Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.)
Abstract
:1. Introduction
2. Results
2.1. Identification of Protective Enzymes
2.2. Measurement of Osmotic Regulatory Substances
2.3. Establishing the Transcriptomes and Proteomes of the Three Blueberry Cultivars under Cold Stress
2.4. Differentially Expressed Gene and Protein Sets in the Three Blueberry Cultivars
2.5. Expression Pattern and Functional Enrichment Analysis of the DEGs
2.6. Alternative Splicing and lncRNA Analysis
2.7. Transcription Factor-Related DEGs
2.8. Calcium-Related Gene Expression in the Three Cultivars
2.9. Restructuring of the Proteome in Response to Cold Stress
2.10. Real-Time PCR and the Correlation Analysis between Transcriptomes and Proteomes
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Plant Materials
4.2. RNA Isolation and RNA-Seq Library Construction
4.3. Transcriptome Assembly and Gene Annotation
4.4. Label-Free Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)
4.5. Real-Time PCR Analysis
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Guo, Q.Q.; Li, X.; Niu, L.; Jameson, P.E.; Zhou, W.B. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiol. 2021, 186, 677–695. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Xiang, C.; Farooq, M.; Muhammad, N.; Zhang, Y.; Xu, H.; Ke, Y.Y.; Bruno, A.K.; Zhang, L.L.; Li, J.C. Cold Stress in Wheat: Plant Acclimation Responses and Management Strategies. Front. Plant Sci. 2021, 12, 676884. [Google Scholar] [CrossRef]
- Godoy, F.; Olivos-Hernandez, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef]
- Ding, Y.L.; Shi, Y.T.; Yang, S.H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019, 222, 1690–1704. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Magwanga, R.O.; Kirungu, J.N.; Hu, Y.G.; Dong, Q.; Cai, X.Y.; Zhou, Z.L.; Wang, X.X.; Zhang, Z.M.; Hou, Y.Q.; et al. Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis. Front. Plant Sci. 2019, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.H.; Lu, K.; Gu, Y.Y.; Zhang, L.; Li, W.Y.; Li, Z. Effects of Low-Temperature Stress and Brassinolide Application on the Photosynthesis and Leaf Structure of Tung Tree Seedlings. Front. Plant Sci. 2019, 10, 1767. [Google Scholar] [CrossRef]
- Wang, L.; Bokhary, S.U.F.; Xie, B.; Hu, S.Q.; Jin, P.; Zheng, Y.H. Biochemical and molecular effects of glycine betaine treatment on membrane fatty acid metabolism in cold stored peaches. Postharvest Biol. Technol. 2019, 154, 58–69. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Chen, S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. Plants 2020, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Calhau, C.; Pintado, M. Health promoting properties of blueberries: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 181–200. [Google Scholar] [CrossRef]
- Goncalves, A.C.; Nunes, A.R.; Flores-Felix, J.D.; Alves, G.; Silva, L.R. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022, 27, 3294. [Google Scholar] [CrossRef]
- Schmidt, B.M.; Erdman, J.W., Jr.; Lila, M.A. Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett. 2006, 231, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Cutler, B.R.; Petersen, C.; Anandh Babu, P.V. Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies. Mol. Nutr. Food Res. 2017, 61, 1600271. [Google Scholar] [CrossRef] [PubMed]
- Quamme, H.A.; Stushnoff, C.; Weiser, C.J. Winter hardiness of several species and Cultivars in Minnesota. HortSeience 1972, 7, 500–502. [Google Scholar] [CrossRef]
- Rowland, L.J.; Mehra, S.; Arora, R.; Dhanaraj, A.L. Identification of Molecular Markers Associated With Cold Tolerance in Blueberry. Acta Hortic. 2003, 625, 59–69. [Google Scholar] [CrossRef]
- Rowland, L.J.; Ogden, E.L.; Ehlenfeldt, M.K.; Vinyard, B. Cold Hardiness, Deaccliation Kinetics, and Bud Development among 12 Diverse Blueberry Genotypes under Field Conditions. J. Am. Soc. Hortic. Sci. 2005, 130, 508–514. [Google Scholar] [CrossRef]
- Wei, Y.X.; Yang, Y.C.; Wang, X.D.; Wei, X.; Liu, Q.; Sun, B. The 2008 Liaoning Zhuanghe Blueberry Pumping Damage Investigation. North. Hortic. 2010, 1, 98–99. [Google Scholar]
- Wei, X.; Wang, S.; Wang, X.D.; Yang, Y.C.; Liu, Y.C.; Liu, C. Physiological Response and Cold Resistance Evaluation of Blueberry Varieties under Low Temperature Treatment. J. Henan Agric. Sci. 2023, 52, 115–125. [Google Scholar] [CrossRef]
- Pan, Y.H.; Liang, H.F.; Gao, L.J.; Dai, G.X.; Chen, W.W.; Yang, X.H.; Qing, D.J.; Gao, J.; Wu, H.; Huang, J.; et al. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC Plant Biol. 2020, 20, 371. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Y.; Ding, Z.; Zhao, L. Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in camellia sinensis. Front. Plant Sci. 2016, 7, 1858–1875. [Google Scholar] [CrossRef]
- He, B.; Guo, T.; Huang, H.; Xi, W.; Chen, X. Physiological responses of Scaevola aemula seedlings under high temperature stress. S. Afr. J. Bot. 2017, 112, 203–209. [Google Scholar] [CrossRef]
- Arora, R.; Rowland, L.J.; Lehman, J.S.; Lim, C.C.; Panta, G.R.; Vorsa, N. Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor. Appl. Genet. 2000, 100, 690–696. [Google Scholar] [CrossRef]
- Zhao, X.; Zhan, L.P.; Zou, X.Z. Improvement of cold tolerance of the half-high bush Northland blueberry by transformation with the LEA gene from Tamarix androssowi. Plant Growth Regul. 2011, 63, 13–22. [Google Scholar] [CrossRef]
- Walworth, A.E.; Rowland, L.J.; Polashock, J.J.; Hancock, J.F.; Song, G.Q. Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol. Breed. 2012, 30, 1313–1323. [Google Scholar] [CrossRef]
- Die, J.V.; Rowland, L.J. Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environ. Exp. Bot. 2014, 106, 87–98. [Google Scholar] [CrossRef]
- Die, J.V.; Arora, R.; Rowland, L.J. Global patterns of protein abundance during the development of cold hardiness in blueberry. Environ. Exp. Bot. 2016, 124, 11–24. [Google Scholar] [CrossRef]
- Dai, Z.G.; Wei, M.Y.; Zhang, B.X.; Yuan, Y.; Zhang, B.F. VuWRKY, a group I WRKY gene from Vaccinium uliginosum, confers tolerance to cold and salt stresses in plant. Plant Cell Tiss. Org. 2021, 147, 157–168. [Google Scholar] [CrossRef]
- Dhanaraj, A.L.; Alkharouf, N.W.; Beard, H.S.; Chouikha, I.B.; Matthews, B.F.; Wei, H.; Arora, R.; Rowland, L.J. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 2007, 225, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.J.; Zhang, H.; Ren, J.Y.; Dong, J.L.; Zhao, X.H.; Wang, X.G.; Wang, J.; Zhong, C.; Zhao, S.L.; Liu, X.B.; et al. Comparative Transcriptome-Based Mining and Expression Profiling of Transcription Factors Related to Cold Tolerance in Peanut. Int. J. Mol. Sci. 2020, 21, 1921. [Google Scholar] [CrossRef]
- Peng, X.; Wu, H.; Chen, H.J.; Zhang, Y.J.; Qiu, D.; Zhang, Z.Y. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress. BMC Genom. 2019, 20, 687. [Google Scholar] [CrossRef]
- Kayum, M.A.; Nath, U.K.; Park, J.I.; Biswas, M.K.; Choi, E.K.; Song, J.Y.; Kim, H.T.; Nou, I.S. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. Genes 2018, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Anjum, N.A.; Hasanuzzaman, M.; Gill, R.; Dipesh, K.T.; Ahmad, I.; Pereira, E.; Tuteja, N. Glutathione and glutathione reductase: A boon in disguise for plantabiotic stressdefense operations. Plant Physiol. Biochem. 2013, 70, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.L.; Hou, R.P.; Yang, N.; Li, L.; Deng, J.R.; Qin, G.W.; Ding, D.K. Physiological and TMT-labeled proteomic analyses reveal important roles of sugar and secondary metabolism in Citrus junos under cold stress. J. Proteom. 2021, 237, 104145. [Google Scholar] [CrossRef]
- Jan, N.; Qazi, H.A.; Raja, V.; John, R. Proteomics: A tool to decipher cold tolerance. Theor. Exp. Plant Physiol. 2019, 31, 183–213. [Google Scholar] [CrossRef]
- Yu, J.L.; Hulse-Kemp, A.M.; Babiker, E.; Staton, M. High-quality reference genome and annotation aids understanding of berry development for evergreen blueberry (Vaccinium darrowii). Hortic. Res. 2021, 8, 3321–3336. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fu, L.F.; Geng, Z.W.; Zhao, X.J.; Liu, Q.H.; Jiang, X.Q. Physiological characteristic changes and full-length transcriptome of rose (Rosa chinensis) roots and leaves in response to drought stress. Plant Cell Physiol. 2020, 61, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Ali, S.; Jin, R.; Gill, R.A.; Mwamba, T.M.; Zhang, N.; Hassan, Z.U.; Islam, F.; Ali, S.; Zhou, W.J. Beryllium Stress-Induced Modifications in Antioxidant Machinery and Plant Ultrastructure in the Seedlings of Black and Yellow Seeded Oilseed Rape. Biomed. Res. Int. 2018, 2018, 1615968. [Google Scholar] [CrossRef]
- Ji, L.S.; Li, P.; Su, Z.H.; Li, M.F.; Guo, S.J. Cold-tolerant introgression line construction and low-temperature stress response analysis for bell pepper. Plant Signal. Behav. 2020, 15, 1773097. [Google Scholar] [CrossRef]
- Cittadino, G.M.; Andrews, J.; Purewal, H.; Estanislao Acuña Avila, P.; Arnone, J.T. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J. Fungi 2023, 9, 523. [Google Scholar] [CrossRef]
- Wang, D.J.; Wang, L.; Su, W.H.; Ren, Y.J.; You, C.H.; Zhang, C.; Que, Y.X.; Su, Y.C. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci. Rep. 2020, 10, 20964. [Google Scholar] [CrossRef] [PubMed]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.R.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhu, L.F.; Xu, L.; Guo, W.F.; Zhang, X.L. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Rep. 2016, 35, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.B.; Liu, Z.D. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses. Genes Genom. 2018, 40, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Yokotani, N.; Sato, Y.; Tanabe, S.; Chujo, T.; Shimizu, T.; Okada, K.; Yamane, H.; Shimono, M.; Sugano, S.; Takatsuji, H.; et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J. Exp. Bot. 2013, 64, 5085–5097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhao, T.T.; Sun, X.M.; Wang, Y.; Du, C.; Zhu, Z.F.; Gichuki, D.K.; Wang, Q.F.; Li, S.H.; Xin, H.P. Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Mol. Biol. 2019, 100, 95–110. [Google Scholar] [CrossRef]
- Hou, X.M.; Zhang, H.F.; Liu, S.Y.; Wang, X.K.; Zhang, Y.M.; Meng, Y.C.; Luo, D.; Chen, R.G. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers. Plant Sci. 2020, 291, 110346. [Google Scholar] [CrossRef]
- Liu, B.; Ouyang, Z.G.; Zhang, Y.F.; Li, X.H.; Hong, Y.B.; Huang, L.; Liu, S.X.; Zhang, H.J.; Li, D.Y.; Song, F.M. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS ONE 2014, 9, e102067. [Google Scholar] [CrossRef] [PubMed]
- Pandurangaiah, M.; Lokanadha, R.G.; Sudhakarbabu, O.; Nareshkumar, A.; Kiranmai, K.; Lokesh, U.; Thapa, G.; Sudhakar, C. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol. Biotechnol. 2014, 56, 758–769. [Google Scholar] [CrossRef]
- Nazir, F.; Fariduddin, Q.; Khan, T.A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 2020, 252, 126486. [Google Scholar] [CrossRef]
- Li, Y.Q.; Liu, Y.N.; Jin, L.B.; Peng, R.Y. Crosstalk between Ca2+ and Other Regulators Assists Plants in Responding to Abiotic Stress. Plants 2022, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Onodera, H.; Toki, S.; Tanaka, H.; Komatsu, S. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol. Biol. 2004, 55, 541–552. [Google Scholar] [CrossRef] [PubMed]
- James, D.; Borphukan, B.; Fartyal, D.; Ram, B.; Singh, J.; Manna, M.; Sheri, V.; Panditi, V.; Yadav, R.; Achary, V.M.M.; et al. Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Front. Plant Sci. 2018, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Neilson, K.A.; Mariani, M.; Haynes, P.A. Quantitative proteomic analysis of cold responsive proteins in rice. Proteomics 2011, 11, 1696–1706. [Google Scholar] [CrossRef] [PubMed]
- Arnone, J.T.; Robbins-Pianka, A.; Arace, J.R.; Kass-Gergi, S.; McAlear, M.A. The adjacent positioning of co-regulated gene pairs is widely conserved across eukaryotes. BMC Genom. 2012, 1, 546. [Google Scholar] [CrossRef]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Gomez, L.D.; Noctor, G.; Knight, M.R.; Foyer, C.H. Regulation of calcium signalling and gene expression by glutathione. J. Exp. Bot. 2004, 55, 1851–1859. [Google Scholar] [CrossRef]
- Galletti, R.; Ferrari, S.; Lorenzo, G.D. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 2011, 157, 804–814. [Google Scholar] [CrossRef]
- Greig, D.R.; Jenkins, C.; Gharbia, S.; Dallman, T.J. Comparison of single-nucleotide variants identified by Illumina and Oxford Nanopore technologies in the context of a potential outbreak of Shiga toxin-producing Escherichia coli. Gigascience 2019, 8, giz104. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, C.; Sun, H.H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.F.; Banf, M.; Dai, X.B.; Martin, G.B.; Giovannoni, J.J.; et al. iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Mol. Plant 2016, 9, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Varet, H.; Brillet-Gueguen, L.; Coppee, J.Y.; Dillies, M.A. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Rios, J.; Zarate, A.M.; Figueroa, J.D.; Medina, J.; Fuentes-Lemus, E.; Rodriguez-Fernandez, M.; Aliaga, M.; Lopez-Alarcon, C. Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Anal. Biochem. 2020, 608, 113904. [Google Scholar] [CrossRef]
- Li, B.; Takahashi, D.; Kawamura, Y.; Uemura, M. Comparison of plasma membrane proteomic changes of Arabidopsis suspension-cultured cells (T87 Line) after cold and ABA treatment in association with freezing tolerance development. Plant Cell Physiol. 2012, 53, 543–554. [Google Scholar] [CrossRef]
- Takahashi, D.; Li, B.; Nakayama, T.; Kawamura, Y.; Uemura, M. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. Methods Mol. Biol. 2014, 1072, 481–498. [Google Scholar] [CrossRef]
- Liang, K.H.; Wang, A.B.; Sun, Y.J.; Yu, M.X.; Zhang, L.Y. Identification and Expression of NAC Transcription Factors of Vaccinium corymbosum L. in Response to Drought Stress. Forests 2019, 10, 1088. [Google Scholar] [CrossRef]
DEG Set | DEG Number | Upregulated | Downregulated |
---|---|---|---|
A11_A12_A13_vs_A21_A22_A23 | 193 | 50 | 143 |
A11_A12_A13_vs_A41_A42_A43 | 1616 | 725 | 891 |
A11_A12_A13_vs_A51_A52_A53 | 1566 | 705 | 861 |
A11_A12_A13_vs_A61_A62_A63 | 1263 | 587 | 676 |
A11_A12_A13_vs_B11_B13_B12 | 8793 | 4252 | 4541 |
A11_A13_A12_vs_C11_C12_C13 | 6946 | 3493 | 3453 |
A21_A22_A23_vs_A41_A42_A43 | 931 | 485 | 446 |
A21_A22_A23_vs_A51_A52_A53 | 884 | 453 | 431 |
A21_A22_A23_vs_A61_A62_A63 | 640 | 351 | 289 |
A21_A22_A23_vs_B21_B22_B23 | 10,082 | 4802 | 5280 |
A21_A22_A23_vs_C21_C22_C23 | 7300 | 3601 | 3699 |
A41_A42_A43_vs_A51_A52_A53 | 65 | 28 | 37 |
A41_A42_A43_vs_A61_A62_A63 | 174 | 99 | 75 |
A41_A42_A43_vs_B41_B42_B43 | 10,428 | 4909 | 5519 |
A41_A42_A43_vs_C41_C42_C43 | 7602 | 3786 | 3816 |
A51_A52_A53_vs_A61_A62_A63 | 78 | 38 | 40 |
A51_A52_A53_vs_B51_B53_B52 | 10,448 | 4814 | 5634 |
A51_A52_A53_vs_C51_C52_C53 | 7257 | 3410 | 3847 |
A61_A62_A63_vs_C61_C62_C63 | 10,676 | 5409 | 5267 |
A62_A61_A63_vs_B61_B62_B63 | 6339 | 3506 | 2833 |
B11_B12_B13_vs_B21_B22_B23 | 620 | 195 | 425 |
B11_B12_B13_vs_B41_B42_B43 | 1307 | 406 | 901 |
B11_B12_B13_vs_B51_B52_B53 | 2686 | 826 | 1860 |
B11_B12_B13_vs_B61_B62_B63 | 2579 | 1399 | 1180 |
B11_B12_B13_vs_C11_C12_C13 | 7610 | 3850 | 3760 |
B21_B22_B23_vs_B41_B42_B43 | 406 | 124 | 282 |
B21_B22_B23_vs_B51_B52_B53 | 1132 | 328 | 804 |
B21_B22_B23_vs_B61_B62_B63 | 2579 | 1752 | 827 |
B22_B23_B21_vs_C21_C22_C23 | 9710 | 4953 | 4757 |
B41_B42_B43_vs_B51_B52_B53 | 319 | 99 | 220 |
B41_B42_B43_vs_B61_B62_B63 | 1305 | 1094 | 211 |
B41_B42_B43_vs_C41_C42_C43 | 8221 | 4248 | 3973 |
B51_B52_B53_vs_B61_B62_B63 | 1654 | 1355 | 299 |
B52_B53_B51_vs_C51_C52_C53 | 9224 | 4747 | 4477 |
B61_B62_B63_vs_C61_C62_C63 | 8885 | 4198 | 4687 |
C11_C12_C13_vs_C21_C22_C23 | 282 | 100 | 182 |
C11_C12_C13_vs_C41_C42_C43 | 928 | 365 | 563 |
C11_C12_C13_vs_C51_C52_C53 | 3080 | 1148 | 1932 |
C11_C12_C13_vs_C61_C62_C63 | 5004 | 2419 | 2585 |
C21_C22_C23_vs_C41_C42_C43 | 637 | 279 | 358 |
C21_C22_C23_vs_C51_C52_C53 | 2746 | 1107 | 1639 |
C21_C22_C23_vs_C61_C62_C63 | 5511 | 2826 | 2685 |
C41_C42_C43_vs_C51_C52_C53 | 740 | 329 | 411 |
C41_C42_C43_vs_C61_C62_C63 | 5179 | 2790 | 2389 |
C51_C52_C53_vs_C61_C62_C63 | 5470 | 3074 | 2396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Wang, H.; Guo, D.; Wang, B.; Zhang, X.; Wang, J.; Liu, Y.; Wang, X.; Liu, C.; Dong, W. Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.). Plants 2024, 13, 1911. https://doi.org/10.3390/plants13141911
Wei X, Wang H, Guo D, Wang B, Zhang X, Wang J, Liu Y, Wang X, Liu C, Dong W. Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.). Plants. 2024; 13(14):1911. https://doi.org/10.3390/plants13141911
Chicago/Turabian StyleWei, Xin, Hongguang Wang, Dan Guo, Baisong Wang, Xiao Zhang, Jian Wang, Youchun Liu, Xingdong Wang, Cheng Liu, and Wenxuan Dong. 2024. "Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.)" Plants 13, no. 14: 1911. https://doi.org/10.3390/plants13141911
APA StyleWei, X., Wang, H., Guo, D., Wang, B., Zhang, X., Wang, J., Liu, Y., Wang, X., Liu, C., & Dong, W. (2024). Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.). Plants, 13(14), 1911. https://doi.org/10.3390/plants13141911