Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajeesh Krishna, T.P.; Maharajan, T.; Victor Roch, G.; Ignacimuthu, S.; Antony Ceasar, S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biol. Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Lucas, R.E.; Knezek, B.D. Climatic and soil conditions promoting micronutrient deficiencies in plants. In Micronutrients in Agriculture; Mortvedt, J.J., Giordano, P.M., Lindsay, W.L., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 1972; pp. 371–379. [Google Scholar]
- Ullah, A.; Farooq, M.; Rehman, A.; Hussain, M.; Siddique, K.H. Zinc nutrition in chickpea (Cicer arietinum): A review. Crop Pasture Sci. 2020, 71, 199–218. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Sadeghzadeh, B. A review of zinc nutrition and plant breeding. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef]
- Kumar, L.; Meena, N.L.; Singh, U. Zinc transporter: Mechanism for improving Zn availability. In Biofortification of Food Crops; Singh, U., Praharaj, C., Singh, S., Singh, N.P., Eds.; Springer: New Delhi, India, 2016; pp. 129–146. [Google Scholar] [CrossRef]
- Brown, P.H.; Cakmak, I.; Zhang, Q. Form and function of zinc plants. In Zinc in Soils and Plants. Developments in Plant and Soil Sciences; Robson, A.D., Ed.; Springer: Dordrecht, The Netherlands, 1993; Volume 55, pp. 93–106. [Google Scholar] [CrossRef]
- Sharma, P.N.; Chatterjee, C.; Sharma, C.P.; Agarwala, S.C. Zinc deficiency and anther development in maize. Plant Cell Physiol. 1987, 28, 11–18. [Google Scholar] [CrossRef]
- Yang, X.W.; Tian, X.H.; Gale, W.J.; Cao, Y.X.; Lu, X.C.; Zhao, A.Q. Effect of soil and foliar zinc application on zinc concentration and bioavailability in wheat grain grown on potentially zinc-deficient soil. Cereal Res. Commun. 2011, 39, 535–543. [Google Scholar] [CrossRef]
- Zhao, A.Q.; Tian, X.H.; Cao, Y.X.; Lu, X.C.; Liu, T. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. J. Sci. Food Agric. 2014, 94, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 2016, 401, 331–346. [Google Scholar] [CrossRef]
- Bhatt, R.; Hossain, A.; Sharma, P. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agric. 2020, 5, 176–187. [Google Scholar] [CrossRef]
- Kurešová, G.; Menšík, L.; Haberle, J.; Svoboda, P.; Raimanova, I. Influence of foliar micronutrients fertilization on nutritional status of apple trees. Plant Soil Environ. 2019, 65, 320–327. [Google Scholar] [CrossRef]
- Sathishkumar, A.; Sakthivel, N.; Subramanian, E.; Rajesh, P. Productivity of field crops as influenced by foliar spray of nutrients: A review. Agric. Rev. 2020, 41, 146–152. [Google Scholar] [CrossRef]
- Sultana, S.; Naser, H.M.; Akhter, S.; Begum, R.A. Effectiveness of soil and foliar applications of zinc and boron on the yield of tomato. Bangladesh J. Agric. Res. 2016, 41, 411–418. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.C. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Hacisalihoglu, G. Zinc (Zn): The last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn. Plants 2020, 9, 1471. [Google Scholar] [CrossRef] [PubMed]
- Ackova, D.G. Heavy metals and their general toxicity on plants. Plant Sci. Today 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Fonseca, A.; Fraga, H.; Santos, J.A. Exposure of Portuguese viticulture to weather extremes under climate change. Clim. Serv. 2023, 30, 100357. [Google Scholar] [CrossRef]
- Fraga, H.; de Cortázar Atauri, I.G.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The interplay between atmospheric conditions and grape berry quality parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Direcção Geral de Agricultura Desenvolvimento Rural. Carta de Capacidade de Uso do Solo de Portugal—Bases e Normas Adoptadas na Sua Elaboração, 6th ed.; Ministério da Economia, Secretaria de Estado da Agricultura, Serviço de Reconhecimento e de Ordenamento Agrário: Lisboa, Portugal, 1972; pp. 25–26. [Google Scholar]
- Abduljaleel, Y.; Awad, A.; Al-Ansari, N.; Salem, A.; Negm, A.; Gabr, M.E. Assessment of subsurface drainage strategies using DRAINMOD model for sustainable agriculture: A Review. Sustainability 2023, 15, 1355. [Google Scholar] [CrossRef]
- Ricardo-Rodrigues, S.; Laranjo, M.; Coelho, R.; Martins, P.; Rato, A.E.; Vaz, M.; Valverde, P.; Shahidian, S.; Véstia, J.; Agulheiro-Santos, A.C. Terroir influence on quality of ‘Crimson’table grapes. Sci. Hortic. 2019, 245, 244–249. [Google Scholar] [CrossRef]
- Vázquez-Blanco, R.; González-Feijoo, R.; Campillo-Cora, C.; Fernández-Calviño, D.; Arenas-Lago, D. Risk Assessment and limiting soil factors for vine production—Cu and Zn contents in vineyard soils in Galicia (Rías Baixas D.O.). Agronomy 2023, 13, 309. [Google Scholar] [CrossRef]
- Kurtural, S.K.; Desired Soil Properties for Vineyard Site Preparation. Universtiy of Kentucky, College of Agriculture, Cooperative Extension Service. HortFact 31-01. 2011. Available online: http://www.uky.edu/hort/sites/www.uky.edu.hort/files/documents/KF_31_01.pdf (accessed on 23 May 2024).
- Lanyon, D.M.; Cass, A.; Hansen, D. The Effect of Soil Properties on Vine Performance. CSIRO Land and Water Technical Report No. 34/04. 2004. Available online: http://www.clw.csiro.au/publications/technical2004/tr34-04.pdf (accessed on 23 May 2024).
- Doğan, B.; Gülser, C. Assessment of soil quality for vineyard fields: A case study in Menderes District of Izmir, Turkey. Eurasian J. Soil Sci. 2019, 8, 176–183. [Google Scholar] [CrossRef]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Water, soil, and plants interactions in a threatened environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Silva, B.M.; Santos, W.J.R.D.; Oliveira, G.C.D.; Lima, J.M.D.; Curi, N.; Marques, J.J. Soil moisture space-time analysis to support improved crop management. Ciênc. Agrotecnol. 2015, 39, 39–47. [Google Scholar] [CrossRef]
- Pou, A.; Balda, P.; Cifre, J.; Ochogavia, J.M.; Ayestaran, B.; Guadalupe, Z.; Llompart, M.; Bota, J.; Martínez, L. Influence of non-irrigation and seasonality on wine colour, phenolic composition and sensory quality of a grapevine (Vitis vinifera cv. Callet) in a Mediterranean climate. OENO One 2023, 57, 217–233. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Ul-Allah, S.; Siddique, K.H. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agric. Water Manag. 2019, 219, 95–108. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. A Review of crop water stress assessment using remote sensing. Remote Sens. 2021, 13, 4155. [Google Scholar] [CrossRef]
- Ozier-Lafontaine, H.; Lesueur-Jannoyer, M. (Eds.) Sustainable Agriculture—Reviews 14: Agroecology and Global Change; Springer International Publishing: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar] [CrossRef]
- Boudissa, S.M.; Lambert, J.; Müller, C.; Kennedy, G.; Gareau, L.; Zayed, J. Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci. Total Environ. 2006, 361, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Shivay, Y.S. Sulphur in soil, plant and human nutrition. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 429–434. [Google Scholar] [CrossRef]
- Triantafyllidis, V.; Kosma, A.K.C.; Patakas, A. An assessment of the soil quality index in a Mediterranean agro ecosystem. Emir. J. Food 2018, 30, 1042–1050. [Google Scholar] [CrossRef]
- Fredes, S.N.; Ruiz, L.Á.; Recio, J.A. Modeling Brix and pH in wine grapes from satellite images in Colchagua Valley, Chile. Agriculture 2021, 11, 697. [Google Scholar] [CrossRef]
- Jaafar, W.M.; Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Muhmad Kamarulzaman, A.M.; Raihan, A.; Md Sah, S.; Ahmad, A.; Saad, S.N.M.; Mohd Azmi, A.T.; Jusoh Syukri, N.K.A.; et al. The influence of deforestation on land surface temperature—A case ttudy of perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Darra, N.; Psomiadis, E.; Kasimati, A.; Anastasiou, A.; Anastasiou, E.; Fountas, S. Remote and proximal sensing-derived spectral indices and biophysical variables for spatial variation determination in vineyards. Agronomy 2021, 11, 741. [Google Scholar] [CrossRef]
- Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [Google Scholar] [CrossRef]
- Ahmed, N.; Ahmad, F.; Abid, M.; Ullah, M.A. Impact of zinc fertilization on gas exchange characteristics and water use efficiency of cotton crop under arid environment. Pak. J. Bot. 2009, 41, 2189–2197. [Google Scholar]
- Saboor, A.; Ali, M.A.; Ahmed, N.; Skalicky, M.; Danish, S.; Fahad, S.; Hassan, F.; Hassan, M.M.; Brestic, M.; Sabagh, A.E.; et al. Biofertilizer-based zinc application enhances maize growth, gas exchange attributes, and yield in zinc-deficient soil. Agriculture 2021, 11, 310. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- De Oliveira, A.C.; Pegoraro, C.; Viana, V.E. The Future of Rice Demand: Quality Beyond Productivity, 1st ed.; Springer International Publishing: Cham, Switzerland, 2020; p. 541. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Zlatev, Z.S.; Leitão, A.E.; Pais, I.P.; Fortunato, A.S.; Lidon, F.C. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol. 2013, 16, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Khalilzadeh, R.; Khan, S.; Zaib-un-Nisa; Bashir, R.; Pirzad, A.; Malik, A. Mitigation of Drought Stress and Yield Improvement in Wheat by Zinc Foliar Spray Relates to Enhanced Water Use Efficiency and Zinc Contents. Int. J. Plant Prod. 2021, 15, 377–389. [Google Scholar] [CrossRef]
- Chen, H.; Song, L.; Zhang, H.; Wang, J.; Wang, Y.; Zhang, H. Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa). J. Plant Interact 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Greenough, J.D.; Longerich, H.P.; Jackson, S.E. Element fingerprinting of Okanagan Valley wines using ICP-MS: Relationships between wine composition vineyard and wine colour. Aust. J. Grape Wine Res. 1997, 3, 75–83. [Google Scholar] [CrossRef]
- Garrido, A.; Vos, R.C.H.D.; Conde, A.; Cunha, A. Light microclimate-driven changes at transcriptional level in photosynthetic grape berry tissues- photosynthetic grape berry tissues. Plants 2021, 10, 1769. [Google Scholar] [CrossRef] [PubMed]
- Poudel, P.; Connolly, E.L.; Kwasniewski, M.; Lambert, J.D.; Di Gioia, F. Zinc biofortification via fertigation using alternative zinc sources and concentration levels in pea, radish, and sunflower microgreens. Sci. Hortic. 2024, 331, 113098. [Google Scholar] [CrossRef]
- Almanza-Merchán, P.J.; Fischer, G.; Cely, G.E. R The importance of pruning to the quality of wine grape fruits (Vitis vinifera L.) cultivated under high-altitude tropical conditions. Agron. Colomb. 2014, 32, 341–348. [Google Scholar] [CrossRef]
- Ryugo, K. Ciencia y arte: Cosechas de enredaderas y arbustos frutales. In Fruticultura, 1st ed.; AGT, Ed.; AGT Editor: Mexico City, Mexico, 1993. [Google Scholar]
- Rolle, L.; Torchio, F.; Giacosa, S.; Segade, S.R. Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; McLaughlin, M.J.; White, P. Zinc for better crop production and human health. Plant Soil 2017, 411, 1–4. [Google Scholar] [CrossRef]
- Li, H.; Lian, C.; Zhang, Z.; Shi, X.; Zhang, Y. Agro-biofortification of iron and zinc in edible portion of crops for the global south. Adv. Plants Agric. Res. 2017, 6, 52–54. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Verma, V.; Singh, H.; Singh, P.; Kaur, K. Biofortification of linseed (Linum usitatissimum L.) through mineral and chelated forms of Zn on yield, Zn accumulation, quality parameters, efficiency indices and economic under low Zn soils of North-Western India. J. Plant Nutr. 2023, 46, 356–369. [Google Scholar] [CrossRef]
- Trad, M.; Boge, M.; Hamda, H.B.; Renard, C.M.G.C.; Harbi, M. The Glucose-Fructose ratio of wild Tunisian grapes. Cogent Food Agric. 2017, 3, 1374156. [Google Scholar] [CrossRef]
- Daccak, D.; Lidon, F.C.; Pessoa, C.C.; Luís, I.C.; Coelho, A.R.F.; Marques, A.C.; Ramalho, J.C.; Silva, M.J.; Rodrigues, A.P.; Guerra, M.; et al. Enrichment of grapes with zinc-efficiency of foliar fertilization with ZnSO4 and ZnO and implications on winemaking. Plants 2022, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, M.F.; Scotti-Campos, P.; Pais, I.; Feteiro, A.; Canuto, D.; Simões, M.; Pelica, J.; Pataco, I.; Ribeiro, V.; Reboredo, F.H.; et al. Nutritional profile of the Portuguese cabbage (Brassica oleracea L var. costata) and its relationship with the elemental soil analysis. Emir. J. Food Agric. 2016, 28, 381–388. [Google Scholar] [CrossRef]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc enrichment in two contrasting genotypes of Triticum aestivum L. grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Rodier, J.; Legube, B.; Merlet, N. L’Analyse de l’Eau, 9th ed.; Dunod: Paris, France, 2009; p. 1579. ISBN 9782100072460. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analyses. EOS Trans. Am. Geophys. Union 1944, 25, 914–923. [Google Scholar]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwel, F.; Goulão, L.; et al. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Glob. Change Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Semedo, J.N.; Rodrigues, A.P.; Lidon, F.C.; Pais, I.P.; Marques, I.; Gouveia, D.; Armengaud, J.; Silva, M.J.; Martins, S.; Semedo, M.C.; et al. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. Tree Physiol. 2020, 41, 708–727. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, S.B.; Cao, K.F. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol. 2011, 52, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes 2008, 1, 27–35. [Google Scholar]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New flux parameters for the determination of QA redox state and excitation fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.H.; Jahns, P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherlands, 2004; pp. 463–495. [Google Scholar] [CrossRef]
- Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherlands, 2004; pp. 279–319. [Google Scholar]
- Pessoa, C.C.; Lidon, F.C.; Coelho, A.R.F.; Caleiro, J.C.; Marques, A.C.; Luís, I.C.; Kullberg, J.C.; Legoinha, P.; Brito, M.d.G.; Ramalho, J.C.; et al. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 2021, 277, 109834. [Google Scholar] [CrossRef]
Treatment Plots | NDVI | |||||
---|---|---|---|---|---|---|
2nd Year | 3rd Year | |||||
Minimum | Maximum | Average | Minimum | Maximum | Average | |
Ctr | 0.14 | 0.85 | 0.66 ± 0.20 | 0.10 | 0.87 | 0.60 ± 0.21 |
ZnO (900 g.ha−1) | 0.14 | 0.84 | 0.60 ± 0.21 | - | - | - |
ZnO (1350 g.ha−1) | 0.15 | 0.85 | 0.61 ± 0.20 | 0.08 | 0.87 | 0.61 ± 0.22 |
ZnSO4 (900 g.ha−1) | 0.19 | 0.85 | 0.65 ± 0.18 | - | - | - |
ZnSO4 (1350 g.ha−1) | 0.13 | 0.85 | 0.55 ± 0.21 | 0.05 | 0.89 | 0.65 ± 0.21 |
1st Year | 2nd Year | 3rd Year | |||||
---|---|---|---|---|---|---|---|
Sample | 27 July | 13 September | 29 July | 21 August | 30 June | 19 August | |
Pn (µmol CO2 m−2 s−1) | |||||||
Ctr | 17.5 ± 0.0 aA | 13.6 ± 0.4 bB | 16.2 ± 0.3 aA | 9.8 ± 0.4 bB | 13.0 ± 0.4 aA | 9.1 ± 0.7 abB | |
450 | 16.4 ± 0.1 abA | 13.7 ± 0.1 bB | - | - | - | - | |
ZnO (g.ha−1) | 900 | 15.1 ± 0.2 aB | 15.3 ± 0.7 abA | 16.2 ± 0.8 aA | 12.0 ± 1.2 abB | - | - |
1350 | - | - | 16.5 ± 0.6 aA | 14.0 ± 0.8 aA | 12.0 ± 0.5 bA | 7.2 ± 0.8 bB | |
450 | 17.7 ± 0.5 abA | 12.7 ± 0.5 bB | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 18.2 ± 0.2 aA | 15.5 ± 0.3 aB | 17.5 ± 0.4 aA | 13.8 ± 0.5 abB | - | - |
1350 | - | - | 13.8 ± 0.8 aA | 13.3 ± 0.5 aA | 16.4 ± 0.2 aA | 11.0 ± 0.7 aB | |
gs (mmol H2O m−2 s−1) | |||||||
Ctr | 146.0 ± 1.7 aA | 201.3 ± 5.8 bA | 291.8 ± 61.8 aA | 251.8 ± 50.3 aA | 191.3 ± 9.1 aA | 226.2 ± 17.8 aA | |
450 | 131.0 ± 2.9 aB | 197.8 ± 4.4 bA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 126.8 ± 5.2 aB | 263.7 ± 39.9 aA | 248.7 ± 50.2 aA | 255.1 ± 57.7 aA | - | - |
1350 | - | - | 252.1 ± 43.7 aA | 267.3 ± 39.9 aA | 206.4 ± 14.9 aA | 163.7 ± 27.1 aA | |
450 | 151.0 ± 3.9 aA | 167.3 ± 21.4 bA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 150.7 ± 4.6 aA | 201.2 ± 9.9 bA | 248.7 ± 44.2 aA | 213.8 ± 24.3 aA | - | - |
1350 | - | - | 187.0 ± 27.7 aA | 263.1 ± 17.6 aA | 251.6 ± 10.7 aA | 219.5 ± 20.6 aA | |
E (mmol H2O m−2 s−1) | |||||||
Ctr | 4.5 ± 0.0 aA | 5.4 ± 0.1 aB | 3.4 ± 0.3 aA | 2.7 ± 0.2 bA | 3.48 ± 0.14 aB | 5.39 ± 0.30 aA | |
450 | 3.9 ± 0.0 abA | 4.6 ± 0.1 bB | - | - | - | - | |
ZnO (g.ha−1) | 900 | 3.7 ± 0.1 bA | 4.3 ± 0.4 bA | 3.3 ± 0.3 aA | 3.2 ± 0.3 bA | - | - |
1350 | - | - | 3.5 ± 0.3 aA | 3.9 ± 0.2 abA | 3.91 ± 0.10 aA | 4.27 ± 0.49 aA | |
450 | 4.2 ± 0.1 abA | 4.6 ± 0.3 bA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 4.3 ± 0.1 abA | 5.1 ± 0.1 aB | 3.5 ± 0.3 aA | 3.6 ± 0.2 abA | - | - |
1350 | - | - | 3.1 ± 0.2 aA | 4.3 ± 0.2 aA | 4.79 ± 0.11 aA | 5.21 ± 0.32 aA | |
iWUE (mmol CO2 mol−1 H2O) | |||||||
Ctr | 3.9 ± 0.0 bA | 2.5 ± 0.0 cB | 5.0 ± 0.4 aA | 3.7 ± 0.2 aB | 3.91 ± 0.17 aA | 1.67 ± 0.09 bB | |
450 | 4.2 ± 0.1 aA | 3.0 ± 0.0 bB | - | - | - | - | |
ZnO (g.ha−1) | 900 | 4.2 ± 0.1 aA | 3.6 ± 0.2 aB | 5.3 ± 0.5 aA | 3.8 ± 0.1 aB | - | - |
1350 | - | - | 4.8 ± 0.2 aA | 3.7 ± 0.1 aB | 2.64 ± 0.11 bA | 1.67 ± 0.04 bB | |
450 | 4.2 ± 0.1 aA | 2.8 ± 0.1 bcB | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 4.2 ± 0.1 aA | 3.1 ± 0.0 bB | 5.1 ± 0.3 aA | 3.8 ± 0.1 aB | - | - |
1350 | - | - | 4.6 ± 0.3 aA | 3.1 ± 0.1 aB | 3.55 ± 0.02 aA | 2.11 ± 0.05 aB |
1st Year | 2nd Year | 3rd Year | |||||
---|---|---|---|---|---|---|---|
Sample | 27 July | 13 September | 29 July | 21 August | 30 June | 19 August | |
Fv/Fm | |||||||
Ctr | 0.770 ± 0.003 aA | 0.806 ± 0.004 aA | 0.773 ± 0.012 aA | 0.755 ± 0.014 aA | 0.767 ± 0.013 abA | 0.786 ± 0.012 aA | |
450 | 0.791 ± 0.004 aA | 0.798 ± 0.005 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.767 ± 0.007 aA | 0.780 ± 0.013 aA | 0.738 ± 0.008 aA | 0.750 ± 0.017 aA | - | - |
1350 | - | - | 0.728 ± 0.006 aA | 0.720 ± 0.016 aA | 0.776 ± 0.014 aA | 0.808 ± 0.004 aA | |
450 | 0.796 ± 0.007 aA | 0.803 ± 0.010 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.787 ± 0.011 aA | 0.792 ± 0.007 aA | 0.765 ± 0.015 aA | 0.746 ± 0.007 aA | - | - |
1350 | - | - | 0.753 ± 0.018 aA | 0.707 ± 0.019 aA | 0.727 ± 0.016 bB | 0.779 ± 0.005 aA | |
Fv′/Fm′ | |||||||
Ctr | 0.451 ± 0.031 aA | 0.486 ± 0.032 aA | 0.467 ± 0.025 aA | 0.440 ± 0.012 aA | 0.403 ± 0.030 aA | 0.512 ± 0.032 aA | |
450 | 0.446 ± 0.027 aA | 0.453 ± 0.036 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.557 ± 0.035 aA | 0.488 ± 0.013 aA | 0.500 ± 0.009 aA | 0.451 ± 0.017 aA | - | - |
1350 | - | - | 0.486 ± 0.037 aA | 0.441 ± 0.032 aA | 0.469 ± 0.032 aA | 0.552 ± 0.016 aA | |
450 | 0.535 ± 0.027 aA | 0.516 ± 0.025 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.450 ± 0.030 aA | 0.472 ± 0.019 aA | 0.488 ± 0.045 aA | 0.479 ± 0.035 aA | - | - |
1350 | - | - | 0.446 ± 0.017 aA | 0.510 ± 0.018 aA | 0.421 ± 0.035 aA | 0.493 ± 0.016 aA | |
Y(II) | |||||||
Ctr | 0.358 ± 0.033 abA | 0.325 ± 0.010 aA | 0.338 ± 0.027 aA | 0.239 ± 0.020 bA | 0.265 ± 0.019 aA | 0.314 ± 0.022 aB | |
450 | 0.295 ± 0.020 bA | 0.248 ± 0.027 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.412 ± 0.028 aA | 0.302 ± 0.032 aA | 0.306 ± 0.005 aA | 0.232 ± 0.021 bA | - | - |
1350 | - | - | 0.300 ± 0.034 aA | 0.273 ± 0.029 abA | 0.289 ± 0.031 aA | 0.334 ± 0.030 aA | |
450 | 0.400 ± 0.018 aA | 0.274 ± 0.030 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.268 ± 0.021 bA | 0.253 ± 0.024 aA | 0.327 ± 0.032 aA | 0.294 ± 0.023 abA | - | - |
1350 | - | - | 0.310 ± 0.016 aA | 0.371 ± 0.032 aA | 0.267 ± 0.042 aA | 0.332 ± 0.020 aA | |
Y(NPQ) | |||||||
Ctr | 0.442 ± 0.039 abA | 0.483 ± 0.026 aA | 0.450 ± 0.016 aA | 0.558 ± 0.014 aA | 0.538 ± 0.025 aA | 0.373 ± 0.037 aB | |
450 | 0.546 ± 0.019 aA | 0.520 ± 0.034 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.403 ± 0.033 bA | 0.478 ± 0.028 aA | 0.474 ± 0.025 aA | 0.572 ± 0.022 abA | - | - |
1350 | - | - | 0.499 ± 0.041 aA | 0.528 ± 0.042 abA | 0.508 ± 0.036 aA | 0.348 ± 0.015 aB | |
450 | 0.401 ± 0.026 bA | 0.503 ± 0.028 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.512 ± 0.023 abA | 0.522 ± 0.023 aA | 0.505 ± 0.042 aA | 0.500 ± 0.034 abA | - | - |
1350 | - | - | 0.524 ± 0.017 aA | 0.429 ± 0.035 bA | 0.519 ± 0.049 aA | 0.380 ± 0.023 aB | |
Y(NO) | |||||||
Ctr | 0.199 ± 0.009 aA | 0.193 ± 0.018 aA | 0.212 ± 0.016 aA | 0.203 ± 0.007 aA | 0.196 ± 0.010 aB | 0.313 ± 0.032 aA | |
450 | 0.158 ± 0.009 aA | 0.232 ± 0.014 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.184 ± 0.016 aA | 0.221 ± 0.008 aA | 0.219 ± 0.024 aA | 0.196 ± 0.009 aA | - | - |
1350 | - | - | 0.202 ± 0.012 aA | 0.199 ± 0.016 aA | 0.204 ± 0.015 aB | 0.318 ± 0.028 aA | |
450 | 0.199 ± 0.013 aA | 0.223 ± 0.012 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.214 ± 0.014 aA | 0.225 ± 0.006 aA | 0.168 ± 0.014 aA | 0.207 ± 0.011 aA | - | - |
1350 | - | - | 0.167 ± 0.011 aA | 0.200 ± 0.008 aA | 0.214 ± 0.017 aA | 0.288 ± 0.015 aA | |
qN | |||||||
Ctr | 0.809 ± 0.031 aA | 0.823 ± 0.030 aA | 0.807 ± 0.019 aA | 0.845 ± 0.004 aA | 0.856 ± 0.018 aA | 0.696 ± 0.049 aB | |
450 | 0.873 ± 0.012 aA | 0.819 ± 0.027 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.768 ± 0.035 aA | 0.801 ± 0.012 aA | 0.785 ± 0.028 aA | 0.845 ± 0.012 aA | - | - |
1350 | - | - | 0.800 ± 0.031 aA | 0.823 ± 0.031 aA | 0.822 ± 0.026 aA | 0.674 ± 0.025 aB | |
450 | 0.772 ± 0.028 aA | 0.801 ± 0.021 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.827 ± 0.020 aA | 0.819 ± 0.013 aA | 0.831 ± 0.035 aA | 0.806 ± 0.032 aA | - | - |
1350 | - | - | 0.856 ± 0.014 aA | 0.766 ± 0.024 aA | 0.823 ± 0.033 aA | 0.724 ± 0.023 aA | |
qL | |||||||
Ctr | 0.684 ± 0.049 aA | 0.516 ± 0.056 aA | 0.604 ± 0.107 aA | 0.400 ± 0.036 abA | 0.650 ± 0.032 aA | 0.445 ± 0.053 aA | |
450 | 0.538 ± 0.073 aA | 0.403 ± 0.042 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.564 ± 0.055 aA | 0.460 ± 0.058 aA | 0.443 ± 0.018 aA | 0.370 ± 0.040 bA | - | - |
1350 | - | - | 0.450 ± 0.039 aA | 0.478 ± 0.044 abA | 0.477 ± 0.075 aA | 0.420 ± 0.060 aA | |
450 | 0.586 ± 0.047 aA | 0.358 ± 0.052 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.478 ± 0.060 aA | 0.379 ± 0.032 aA | 0.513 ± 0.049 aA | 0.453 ± 0.033 abA | - | - |
1350 | - | - | 0.564 ± 0.044 aA | 0.574 ± 0.058 aA | 0.506 ± 0.084 aA | 0.514 ± 0.037 aA |
Treatment | Cv. Syrah Zn Content (mg.kg−1) | ||
---|---|---|---|
1st Year | 2nd Year | 3rd Year | |
Ctr | 7.94 a | 4.51 b | 10.15 b |
ZnO (150 g.ha−1) | 11.07 a | - | - |
ZnO (450 g.ha−1) | 12.31 a | - | - |
ZnO (900 g.ha−1) | 11.30 a | 7.35 ab | - |
ZnO (1350 g.ha−1) | - | 10.37 a | 11.89 a |
ZnSO4 (150 g.ha−1) | 9.36 a | - | - |
ZnSO4 (450 g.ha−1) | 12.26 a | - | - |
ZnSO4 (900 g.ha−1) | 10.59 a | 6.08 ab | - |
ZnSO4 (1350 g.ha−1) | - | 8.25 ab | 10.72 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daccak, D.; Marques, A.C.; Pessoa, C.C.; Coelho, A.R.F.; Luís, I.C.; Brito, G.; Kullberg, J.C.; Ramalho, J.C.; Rodrigues, A.P.; Scotti-Campos, P.; et al. Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants 2024, 13, 1962. https://doi.org/10.3390/plants13141962
Daccak D, Marques AC, Pessoa CC, Coelho ARF, Luís IC, Brito G, Kullberg JC, Ramalho JC, Rodrigues AP, Scotti-Campos P, et al. Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants. 2024; 13(14):1962. https://doi.org/10.3390/plants13141962
Chicago/Turabian StyleDaccak, Diana, Ana Coelho Marques, Cláudia Campos Pessoa, Ana Rita F. Coelho, Inês Carmo Luís, Graça Brito, José Carlos Kullberg, José C. Ramalho, Ana Paula Rodrigues, Paula Scotti-Campos, and et al. 2024. "Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking" Plants 13, no. 14: 1962. https://doi.org/10.3390/plants13141962
APA StyleDaccak, D., Marques, A. C., Pessoa, C. C., Coelho, A. R. F., Luís, I. C., Brito, G., Kullberg, J. C., Ramalho, J. C., Rodrigues, A. P., Scotti-Campos, P., Pais, I. P., Semedo, J. N., Silva, M. M., Legoinha, P., Galhano, C., Simões, M., Reboredo, F. H., & Lidon, F. C. (2024). Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants, 13(14), 1962. https://doi.org/10.3390/plants13141962