Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts
Abstract
:1. Introduction
2. Results
2.1. Identification and Quantification of Saponins in S. officinalis
2.2. Identification and Quantification of Phenolic Compounds in S. officinalis
2.3. Antioxidant Activity of S. officinalis Root Extracts
2.4. Antimicrobial Activity of S. officinalis Root Extracts
2.5. Cytotoxicity of S. officinalis Extracts on Cancer Cell Lines
2.6. Neuroprotective Activity of S. officinalis Extracts
3. Discussion
4. Materials and Methods
4.1. Preparation of the Extracts
4.2. UHPLC-QTOF-MS Analysis
4.3. Total Saponin Content
4.4. Total Phenolic Content
4.5. 2,2-diphenyl-1-picrylhydrazyl (DPPH) Assay
4.6. Dichlorofuoresence Diacetate (DCFDA) Assay
4.7. Antimicrobial Activity
4.8. Cell Culture
4.9. Preparation of S. officinalis Extracts for CytotoxicityAssay (alamarBlue Assay)
4.10. Cytotoxicity Assay (alamarBlue Assay)
4.11. Peptides Preparation
4.12. Assessment of Neuroprotective Activity and MTT Assay
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güçlü-Üstündağ, Ö.; Mazza, G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef] [PubMed]
- Moghimipour, E.; Handali, S. Saponin: Properties, methods of evaluation and applications. Annu. Res. Rev. Biol. 2015, 5, 207–220. [Google Scholar] [CrossRef]
- Barve, K.H.; Laddha, K.S.; Jayakumar, B. Extraction of saponins from safed musli. Pharmacogn. J. 2010, 2, 561–564. [Google Scholar] [CrossRef]
- Wu, Z.; Raven, P.H.; Hong, D. (Eds.) Flora of China: Caryophyllaceae through Lardizabalaceae; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2001; Volume 6. [Google Scholar]
- Flora of North America North of Mexico. Volume. 5. Saponaria Officinalis Chapter. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=129161 (accessed on 10 July 2024).
- Chandra, S.; Rawat, D.S.; Bhatt, A. Phytochemistry and pharmacological activities of Saponaria officinalis L.: A review. Not. Sci. Biol. 2021, 13, 10809–10812. [Google Scholar] [CrossRef]
- Gilabert-Oriol, R.; Thakur, M.; Haussmann, K.; Niesler, N.; Bhargava, C.; Görick, C.; Fuchs, H.; Weng, A. Saponins from Saponaria officinalis L. Augment the Efficacy of a Rituximab-Immunotoxin. Planta Med. 2016, 82, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, D.; Christoforou, M.; Kitiri, E.N.; Andreou, M.; Partassides, D.; Papachrysostomou, C.; Frantzi, M.; Karikas, G.A.; Pantelidou, M. Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds. Molecules 2022, 27, 5812. [Google Scholar] [CrossRef]
- Lu, Y.; Van, D.; Deibert, L.; Bishop, G.; Balsevich, J. Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry 2015, 113, 108–120. [Google Scholar] [CrossRef]
- Sengul, M.; Ercisli, S.; Yildiz, H.; Gungor, N.; Kavaz, A.; Cetin, B. Antioxidant, antimicrobial activity and total phenolic content within aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. 2011, 10, 49–56. [Google Scholar]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Thakur, M.; Melzig, M.F.; Fuchs, H.; Weng, A. Chemistry and pharmacology of saponins: Special focus on cytotoxic properties. Bot. Targets Ther. 2011, 1, 19–29. [Google Scholar]
- William Raja, T.R.; Duraipandiyan, V.; Ignacimuthu, S.; Janakiraman, U.; Packiam, S.M. Role of Polyphenols in Alleviating Alzheimer’s Disease: A Review. Curr. Med. Chem. 2023, 30, 4032–4047. [Google Scholar] [CrossRef] [PubMed]
- Endonova, G.B.; Antsupova, T.P.; Zhamsaranova, S.D.; Lygdenov, D.V. Study of flavonoid and antioxidant activity of Saponaria officinalis L. that occurs in buryatia. Biosci. Biotech. Res. Asia 2015, 12, 2017–2021. [Google Scholar] [CrossRef]
- Veda, P.G.; Mallikarjuna, R.T.; Ganga, R.B. Antibacterial activity of Saponaria officinalis and Zanthoxyllum aramatum. Int. J. Pharmacol. Toxicol. 2017, 5, 1–4. [Google Scholar]
- Eren, M.M.; Dikmen, B.; Vatansever, C.; Servi, H.; Yegin, H.C.; Ozan, G. Antimicrobial activity of Sapindus mukorossi and Saponaria officinalis extracts on streptococcus mutans and enterococcus faecalis. Ann. Med. Res. 2021, 28, 516–519. [Google Scholar] [CrossRef]
- Budan, A.; Bellenot, D.; Freuze, I.; Gillmann, L.; Chicoteau, P.; Richomme, P.; Guilet, D. Potential of extracts from Saponaria officinalis and Calendula officinalis to modulate in vitro rumen fermentation with respect to their content in saponins. Biosci. Biotechnol. Biochem. 2014, 78, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Koike, K.; Nikaido, T. Major triterpenoid saponins from Saponaria officinalis. J. Nat. Prod. 1998, 61, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Koike, K.; Jia, Z.; Nikaido, T. New triterpenoid saponins and sapogenins from Sapon. Off. J. Nat. Prod. 1999, 62, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Jerz, G.; Tuwalska, D.; Gilabert-Oriol, R.; Wybraniec, S.; Winterhalter, P.; Fuchs, H.; Weng, A. High-speed countercurrent chromatographic recovery and off-line electrospray ionization mass spectrometry profiling of bisdesmodic saponins from Saponaria officinalis possessing synergistic toxicity enhancing properties on targeted antitumor toxins. J. Chromatogr. B 2014, 955, 1–9. [Google Scholar] [CrossRef]
- Jia, Z.; Koike, K.; Nikaido, T. Saponarioside C, the first α-D-Galactose containing triterpenoid saponin, and five related compounds from Saponaria officinalis. J. Nat. Prod. 1999, 62, 449–453. [Google Scholar] [CrossRef]
- Ekanayaka, E.P.; Celiz, M.D.; Jones, A.D. Relative mass defect filtering of mass spectra: A path to discovery of plant specialized metabolites. Plant Physiol. 2015, 167, 1221–1232. [Google Scholar] [CrossRef]
- Charalambous, D.; Eliades, N.H.; Christoforou, M.; Kakouri, E.; Kanakis, C.; Tarantilis, P.A.; Pantelidou, M. Chemical Characterization, Antioxidant and Antimicrobial Properties of Different Types of Tissue of Cedrus brevifolia Henry Extracts. Molecules 2022, 27, 2717. [Google Scholar] [CrossRef] [PubMed]
- Karar, M.E.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS characterization of phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) leaves, fruits and their herbal derived drops (Crataegutt Tropfen). J. Chem. Biol. Ther. 2015, 1, 1000102. [Google Scholar]
- Hao, J.; Li, Y.; Jia, Y.; Wang, Z.; Rong, R.; Bao, J.; Zhao, M.; Fu, Z.; Ge, G. Comparative analysis of major flavonoids among parts of Lactuca indica during different growth periods. Molecules 2021, 26, 7445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zeng, M.; Zhang, X.; Zheng, Y.; Lv, N.; Wang, L.; Gan, J.; Li, Y.; Jiang, X.; Yang, L. Therapeutic Candidates for Alzheimer’s Disease: Saponins. Int. J. Mol. Sci. 2023, 24, 10505. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; Álvarez-Fernández, M.A.; Cerezo, A.B.; Richard, T.; Troncoso, A.M.A.; Garcia-Parrilla, M.A.C. Protocatechuic Acid: Inhibition of Fibril Formation, Destabilization of Preformed Fibrils of Amyloid-β and α-Synuclein, and Neuroprotection. J. Agric. Food Chem. 2016, 64, 7722–7732. [Google Scholar] [CrossRef] [PubMed]
- Szakiel, A.; Paczkowski, C.; Henry, M. Influence of enviromental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011, 10, 471–491. [Google Scholar] [CrossRef]
- Cunha, L.C.S.; Silva, M.L.A.E.; Furtado, N.A.C.; Vinholis, A.H.; Martins, C.H.G.; Filho, A.D.S.; Cunha, W.R. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens. Z. Naturforsch. C 2007, 62, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Makkar, H.P.S.; Muetzel, S.; Becker, K. Effect of Quillaja saponaria saponins and Yucca schidigera plant extract on growth of Escherichia coli. Lett. Appl. Microbiol. 1998, 27, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: Old wine in a new bottle. Evid.-Based Complement. Altern. Med. 2021, 1, 6139308. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014, 1, 952943. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Baba, T.; Sasaki, T.; Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents 2015, 46, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Papay, Z.E.; Balogh, E.; Zariwala, M.; Somavarapu, S.; Antal, I. Drug Delivery Approaches for Apigenin: A Review. In Apigenin and Naringenin: Natural Sources, Pharmacology and Role in Cancer Prevention; Stacks, N.M., Ed.; Nova Science Publishers: New York, NY, USA, 2007; pp. 1–20. [Google Scholar]
- Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer 2020, 72, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef] [PubMed]
- Shafabakhsh, R.; Asemi, Z. Quercetin: A natural compound for ovarian cancer treatment. J. Ovarian Res. 2019, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol. 2001, 19, 837–844. [Google Scholar] [CrossRef]
- Asgharian, P.; Tazehkand, A.P.; Soofiyani, S.R.; Hosseini, K.; Martorell, M.; Tarhriz, V.; Ahangari, H.; Cruz-Martins, N.; Sharifi-Rad, J.; Almarhoon, Z.M.; et al. Quercetin impact in pancreatic cancer: An overview on its therapeutic effects. Oxid. Med. Cell. Longev. 2021, 2021, 4393266. [Google Scholar] [CrossRef]
- Yamazaki, S.; Miyoshi, N.; Kawabata, K.; Yasuda, M.; Shimoi, K. Quercetin-3-O-glucuronide inhibits noradrenaline-promoted invasion of MDA-MB-231 human breast cancer cells by blocking β2-adrenergic signaling. Arch. Biochem. Biophys. 2014, 557, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.C.; Liu, H.F.; Chao, J.I. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J. Biol. Chem. 2004, 279, 55875–55885. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.S.; Tran, E.; Nguyen, T.T.; Ong, C.K.; Lee, S.K.; Lee, J.J.; Ng, C.P.; Leong, C.; Huynh, H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol. Rep. 2004, 11, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Singh, P.R.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr. 2014, 33, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Yin, S.; Xie, S.; Li, Y.; Nie, D.; Ma, L.; Wang, X.; Wu, Y. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim. Biophys. Sin. 2011, 43, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Guan, Y.L.; Zou, L.B.; Gong, Y.X.; Hua, H.M.; Xu, Y.N.; Zhang, H.; Yu, Z.G.; Fan, W.H. Saponins with neuroprotective effects from the roots of Pulsatilla cernua. Molecules 2012, 17, 5520–5531. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.J.; Teng, Y.S.; Chen, C.M.; Sun, Y.C.; Hsieh-Li, H.M.; Chang, K.H.; Lee-Chen, G.J. A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment. Biomol. Ther. 2023, 31, 285. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Bescós, P.; Jiménez-Aliaga, K.L.; Benedí, J.; Martín-Aragón, S. A diet containing rutin ameliorates brain intracellular redox homeostasis in a mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2023, 24, 4863. [Google Scholar] [CrossRef] [PubMed]
- Hand, R.; Hadjikyriakou, G.N.; Christodoulou, C.S. (Eds.) 2011–(Continuously Updated): Flora of Cyprus—A Dynamic Checklist. Available online: http://www.flora-of-cyprus.eu/ (accessed on 10 July 2024).
- Ververis, A.; Ioannou, K.; Kyriakou, S.; Violaki, N.; Panayiotidis, M.I.; Plioukas, M.; Christodoulou, K. Sideritis scardica extracts demonstrate neuroprotective activity against Aβ25–35 toxicity. Plants 2023, 12, 1716. [Google Scholar] [CrossRef]
- Kyriakou, S.; Cheung, W.; Mantso, T.; Mitsiogianni, M.; Anestopoulos, I.; Veuger, S.; Trafalis, D.T.; Franco, R.; Pappa, A.; Tetard, D.; et al. A novel methylated analogue of L-Mimosine exerts its therapeutic potency through ROS production and ceramide-induced apoptosis in malignant melanoma. Investg. New Drugs 2021, 39, 971–986. [Google Scholar] [CrossRef]
Solvent Type | TSC (mg OAE 1/g Crude Extract) ± SD |
---|---|
Methanol | 9.535 a ± 0.039 |
Ethanol | 103.117 b ± 0.466 |
Acetone | 124.635 c ± 6.277 |
Compound Number | RT | Molecular Formula | The m/z [M-H]− | Exp. m/z [M-H]− | Error ppm | MS/MS Product Ions | Compound Name | Saponin Content WT % ± SD | References |
---|---|---|---|---|---|---|---|---|---|
1 | 8.47 | C72H112O37 | 1567.68102− | 1567.67552− | 3.5 | 1435.6027, 939.4525, 469.3287 | G heptasaccharide | 0.053 ± 0.011 | [17] |
2 | 8.58 | C60H96O30 | 1295.59142− | 1295.58922− | 1.4 | 1133.5363, 1115.5216, 939.5021, 809.2554, 485.3260 | Saponarioside E | 0.234 ± 0.027 | [21] |
3 | 8.84 | C59H94O29 | 1265.58082− | 1265.57682− | 3.2 | 1103.5236, 1085.5148, 779.2445, 485.3257, 617.1937, 125.0233 | Saponarioside C Saponarioside D | 0.040 ± 0.013 | [21] |
4 | 10.45 | C75H118O39 | 1641.71772− | 1641.71452− | 2.0 | 1509.6730, 939.4612, 469.3284 | G or GA saccharide | 0.207 ± 0.018 | [17] |
5 | 11.35 | C77H120O40 | 1683.7283 | 1683.7226 | 3.4 | 1551.6807, 939.4567, 469.3284, 113.0238 | G octosaccharide | 0.314 ± 0.028 | [17,22] |
6 | 12.44 | C68H104O33 | 1447.6387 | 1447.6343 | 3.0 | 1315.5899, 939.4535, 469.3305, 113.0247, 101.0241 | G hexasaccharide | 0.554 ± 0.052 | [17] |
Solvent Type | TPC (mg GAE 1/g Crude Extract) ± SD |
---|---|
Methanol | 0.159 a ± 0.077 |
Ethanol | 0.973 a ± 0.468 |
Acetone | 17.813 b ± 0.512 |
Compound Number | RT | Molecular Formula | The m/z [M-H]− | Exp. m/z [M-H]− | Error ppm | MS/MS Productions | Compound Name | Phenolic Compounds Content WT % ± SD | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 4.23 | C14H18O9 | 329.0878 | 329.0880 | 0.6 | 209.0451, 167.0352, 123.0451 | Vanillic acid O-hexoside | 0.069 ± 0.016 | [24] |
2 | 4.54 | C15H20O10 | 359.0984 | 359.0949 | 1.3 | 290.0747, 197.0455, 153.0558, 95.0128 | Syringic acid O-hexoside | 0.018 ± 0.005 | [8] |
3 | 5.07 | C13H16O9 | 315.0722 | 315.0724 | 0.6 | 225.0408, 152.0114 | Protocatechuic acid | 0.217 ± 0.053 | [24] |
4 | 6.39 | C26H28O14 | 563.1406 | 563.1402 | 1.3 | 413.0869, 293.0449, 89.0240 | Apigenin | 0.010 ± 0.002 | [24] |
5 | 6.64 | C27H30O16 | 609.1461 | 609.1462 | 0.3 | 463.0843, 300.0276, 151.0033 | Rutin | 0.047 ± 0.010 | [8] |
6 | 6.93 | C21H20O12 | 463.0882 | 463.0882 | 0 | 300.0278, 178.9992 | Quercetin 3-O-galactoside | 0.025 ± 0.007 | [8] |
DPPH Assay | DCFDA Assay | ||
---|---|---|---|
Solvent Type | IC50 (mg/mL) ± SD | TEAC (%) ± SD | IC50 (mg/mL) ± SD |
Methanol | 7.517 b ± 0.222 | 0.113 a ± 0.006 | 0.634 c ± 0.060 |
Ethanol | 0.423 a ± 0.025 | 2.047 b ± 0.081 | 0.228 b ± 0.025 |
Acetone | 0.323 a ± 0.076 | 2.743 b ± 0.509 | 0.072 a ± 0.073 |
E. coli | S. aureus | E. faecalis | S. enteritidis | Amp 1 (Control) | Gen 1 (Control) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEOH | ETOH | ACE | MEOH | ETOH | ACE | MEOH | ETOH | ACE | MEOH | ETOH | ACE | - | - | |
MIC (mg/mL) ± SD | 3.12 ± 0.03 | 3.12 ± 0.03 | 3.12 ± 0.03 | 3.12 ± 0.01 | 1.56 ± 0.04 | 1.56 ± 0.06 | 6.25 ± 0.05 | 3.12 ± 0.03 | 3.12 ± 0.02 | 3.12 ± 0.06 | 3.12 ± 0.10 | 1.56 ± 0.13 | 0.004 ± 0.001 | 0.004 ± 0.002 |
MBC (mg/mL) ± SD | 6.25 ± 0.02 | 6.25 ± 0.02 | 6.25 ± 0.02 | 6.25 ± 0.04 | 3.12 ± 0.04 | 3.12 ± 0.03 | 12.50 ± 0.05 | 12.50 ± 0.03 | 6.25 ± 0.02 | 6.25 ± 0.06 | 6.25 ± 0.10 | 6.25 ± 0.13 | 0.004 ± 0.001 | 0.008 ± 0.002 |
alamarBlue Assay | ||
---|---|---|
Solvent Type | Cell Line | IC50 (μg/mL) ± SD |
Methanol | A375 | 55.07 a ± 4.42 |
HeLa | 67.46 a ± 7.32 | |
HaCaT | 61.47 a ± 1.62 | |
Ethanol | A375 | 62.71 a ± 4.88 |
HeLa | 137.5 b ± 0.88 | |
HaCaT | 92.98 a ± 3.49 | |
Acetone | A375 | 67.01 a ± 22.16 |
HeLa | N/D | |
HaCaT | 268.93 b ± 20.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalambous, D.; Christoforou, M.; Christou, K.; Christou, M.; Ververis, A.; Andreou, M.; Christodoulou, K.; Koutsoulidou, A.; Papachrysostomou, C.; Pantelidou, M. Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts. Plants 2024, 13, 1982. https://doi.org/10.3390/plants13141982
Charalambous D, Christoforou M, Christou K, Christou M, Ververis A, Andreou M, Christodoulou K, Koutsoulidou A, Papachrysostomou C, Pantelidou M. Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts. Plants. 2024; 13(14):1982. https://doi.org/10.3390/plants13141982
Chicago/Turabian StyleCharalambous, Despina, Michalis Christoforou, Krystallo Christou, Melina Christou, Antonis Ververis, Marios Andreou, Kyproula Christodoulou, Andrie Koutsoulidou, Christoforos Papachrysostomou, and Maria Pantelidou. 2024. "Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts" Plants 13, no. 14: 1982. https://doi.org/10.3390/plants13141982
APA StyleCharalambous, D., Christoforou, M., Christou, K., Christou, M., Ververis, A., Andreou, M., Christodoulou, K., Koutsoulidou, A., Papachrysostomou, C., & Pantelidou, M. (2024). Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts. Plants, 13(14), 1982. https://doi.org/10.3390/plants13141982