.; Yuan, L.; Ma, W. Functional Antagonism of WRI1 and TCP20 Modulates GH3.3 Expression to Maintain Auxin Homeostasis in Roots. Plants 2022, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.C.; Perotti, M.F.; González-Grandío, E.; Ribone, P.A.; Cubas, P.; Chan, R.L. AtHB40 Modulates Primary Root Length and Gravitropism Involving CYCLINB and Auxin Transporters. Plant Sci. 2022, 324, 111421. [Google Scholar] [CrossRef] [PubMed]
- Eysholdt-Derzsó, E.; Sauter, M. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. Plant Physiol. 2017, 175, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Lombardi, L.; Iacopino, S.; Pencik, A.; Novak, O.; Perata, P.; Giuntoli, B.; Licausi, F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Mol. Plant 2019, 12, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Truskina, J.; Han, J.; Chrysanthou, E.; Galvan-Ampudia, C.S.; Lainé, S.; Brunoud, G.; Macé, J.; Bellows, S.; Legrand, J.; Bågman, A.-M.; et al. A Network of Transcriptional Repressors Modulates Auxin Responses. Nature 2021, 589, 116–119. [Google Scholar] [CrossRef]
- Lee, H.W.; Cho, C.; Kim, J. Lateral Organ Boundaries Domain16 and 18 Act Downstream of the AUXIN1 and LIKE-AUXIN3 Auxin Influx Carriers to Control Lateral Root Development in Arabidopsis. Plant Physiol. 2015, 168, 1792–1806. [Google Scholar] [CrossRef]
- Sozzani, R.; Maggio, C.; Giordo, R.; Umana, E.; Ascencio-Ibañez, J.; Hanley-Bowdoin, L.; Bergounioux, C.; Cella, R.; Albani, D. The E2FD/DEL2 Factor Is a Component of a Regulatory Network Controlling Cell Proliferation and Development in Arabidopsis. Plant Mol. Biol. 2009, 72, 381–395. [Google Scholar] [CrossRef]
- Pandey, N.; Ranjan, A.; Pant, P.; Tripathi, R.K.; Ateek, F.; Pandey, H.P.; Sawant, S.V. CAMTA 1 Regulates Drought Responses in Arabidopsis thaliana. BMC Genom. 2013, 14, 216. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Feng, Y.; Cao, Y.; Fu, B.; Zhang, Z.; Ma, N.; Li, Q.; Hu, T.; Wang, Y.; et al. Osmotic Stress-Induced Lignin Synthesis Is Regulated at Multiple Levels in Alfalfa (Medicago sativa L.). Int. J. Biol. Macromol. 2023, 246, 125501. [Google Scholar] [CrossRef] [PubMed]
- Cassan-Wang, H.; Goué, N.; Saidi, M.N.; Legay, S.; Sivadon, P.; Goffner, D.; Grima-Pettenati, J. Identification of Novel Transcription Factors Regulating Secondary Cell Wall Formation in Arabidopsis. Front. Plant Sci. 2013, 4, 189. [Google Scholar] [CrossRef] [PubMed]
- Raminger, B.L.; Miguel, V.N.; Zapata, C.; Chan, R.L.; Cabello, J.V. Source-to-Sink Partitioning Is Altered by Changes in the Expression of the Transcription Factor AtHB5 in Arabidopsis. J. Exp. Bot. 2023, 74, 1873–1889. [Google Scholar] [CrossRef]
- Passardi, F.; Penel, C.; Dunand, C. Performing the Paradoxical: How Plant Peroxidases Modify the Cell Wall. Trends Plant Sci. 2004, 9, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Cabello, J.V.; Arce, A.L.; Chan, R.L. The Homologous HD-Zip I Transcription Factors HaHB1 and AtHB13 Confer Cold Tolerance via the Induction of Pathogenesis-Related and Glucanase Proteins. Plant J. Cell Mol. Biol. 2012, 69, 141–153. [Google Scholar] [CrossRef]
- Sijacic, P.; Bajic, M.; McKinney, E.C.; Meagher, R.B.; Deal, R.B. Changes in Chromatin Accessibility between Arabidopsis Stem Cells and Mesophyll Cells Illuminate Cell Type-Specific Transcription Factor Networks. Plant J. Cell Mol. Biol. 2018, 94, 215–231. [Google Scholar] [CrossRef]
- Dietrich, K.; Weltmeier, F.; Ehlert, A.; Weiste, C.; Stahl, M.; Harter, K.; Dröge-Laser, W. Heterodimers of the Arabidopsis Transcription Factors bZIP1 and bZIP53 Reprogram Amino Acid Metabolism during Low Energy Stress. Plant Cell 2011, 23, 381–395. [Google Scholar] [CrossRef]
- Hsieh, W.-P.; Hsieh, H.-L.; Wu, S.-H. Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development. Plant Cell 2012, 24, 3997–4011. [Google Scholar] [CrossRef]
- Kawaguchi, J.; Hayashi, K.; Desaki, Y.; Ramadan, A.; Nozawa, A.; Nemoto, K.; Sawasaki, T.; Arimura, G.-I. JUL1, Ring-Type E3 Ubiquitin Ligase, Is Involved in Transcriptional Reprogramming for ERF15-Mediated Gene Regulation. Int. J. Mol. Sci. 2023, 24, 987. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Li, Z.; Tang, H.; Zhang, L.; Li, J.; Li, Y.; Yao, N.; Li, Y.; Yang, D.; Zuo, Z. Arabidopsis LSH8 Positively Regulates ABA Signaling by Changing the Expression Pattern of ABA-Responsive Proteins. Int. J. Mol. Sci. 2021, 22, 10314. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Rahman, H.; Farhatullah, D.; Ali, G. Comparative Study of Transgenic (DREB1A) and Non-Transgenic Wheat Lines on Relative Water Content, Sugar, Proline and Chlorophyll under Drought and Salt Stresses. Sarhad J. Agric. 2018, 34, 986–993. [Google Scholar] [CrossRef]
- Li, T.; Huang, Y.; Khadr, A.; Wang, Y.-H.; Xu, Z.-S.; Xiong, A.-S. DcDREB1A, a DREB-Binding Transcription Factor from Daucus Carota, Enhances Drought Tolerance in Transgenic Arabidopsis thaliana and Modulates Lignin Levels by Regulating Lignin-Biosynthesis-Related Genes. Environ. Exp. Bot. 2020, 169, 103896. [Google Scholar] [CrossRef]
- Sun, T.; Zeng, S.; Wang, X.; Owens, L.; Fe, Z.; Zhao, Y.; Mazourek, M.; Giovannoni, J.; Li, L. GLKs Directly Regulate Carotenoid Biosynthesis via Interacting with GBFs in Nuclear Condensates in Plant. bioRxiv 2022. [Google Scholar] [CrossRef]
- González-Grandío, E.; Pajoro, A.; Franco-Zorrilla, J.M.; Tarancón, C.; Immink, R.G.H.; Cubas, P. Abscisic Acid Signaling Is Controlled by a BRANCHED1/HD-ZIP I Cascade in Arabidopsis Axillary Buds. Proc. Natl. Acad. Sci. USA 2017, 114, 245–254. [Google Scholar] [CrossRef]
- Tang, W.; Wang, W.; Chen, D.; Ji, Q.; Jing, Y.; Wang, H.; Lin, R. Transposase-Derived Proteins FHY3/FAR1 Interact with PHYTOCHROME-INTERACTING FACTOR1 to Regulate Chlorophyll Biosynthesis by Modulating HEMB1 during Deetiolation in Arabidopsis. Plant Cell 2012, 24, 1984–2000. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Li, J.; Li, G.; Li, B.; Chen, B.; Shen, H.; Huang, X.; Mo, X.; Wan, X.; Lin, R.; et al. Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in Arabidopsis Development. Plant Cell 2011, 23, 2514–2535. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, L.; Li, J.; Tang, W.; Li, J.; Lin, R. FHY3 Interacts with Phytochrome B and Regulates Seed Dormancy and Germination. Plant Physiol. 2021, 187, 289–302. [Google Scholar] [CrossRef]
- Mele, G.; Ori, N.; Sato, Y.; Hake, S. The Knotted1-like Homeobox Gene BREVIPEDICELLUS Regulates Cell Differentiation by Modulating Metabolic Pathways. Genes Dev. 2003, 17, 2088–2093. [Google Scholar] [CrossRef]
- Khan, M.; Xu, M.; Murmu, J.; Tabb, P.; Liu, Y.; Storey, K.; McKim, S.M.; Douglas, C.J.; Hepworth, S.R. Antagonistic Interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE Regulates Arabidopsis Inflorescence Architecture. Plant Physiol. 2012, 158, 946–960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Salasini, B.C.; Khan, M.; Devi, B.; Bush, M.; Subramaniam, R.; Hepworth, S.R. Clade I TGACG-Motif Binding Basic Leucine Zipper Transcription Factors Mediate BLADE-ON-PETIOLE-Dependent Regulation of Development. Plant Physiol. 2019, 180, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, N.; Kiba, T.; Kamioka, M.; Suzuki, T.; Yamashino, T.; Higashiyama, T.; Sakakibara, H.; Mizuno, T. Transcriptional Repressor PRR5 Directly Regulates Clock-Output Pathways. Proc. Natl. Acad. Sci. USA 2012, 109, 17123–17128. [Google Scholar] [CrossRef]
- Cai, W.; Ma, J.; Chi, W.; Zou, M.; Guo, J.; Lu, C.; Zhang, L. Cooperation of LPA3 and LPA2 Is Essential for Photosystem II Assembly in Arabidopsis. Plant Physiol. 2010, 154, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Caparros, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative Stress and Antioxidant Metabolism Under Adverse Environmental Conditions: A Review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Margis, R.; Dunand, C.; Teixeira, F.K.; Margis-Pinheiro, M. Glutathione Peroxidase Family—An Evolutionary Overview. FEBS J. 2008, 275, 3959–3970. [Google Scholar] [CrossRef] [PubMed]
- Filiz, E.; Ozyigit, I.I.; Saracoglu, I.A.; Uras, M.E.; Sen, U.; Yalcin, B. Abiotic Stress-Induced Regulation of Antioxidant Genes in Different Arabidopsis Ecotypes: Microarray Data Evaluation. Biotechnol. Biotechnol. Equip. 2019, 33, 128–143. [Google Scholar] [CrossRef]
- Mehdi, S.M.M.; Szczesniak, M.W.; Ludwików, A. The Bro1-like Domain-Containing Protein, AtBro1, Modulates Growth and Abiotic Stress Responses in Arabidopsis. Front. Plant Sci. 2023, 14, 1157435. [Google Scholar] [CrossRef]
- Causier, B.; Hopes, T.; McKay, M.; Paling, Z.; Davies, B. Plants Utilise Ancient Conserved Peptide Upstream Open Reading Frames in Stress-Responsive Translational Regulation. Plant Cell Environ. 2022, 45, 1229–1241. [Google Scholar] [CrossRef]
- Aarabi, F.; Ghigi, A.; Ahchige, M.W.; Bulut, M.; Geigenberger, P.; Neuhaus, H.E.; Sampathkumar, A.; Alseekh, S.; Fernie, A.R. Genome-Wide Association Study Unveils Ascorbate Regulation by PAS/LOV PROTEIN During High Light Acclimation. Plant Physiol. 2023, 193, 2037–2054. [Google Scholar] [CrossRef]
- Ogura, Y.; Komatsu, A.; Zikihara, K.; Nanjo, T.; Tokutomi, S.; Wada, M.; Kiyosue, T. Blue Light Diminishes Interaction of PAS/LOV Proteins, Putative Blue Light Receptors in Arabidopsis thaliana, with Their Interacting Partners. J. Plant Res. 2008, 121, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.D.; Thomashow, M.F. A Role for Circadian Evening Elements in Cold-Regulated Gene Expression in Arabidopsis. Plant J. Cell Mol. Biol. 2009, 60, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, D.; Lu, S.X.; Hu, X.; Huang, R.; Liang, T.; Xu, T.; Tobin, E.M.; Liu, H. Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock. Plant Cell 2016, 28, 2755–2769. [Google Scholar] [CrossRef] [PubMed]
- Nakatogawa, H.; Ichimura, Y.; Ohsumi, Y. Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion. Cell 2007, 130, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, K.; Hanaoka, H.; Sato, S.; Kato, T.; Tabata, S.; Noda, T.; Ohsumi, Y. Processing of ATG8s, Ubiquitin-like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. Plant Cell 2004, 16, 2967–2983. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.R.; Doelling, J.H.; Suttangkakul, A.; Vierstra, R.D. Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways. Plant Physiol. 2005, 138, 2097–2110. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nolan, T.M.; Yin, Y.; Bassham, D.C. Identification of Transcription Factors That Regulate ATG8 Expression and Autophagy in Arabidopsis. Autophagy 2020, 16, 123–139. [Google Scholar] [CrossRef]
- Kopecká, R.; Kameniarová, M.; Černý, M.; Brzobohatý, B.; Novák, J. Abiotic Stress in Crop Production. Int. J. Mol. Sci. 2023, 24, 6603. [Google Scholar] [CrossRef] [PubMed]
- Pereira Mendes, M.; Hickman, R.; Van Verk, M.C.; Nieuwendijk, N.M.; Reinstädler, A.; Panstruga, R.; Pieterse, C.M.J.; Van Wees, S.C.M. A Family of Pathogen-Induced Cysteine-Rich Transmembrane Proteins Is Involved in Plant Disease Resistance. Planta 2021, 253, 102. [Google Scholar] [CrossRef]
- Joshi, J.R.; Singh, V.; Friedman, H. Arabidopsis Cysteine-Rich Trans-Membrane Module (CYSTM) Small Proteins Play a Protective Role Mainly against Heat and UV Stresses. Funct. Plant Biol. FPB 2020, 47, 195–202. [Google Scholar] [CrossRef]
- Naika, M.; Shameer, K.; Sowdhamini, R. Comparative Analyses of Stress-Responsive Genes in Arabidopsis thaliana: Insight from Genomic Data Mining, Functional Enrichment, Pathway Analysis and Phenomics. Mol. Biosyst. 2013, 9, 1888–1908. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Shibahara, K.I.; Taoka, K.I.; Iwabuchi, M.; Stillman, B.; Araki, T. FASCIATA Genes for Chromatin Assembly Factor-1 in Arabidopsis Maintain the Cellular Organization of Apical Meristems. Cell 2001, 104, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zou, W.; Li, G.; Zhao, J. TRANSLOCASE OF THE INNER MEMBRANE9 and 10 Are Essential for Maintaining Mitochondrial Function during Early Embryo Cell and Endosperm Free Nucleus Divisions in Arabidopsis1. Plant Physiol. 2014, 166, 853–868. [Google Scholar] [CrossRef] [PubMed]
- de Longevialle, A.F.; Meyer, E.H.; Andrés, C.; Taylor, N.L.; Lurin, C.; Millar, A.H.; Small, I.D. The Pentatricopeptide Repeat Gene OTP43 Is Required for Trans-Splicing of the Mitochondrial Nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 2007, 19, 3256–3265. [Google Scholar] [CrossRef] [PubMed]
- Chaiwanon, J.; Wang, Z.-Y. Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Curr. Biol. CB 2015, 25, 1031–1042. [Google Scholar] [CrossRef]
- Rosado, A.; Sohn, E.J.; Drakakaki, G.; Pan, S.; Swidergal, A.; Xiong, Y.; Kang, B.-H.; Bressan, R.A.; Raikhel, N.V. Auxin-Mediated Ribosomal Biogenesis Regulates Vacuolar Trafficking in Arabidopsis. Plant Cell 2010, 22, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Slovak, R.; Setzer, C.; Roiuk, M.; Bertels, J.; Göschl, C.; Jandrasits, K.; Beemster, G.T.S.; Busch, W. Ribosome Assembly Factor Adenylate Kinase 6 Maintains Cell Proliferation and Cell Size Homeostasis during Root Growth. New Phytol. 2020, 225, 2064–2076. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.; Sun, X.; Li, G.; Hou, L.; Zhao, S.; Zhao, C.; Ma, C.; Li, P.; Wang, X. Coordination between MIDASIN 1-Mediated Ribosome Biogenesis and Auxin Modulates Plant Development. J. Exp. Bot. 2021, 72, 2501–2513. [Google Scholar] [CrossRef]
- Horiguchi, G.; Van Lijsebettens, M.; Candela, H.; Micol, J.L.; Tsukaya, H. Ribosomes and Translation in Plant Developmental Control. Plant Sci. Int. J. Exp. Plant Biol. 2012, 191–192, 24–34. [Google Scholar] [CrossRef]
- Byrne, M.E. A Role for the Ribosome in Development. Trends Plant Sci. 2009, 14, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.-M.; Xu, C.-T.; Xie, Q.; Zhang, M.-J.; Yan, N.; Dai, C.-B.; Lv, J.; Cui, M.-M.; Wang, W.-F.; Sun, Y.-H. ERF4 Interacts with and Antagonizes TCP15 in Regulating Endoreduplication and Cell Growth in Arabidopsis. J. Integr. Plant Biol. 2022, 64, 1673–1689. [Google Scholar] [CrossRef]
- Dubois, M.; Van den Broeck, L.; Claeys, H.; Van Vlierberghe, K.; Matsui, M.; Inzé, D. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis. Plant Physiol. 2015, 169, 166–179. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.-L.; Park, J.; Tyler, L.; Yusuke, J.; Qiu, K.; Nam, E.A.; Lumba, S.; Desveaux, D.; McCourt, P.; et al. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN]. Plant Physiol. 2016, 171, 2760–2770. [Google Scholar] [CrossRef]
- Haga, N.; Kobayashi, K.; Suzuki, T.; Maeo, K.; Kubo, M.; Ohtani, M.; Mitsuda, N.; Demura, T.; Nakamura, K.; Jürgens, G.; et al. Mutations in MYB3R1 and MYB3R4 Cause Pleiotropic Developmental Defects and Preferential Down-Regulation of Multiple G2/M-Specific Genes in Arabidopsis1. Plant Physiol. 2011, 157, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Goh, T.; Joi, S.; Mimura, T.; Fukaki, H. The Establishment of Asymmetry in Arabidopsis Lateral Root Founder Cells Is Regulated by LBD16/ASL18 and Related LBD/ASL Proteins. Dev. Camb. Engl. 2012, 139, 883–893. [Google Scholar] [CrossRef]
- Papdi, C.; Pérez-Salamó, I.; Joseph, M.P.; Giuntoli, B.; Bögre, L.; Koncz, C.; Szabados, L. The Low Oxygen, Oxidative and Osmotic Stress Responses Synergistically Act through the Ethylene Response Factor VII Genes RAP2.12, RAP2.2 and RAP2.3. Plant J. Cell Mol. Biol. 2015, 82, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Koo, D.; Lee, H.G.; Bae, S.H.; Lee, K.; Seo, P.J. Callus Proliferation-Induced Hypoxic Microenvironment Decreases Shoot Regeneration Competence in Arabidopsis. Mol. Plant 2024, 17, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Potuschak, T.; Colón-Carmona, A.; Gutiérrez, R.A.; Doerner, P. Arabidopsis TCP20 Links Regulation of Growth and Cell Division Control Pathways. Proc. Natl. Acad. Sci. USA 2005, 102, 12978–12983. [Google Scholar] [CrossRef]
- Kunieda, T.; Mitsuda, N.; Ohme-Takagi, M.; Takeda, S.; Aida, M.; Tasaka, M.; Kondo, M.; Nishimura, M.; Hara-Nishimura, I. NAC Family Proteins NARS1/NAC2 and NARS2/NAM in the Outer Integument Regulate Embryogenesis in Arabidopsis. Plant Cell 2008, 20, 2631–2642. [Google Scholar] [CrossRef]
- Harkey, A.F.; Sims, K.N.; Muday, G.K. A New Tool for Discovering Transcriptional Regulators of Co-Expressed Genes Predicts Gene Regulatory Networks That Mediate Ethylene-Controlled Root Development. In Silico Plants 2020, 2, diaa006. [Google Scholar] [CrossRef]
- Alonso, R.; Oñate-Sánchez, L.; Weltmeier, F.; Ehlert, A.; Diaz, I.; Dietrich, K.; Vicente-Carbajosa, J.; Dröge-Laser, W. A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. Plant Cell 2009, 21, 1747–1761. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, L.; Pedrotti, L.; Weiste, C.; Fekete, A.; Schierstaedt, J.; Göttler, J.; Kempa, S.; Krischke, M.; Dietrich, K.; Mueller, M.J.; et al. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots. Plant Cell 2015, 27, 2244–2260. [Google Scholar] [CrossRef]
- Dong, S.; Tarkowska, D.; Sedaghatmehr, M.; Welsch, M.; Gupta, S.; Mueller-Roeber, B.; Balazadeh, S. The HB40-JUB1 Transcriptional Regulatory Network Controls Gibberellin Homeostasis in Arabidopsis. Mol. Plant 2022, 15, 322–339. [Google Scholar] [CrossRef] [PubMed]
- Perotti, M.F.; Arce, A.L.; Chan, R.L. The Underground Life of Homeodomain-Leucine Zipper Transcription Factors. J. Exp. Bot. 2021, 72, 4005–4021. [Google Scholar] [CrossRef]
- Shaikhali, J.; Norén, L.; de Dios Barajas-López, J.; Srivastava, V.; König, J.; Sauer, U.H.; Wingsle, G.; Dietz, K.-J.; Strand, Å. Redox-Mediated Mechanisms Regulate DNA Binding Activity of the G-Group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. J. Biol. Chem. 2012, 287, 27510–27525. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, R.; Alemzadeh, A.; Razi, H. Microarray Analysis of Transcriptional Responses to Salt and Drought Stress in Arabidopsis thaliana. Heliyon 2019, 5, 2614. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.; Arif, M.; Fisahn, J.; Xue, G.-P.; Balazadeh, S.; Mueller-Roeber, B. NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis. Plant Cell 2013, 25, 4941–4955. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Zhong, H.; Zhang, H.-L.; Xia, Y. Redox-Sensitive bZIP68 Plays a Role in Balancing Stress Tolerance with Growth in Arabidopsis. Plant J. 2019, 100, 768–783. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Li, N.; Muthreich, M.; Huang, L.-J.; Thurow, C.; Sun, T.; Zhang, Y.; Gatz, C. TGACG-BINDING FACTORs (TGAs) and TGA-Interacting CC-Type Glutaredoxins Modulate Hyponastic Growth in Arabidopsis thaliana. New Phytol. 2019, 221, 1906–1918. [Google Scholar] [CrossRef] [PubMed]
- Murmu, J.; Bush, M.J.; DeLong, C.; Li, S.; Xu, M.; Khan, M.; Malcolmson, C.; Fobert, P.R.; Zachgo, S.; Hepworth, S.R. Arabidopsis Basic Leucine-Zipper Transcription Factors TGA9 and TGA10 Interact with Floral Glutaredoxins ROXY1 and ROXY2 and Are Redundantly Required for Anther Development1. Plant Physiol. 2010, 154, 1492–1504. [Google Scholar] [CrossRef]
- Noshi, M.; Mori, D.; Tanabe, N.; Maruta, T.; Shigeoka, S. Arabidopsis Clade IV TGA Transcription Factors, TGA10 and TGA9, Are Involved in ROS-Mediated Responses to Bacterial PAMP Flg22. Plant Sci. Int. J. Exp. Plant Biol. 2016, 252, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-Y.; Li, W.; Wang, M.-J.; Li, J.-Y.; Davis, S.J.; Liu, J.-X. REVEILLE 7 Inhibits the Expression of the Circadian Clock Gene EARLY FLOWERING 4 to Fine-Tune Hypocotyl Growth in Response to Warm Temperatures. J. Integr. Plant Biol. 2022, 64, 1310–1324. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Olson, A.; Kim, K.; Ohme-Takagi, M.; Ware, D. HB31 and HB21 Regulate Floral Architecture through miRNA396/GRF Modules in Arabidopsis. Plant Biotechnol. Rep. 2023, 18, 45–55. [Google Scholar] [CrossRef]
- Oono, Y.; Seki, M.; Satou, M.; Iida, K.; Akiyama, K.; Sakurai, T.; Fujita, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Monitoring Expression Profiles of Arabidopsis Genes during Cold Acclimation and Deacclimation Using DNA Microarrays. Funct. Integr. Genom. 2006, 6, 212–234. [Google Scholar] [CrossRef] [PubMed]
- Otani, Y.; Kawanishi, M.; Kamimura, M.; Sasaki, A.; Nakamura, Y.; Nakamura, T.; Okamoto, S. Behavior and Possible Function of Arabidopsis BES1/BZR1 Homolog 2 in Brassinosteroid Signaling. Plant Signal. Behav. 2022, 17, 2084277. [Google Scholar] [CrossRef]
- Dixit, S.K.; Gupta, A.; Fatima, U.; Senthil-Kumar, M. AtGBF3 Confers Tolerance to Arabidopsis thaliana against Combined Drought and Pseudomonas syringae Stress. Environ. Exp. Bot. 2019, 168, 103881. [Google Scholar] [CrossRef]
- Gatz, C. From Pioneers to Team Players: TGA Transcription Factors Provide a Molecular Link between Different Stress Pathways. Mol. Plant-Microbe Interact. MPMI 2013, 26, 151–159. [Google Scholar] [CrossRef]
- Levy, Y.Y.; Mesnage, S.; Mylne, J.S.; Gendall, A.R.; Dean, C. Multiple Roles of Arabidopsis VRN1 in Vernalization and Flowering Time Control. Science 2002, 297, 243–246. [Google Scholar] [CrossRef]
- Mylne, J.S.; Barrett, L.; Tessadori, F.; Mesnage, S.; Johnson, L.; Bernatavichute, Y.V.; Jacobsen, S.E.; Fransz, P.; Dean, C. LHP1, the Arabidopsis Homologue of HETEROCHROMATIN PROTEIN1, Is Required for Epigenetic Silencing of FLC. Proc. Natl. Acad. Sci. USA 2006, 103, 5012–5017. [Google Scholar] [CrossRef]
- Lu, C.; Liu, X.; Tang, Y.; Fu, Y.; Zhang, J.; Yang, L.; Li, P.; Zhu, Z.; Dong, P. A Comprehensive Review of TGA Transcription Factors in Plant Growth, Stress Responses, and Beyond. Int. J. Biol. Macromol. 2024, 258, 128880. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Singh, R.; Verma, P.K. Plant BBR/BPC Transcription Factors: Unlocking Multilayered Regulation in Development, Stress and Immunity. Planta 2023, 258, 31. [Google Scholar] [CrossRef] [PubMed]
- Scandola, S.; Mehta, D.; Li, Q.; Rodriguez Gallo, M.C.; Castillo, B.; Uhrig, R.G. Multi-Omic Analysis Shows REVEILLE Clock Genes Are Involved in Carbohydrate Metabolism and Proteasome Function. Plant Physiol. 2022, 190, 1005–1023. [Google Scholar] [CrossRef]
- Kidokoro, S.; Konoura, I.; Soma, F.; Suzuki, T.; Miyakawa, T.; Tanokura, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Clock-Regulated Coactivators Selectively Control Gene Expression in Response to Different Temperature Stress Conditions in Arabidopsis. Proc. Natl. Acad. Sci. USA 2023, 120, 2216183120. [Google Scholar] [CrossRef]
- Kolmykov, S.; Yevshin, I.; Kulyashov, M.; Sharipov, R.; Kondrakhin, Y.; Makeev, V.J.; Kulakovskiy, I.V.; Kel, A.; Kolpakov, F. GTRD: An Integrated View of Transcription Regulation. Nucleic Acids Res. 2021, 49, 104–111. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists. Nucleic Acids Res. 2022, 50, 216–221. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Sandelin, A.; Alkema, W.; Engström, P.; Wasserman, W.W.; Lenhard, B. JASPAR: An open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004, 32, D91–D94. [Google Scholar] [CrossRef] [PubMed]
- Touzet, H.; Varré, J.S. Efficient and accurate P-value computation for Position Weight Matrices. Algorithms Mol. Biol. 2007, 2, 15. [Google Scholar] [CrossRef] [PubMed]
Regulator Type/Predicted Function | No. of TFs | No. of Predictions with No Experimental Data Available * | No. of Predictions Contradictory to Experimental Data * | No. of Predictions Supported by Experimental Data/of Them with Known Dual-Function * |
---|---|---|---|---|
DA/activator | 23 | 2 | 7 | 14/5 |
DS/suppressor | 2 | 0 | 2 | 0/0 |
UA/activator | 6 | 0 | 0 | 6/4 |
US/suppressor | 8 | 1 | 5 | 2/1 |
Total | 39 | 3 (8%) | 14 (36%) | 22 (56%)/10 (26%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omelyanchuk, N.A.; Lavrekha, V.V.; Bogomolov, A.G.; Dolgikh, V.A.; Sidorenko, A.D.; Zemlyanskaya, E.V. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. Plants 2024, 13, 1905. https://doi.org/10.3390/plants13141905
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. Plants. 2024; 13(14):1905. https://doi.org/10.3390/plants13141905
Chicago/Turabian StyleOmelyanchuk, Nadya A., Viktoriya V. Lavrekha, Anton G. Bogomolov, Vladislav A. Dolgikh, Aleksandra D. Sidorenko, and Elena V. Zemlyanskaya. 2024. "Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L." Plants 13, no. 14: 1905. https://doi.org/10.3390/plants13141905
APA StyleOmelyanchuk, N. A., Lavrekha, V. V., Bogomolov, A. G., Dolgikh, V. A., Sidorenko, A. D., & Zemlyanskaya, E. V. (2024). Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. Plants, 13(14), 1905. https://doi.org/10.3390/plants13141905