Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle
Abstract
:1. Introduction
2. Results
2.1. Chlorophyll Content
2.2. Effects of Drought Stress on Photosynthetic Characteristics
2.3. Effects of Drought Stress on Chlorophyll Fluorescence Parameters
2.3.1. Raw Fluorescence Rise Kinetics, OJIP Curves, and Relative Variable Fluorescence
2.3.2. L-Band and K-Band
2.3.3. O-I and IP Phases
2.3.4. JIP Parameters Estimating the Quantum Yields, Efficiencies, Probabilities, and Performance Index
2.3.5. Leaf Models Showing the Phenomenological Energy Fluxes per Excited Cross-Section
2.3.6. Pipeline Models of Specific Energy Fluxes per PSll Active Reaction Center
2.4. Correlation Analysis of Pigment Content with Photosynthetic Characteristics and Minimally Significant Chlorophyll Fluorescence Values
2.5. Principal Component Analysis and Comprehensive Evaluation
3. Discussion
3.1. Effect of Drought Stress on Chlorophyll Content and Photosynthetic Characteristics of Blue Honeysuckle Leaves
3.2. The Effect of Drought Stress on the Rapid Chlorophyll Fluorescence Characteristics of Blue Honeysuckle Leaves
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Experiment Design
4.3. Determination of Chlorophyll Content
4.4. Photosynthetic Measurements
4.5. Measurement of Chlorophyll Fluorescence Rise Kinetics
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, L.C.; Qiao, J.L.; Gong, C.T.; Wei, J.; Li, J.C.; Zhang, L.; Qin, D.; Huo, J.W. C3G quantified method verification and quantified in blue honeysuckle (Lonicera caerulea L.) using HPLC–DAD. Heliyon 2023, 9, e14685. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Najman, K.; Aninowski, M.; Leszczynska, J.; Glowacka, A.; Bielarska, A.M.; Lasinskas, M.; Hallmann, E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. Molecules 2022, 27, 6083. [Google Scholar] [CrossRef] [PubMed]
- Golba, M.; Sokól-Letowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees. Agronomy 2019, 9, 860. [Google Scholar] [CrossRef]
- Li, F.F.; Zhao, H.T.; Xu, R.R.; Zhang, X.L.; Zhang, W.T.; Du, M.L.; Liu, X.C.; Fan, L.L. Simultaneous optimization of the acidified water extraction for total anthocyanin content, total phenolic content, and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L.) using response surface methodology. Food Sci. Nutr. 2019, 7, 2968–2976. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ren, B.B.; Bian, C.Y.; Qin, D.; Zhang, L.J.; Li, J.C.; Wei, J.; Wang, A.X.; Huo, J.W.; Gang, H.X. Transcriptomic and metabolomic analyses reveal molecular mechanisms associated with the natural abscission of blue honeysuckle (Lonicera caerulea L.) ripe fruits. Plant Physiol. Biochem. 2023, 199, 107740. [Google Scholar] [CrossRef] [PubMed]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Different extraction processes affect the metabolites in blue honeysuckle (Loniceracaerulea L. subsp. edulis) food products. Turk. J. Agric. For. 2019, 43, 576–585. [Google Scholar] [CrossRef]
- Dadan, M.; Grobelna, A.; Kalisz, S.; Witrowa-Rajchert, D. The impact of ultrasound-assisted thawing on the bioactive components in juices obtained from blue honeysuckle (Lonicera caerulea L.). Ultrason. Sonochem. 2022, 89, 106156. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Qiao, J.; Zhang, L.; Yan, W.; Zhang, M.; Lu, Y.; Wang, Y.; Ma, H.; Liu, Y.; Zhang, Y.; et al. Critical review on anthocyanins in blue honeysuckle (Lonicera caerulea L.) and their function. Plant Physiol. Biochem. 2023, 204, 108090. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The Effect of the Addition of Blue Honeysuckle Berry Juice to Apple Juice on the Selected Quality Characteristics, Anthocyanin Stability, and Antioxidant Properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Bors, R.H.; Chibbar, R.N.; Baumann, T.E. Blue honeysuckle (Lonicera caerulea L.) vegetative growth cessation and leaf drop phenological adaptation to a temperate climate. Genet. Resour. Crop Evol. 2018, 65, 1471–1484. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Bors, R.H.; Chibbar, R.N.; Baumann, T.E. Spring phenological adaptation of improved blue honeysuckle (Lonicera caerulea L.) germplasm to a temperate climate. Euphytica 2017, 213, 172. [Google Scholar] [CrossRef]
- Li, J.J.; Chang, X.P.; Huang, Q.; Liu, P.F.; Zhao, X.T.; Li, F.M.; Wang, Y.G.; Chang, C.F. Construction of SNP fingerprint and population genetic analysis of honeysuckle germplasm resources in China. Front. Plant Sci. 2023, 14, 1080691. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.M.; Chaovanalikit, A. Preliminary Observations on Adaptation and Nutraceutical Values of Preliminary Observations on Adaptation and Nutraceutical Values of Blue Honeysuckle (Lonicera caerulea) in Oregon, USA. Acta Hortic. 2003, 626, 65–72. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap Berries (Lonicera caerulea L.)—A Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Espinoza-Meza, S.; López-Olivari, R.; Araya-Alman, M.; Carrasco-Benavides, M. Effects of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated blueberry orchard under Mediterranean conditions. Agric. Water Manag. 2021, 249, 106805. [Google Scholar] [CrossRef]
- Molnar, S.; Clapa, D.; Mitre, V. Response of the Five Highbush Blueberry Cultivars to In Vitro Induced Drought Stress by Polyethylene Glycol. Agronomy 2022, 12, 732. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Leaf Eco-Physiological Profile and Berries Technological Traits on Potted Vitis vinifera L. cv Pinot Noir Subordinated to Zeolite Treatments under Drought Stress. Plants 2022, 11, 1735. [Google Scholar] [CrossRef] [PubMed]
- Wenter, A.; Zanotelli, D.; Montagnani, L.; Tagliavini, M.; Andreotti, C. Effect of different timings and intensities of water stress on yield and berry composition of grapevine (cv. Sauvignon blanc) in a mountain environment. Sci. Hortic. 2018, 236, 137–145. [Google Scholar] [CrossRef]
- Ghotbi-Ravandi, A.A.; Shahbazi, M.; Shariati, M.; Mulo, P. Effects of Mild and Severe Drought Stress on Photosynthetic Efficiency in Tolerant and Susceptible Barley (Hordeum vulgare L.) Genotypes. J. Agron. Crop Sci. 2014, 200, 403–415. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Kausar, A.; Al Zeidi, M.; Asekova, S.; Siddique, K.H.M.; Farooq, M. Plant photosynthetic responses under drought stress: Effects and management. J. Agron. Crop Sci. 2023, 209, 651–672. [Google Scholar] [CrossRef]
- Zhang, L.D.; Zhang, L.X.; Sun, J.L.; Zhang, Z.X.; Ren, H.Z.; Sui, X.L. Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci. Hortic. 2013, 161, 81–87. [Google Scholar] [CrossRef]
- Luo, H.-H.; Merope, T.-M.; Zhang, Y.-L.; Zhang, W.-F. Combining gas exchange and chlorophyll a fluorescence measurements to analyze the photosynthetic activity of drip-irrigated cotton under different soil water deficits. J. Integr. Agric. 2016, 15, 1256–1266. [Google Scholar] [CrossRef]
- Tombesi, S.; Frioni, T.; Poni, S.; Palliotti, A. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. 2018, 150, 106–114. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Todorenko, D.; Timofeev, N.; Kovalenko, I.; Kukarskikh, G.; Matorin, D.; Antal, T. Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.). Planta 2020, 251, 11. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Strasserf, R.J.; Srivastava, A.; Govindjee. Polyphasic chlorophyl a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Chen, S.G.; Strasser, R.J.; Qiang, S. Assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Biochem. 2014, 84, 10–21. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, J.; Zhang, M.S.; Strasser, R.J.; Qiang, S. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environ. Exp. Bot. 2016, 122, 126–140. [Google Scholar] [CrossRef]
- Sairam, R.K.; Deshmukh, P.S.; Shukla, D.S. Tolerance of Drought and Temperature Stress in Relation to Increased Antioxidant Enzyme Activity in Wheat. J. Agron. Crop Sci. 1999, 178, 171–178. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M.; Pêcheux, M.; Strasser, R.J. Light and Heat Stress Adaptation of the Symbionts of Temperate and Coral Reef Foraminifers Probed in Hospite by the Chlorophyll a Fluorescence Kinetics. Z. Naturforschung Sect. C-J. Biosci. 1999, 54, 671–680. [Google Scholar] [CrossRef]
- Gao, D.P.; Ran, C.; Zhang, Y.H.; Wang, X.L.; Lu, S.F.; Geng, Y.Q.; Guo, L.Y.; Shao, X.W. Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiol. Biochem. 2022, 185, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, M.; Rätsep, R.; Arus, L. Suitability of blue honeysuckle (Lonicera caerulea L.) cultivars of different origin for cultivation in the Nordic-Baltic climate. Agron. Res. 2020, 18, 2785–2796. [Google Scholar] [CrossRef]
- Sobkowicz, K.; Szewczyk, A.; Ornat, B.; Bedra-Tokarz, M. Cultivation, Chemical Constituents and Utilization of Lonicera caerulea L. (Blue Honeysuckle) in Poland. In Medicinal Plants; Springer: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Wang, Y.R. Effects of Drought Stress and Rehydration on the Growth and Fruit Quality of Blue Honeysuckle (Lonicera caerulea L.). Master’s Thesis, Northeast Agricultural University, Harbin, China, 2024. [Google Scholar]
- Xu, H.X.; Wang, J.Z.; Qu, Y.L.; Hu, L.L.; Tang, Y.; Zhou, Z.S.; Xu, X.J.; Zhou, Y.F. Estimating Leaf Chlorophyll Content of Moso Bamboo Based on Unmanned Aerial Vehicle Visible Images. Remote Sens. 2022, 14, 2864. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, J.; Qin, Q.M.; Sun, Y.H.; Zhang, T.Y.; Sun, H.; Li, M.Z. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sens. Environ. 2021, 267, 112724. [Google Scholar] [CrossRef]
- Srivastava, A.; Guissé, B.; Greppin, H.; Strasser, R.J. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta (BBA) Bioenerg. 1997, 1320, 95–106. [Google Scholar] [CrossRef]
- Gao, J.; Li, P.; Ma, F.; Goltsev, V. Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820nm reflection. J. Photochem. Photobiol. B Biol. 2014, 137, 144–150. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M.; Strasser, R.J. The energy flux theory 35 years later: Formulations and applications. Photosynth. Res. 2013, 117, 289–320. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Correia, C.M.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Lopes, J.I.; Torres-Pereira, J.M.G. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol. 2004, 24, 233–239. [Google Scholar] [CrossRef]
- Akhbarfar, G.; Nikbakht, A.; Etemadi, N.; Gailing, O. Physiological and Biochemical Responses of Plantain Trees (Platanus orientalis L.) Derived from Different Ages to Drought Stress and Ascophyllum nodosum L. Extract. J. Soil Sci. Plant Nutr. 2023, 23, 5945–5961. [Google Scholar] [CrossRef]
- Ghaderi, N.; Siosemardeh, A. Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Hortic. Environ. Biotechnol. 2011, 52, 6–12. [Google Scholar] [CrossRef]
- Cornic, G.; Fresneaum, C. Photosynthetic Carbon Reduction and Carbon Oxidation Cycles are the Main Electron Sinks for Photosystem II Activity During a Mild Drought. Ann. Bot. 2002, 89, 887–894. [Google Scholar] [CrossRef]
- Gao, X.Q.; Chai, H.H.; Ho, W.K.; Mayes, S.; Massawe, F. Deciphering the molecular basis for photosynthetic parameters in Bambara groundnut (Vigna subterranea L. Verdc) under drought stress. BMC Plant Biol. 2023, 23, 287. [Google Scholar] [CrossRef]
- Zhang, Q.; Phillips, R.P.; Manzoni, S.; Scott, R.L.; Oishi, A.C.; Finzi, A.C.; Daly, E.; Vargas, R.; Novick, K.A. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship. Agric. For. Meteorol. 2018, 259, 184–195. [Google Scholar] [CrossRef]
- Yu, D.J.; Rho, H.; Kim, S.J.; Lee, H.J. Photosynthetic characteristics of highbush blueberry (Vaccinium corymbosum cv. Bluecrop) leaves in response to water stress and subsequent re-irrigation. J. Hortic. Sci. Biotechnol. 2015, 90, 550–556. [Google Scholar] [CrossRef]
- Campany, C.E.; Tjoelker, M.G.; von Caemmerer, S.; Duursma, R.A. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. Plant Cell Environ. 2016, 39, 2762–2773. [Google Scholar] [CrossRef]
- Jin, E.J.; Yoon, J.-H.; Lee, H.; Bae, E.J.; Yong, S.H.; Choi, M.S. Evaluation of drought stress level in Sargent’s cherry (Prunus sargentii Rehder) using photosynthesis and chlorophyll fluorescence parameters and proline content analysis. PeerJ 2023, 11, e15954. [Google Scholar] [CrossRef]
- Xing, H.; Zhou, W.; Wang, C.; Li, L.; Li, X.; Cui, N.; Hao, W.; Liu, F.; Wang, Y. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize. Plant Physiol. Biochem. 2021, 166, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Dannehl, H.; Wietoska, H.; Heckmann, H.; Godde, D. Changes in D1-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta 1996, 199, 34–42. [Google Scholar] [CrossRef]
- Murata, N.; Takahashi, S.; Nishiyama, Y.; Allakhverdiev, S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta (BBA) Bioenerg. 2007, 1767, 414–421. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, K.; Wang, Y.Q.; Zhang, Z.P.; Lu, F.; Yu, H.Q.; Zou, J.Q. Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica 2019, 57, 1156–1164. [Google Scholar] [CrossRef]
- Zushi, K.; Matsuzoe, N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic. 2017, 219, 216–221. [Google Scholar] [CrossRef]
- Zushi, K.; Kajiwara, S.; Matsuzoe, N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Sci. Hortic. 2012, 148, 39–46. [Google Scholar] [CrossRef]
- Gautam, A.; Agrawal, D.; SaiPrasad, S.V.; Jajoo, A. A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiol. Mol. Biol. Plants 2014, 20, 533–537. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.P.; Lv, T.B.; Bai, M.; Wang, Z.L.; Niu, J.R. Effects of Water Stress on Fluorescence Parameters and Photosynthetic Characteristics of Drip Irrigation in Rice. Water 2020, 12, 289. [Google Scholar] [CrossRef]
- Falqueto, A.R.; da Silva, R.A.; Gomes, M.T.G.; Martins, J.P.R.; Silva, D.M.; Partelli, F.L. Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci. Hortic. 2017, 224, 238–243. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Li, H.J.; Liu, J.; Bai, Y.W.; Xue, J.Q.; Zhang, R.H. Melatonin Alleviates Drought-Induced Damage of Photosynthetic Apparatus in Maize Seedlings. Russ. J. Plant Physiol. 2020, 67, 312–322. [Google Scholar] [CrossRef]
- Ji, W.; Luo, H.Y.; Song, Y.Q.; Hong, E.; Li, Z.J.; Lin, B.Y.; Fan, C.W.; Wang, H.S.; Song, X.Z.; Jin, S.H.; et al. Changes in Photosynthetic Characteristics of Paeonia suffruticosa under High Temperature Stress. Agronomy 2022, 12, 1203. [Google Scholar] [CrossRef]
- Fatma, M.; Iqbal, N.; Sehar, Z.; Alyemeni, M.N.; Kaushik, P.; Khan, N.A.; Ahmad, P. Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants. Antioxidants 2021, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Miner, G.L.; Bauerle, W.L.; Baldocchi, D.D. Estimating the sensitivity of stomatal conductance to photosynthesis: A review. Plant Cell Environ. 2017, 40, 1214–1238. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.F. Experimental Supervision of Plant Physiology, 5th ed.; Higher Education Press: Beijing, China, 2006; pp. 74–77. [Google Scholar]
- Liang, G.; Liu, J.; Zhang, J.; Guo, J. Effects of Drought Stress on Photosynthetic and Physiological Parameters of Tomato. J. Am. Soc. Hortic. Sci. 2020, 145, 12–17. [Google Scholar] [CrossRef]
- Gao, Y.Z.; Liu, W.; Wang, X.X.; Yang, L.H.; Han, S.; Chen, S.G.; Strasser, R.J.; Valverde, B.E.; Qiang, S. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. Plant Physiol. Biochem. 2018, 128, 1–12. [Google Scholar] [CrossRef]
Treatment | Quantum Yields and Efficiencies/Probabilities | Performance Index (PIABS) | ||||
---|---|---|---|---|---|---|
φEo | φRo | ΨEo | ΨRo | δRo | ||
CK | 0.5 ± 0.02 aA | 0.19 ± 0 aA | 0.6 ± 0 aA | 0.23 ± 0 abAB | 0.23 ± 0 abAB | 2.79 ± 0.28 aA |
T1 | 0.48 ± 0.01 aA | 0.19 ± 0 aA | 0.6 ± 0.01 abA | 0.24 ± 0.01 aAB | 0.24 ± 0.01 aAB | 2.37 ± 0.23 aAB |
T2 | 0.47 ± 0 aA | 0.2 ± 0.01 aA | 0.6 ± 0.01 abA | 0.25 ± 0.01 aA | 0.25 ± 0.01 aA | 2.31 ± 0.32 aAB |
T3 | 0.43 ± 0.09 aA | 0.16 ± 0 bB | 0.58 ± 0.01 bA | 0.22 ± 0.01 bB | 0.22 ± 0.01 bB | 1.79 ± 0.14 bB |
Composition | Eigenvalue | Variance Contribution Rate (%) | Cumulative Variance Contribution Rate (%) |
---|---|---|---|
1 | 5.66 | 70.76 | 70.76 |
2 | 1.29 | 16.08 | 86.84 |
3 | 0.62 | 7.75 | 94.59 |
4 | 0.22 | 2.73 | 97.32 |
5 | 0.12 | 1.47 | 98.79 |
6 | 0.07 | 0.93 | 99.71 |
7 | 0.02 | 0.27 | 99.98 |
8 | 0.00 | 0.02 | 100.00 |
Photosynthetic Indicators | Feature Vectors | |
---|---|---|
1 | 2 | |
chlorophyll | 0.5846 | 0.5057 |
Gs | 0.9007 | −0.3507 |
WUC | −0.0116 | 0.9419 |
Fm | 0.9737 | 0.0201 |
Fv | 0.9731 | −0.0125 |
Fv/Fm | 0.9427 | 0.1217 |
Fv/Fo | 0.9738 | −0.0647 |
PI ABS | 0.8807 | −0.0317 |
Treatment | Chlorophyll | Gs | WUC | Fm | Fv | Fv/Fm | Fv/Fo | PIABS |
---|---|---|---|---|---|---|---|---|
CK | 0.0774 | 1.5190 | −0.9774 | 1.0963 | 1.1056 | 0.9522 | 1.1880 | 1.0992 |
T1 | 1.5086 | 0.0340 | 0.8040 | 0.4689 | 0.4454 | 0.4684 | 0.3473 | 0.1296 |
T2 | −0.7709 | −0.5326 | 0.9936 | −0.2497 | −0.2366 | −0.0668 | −0.2233 | −0.0007 |
T3 | −0.8150 | −1.0204 | −0.8201 | −1.3155 | −1.3144 | −1.3538 | −1.3120 | −1.2281 |
Treatment | P1 | P2 | P | Rank |
---|---|---|---|---|
CK | 6.5905 | −1.4018 | 5.1105 | 1 |
T1 | 2.6871 | 1.5424 | 2.4752 | 2 |
T2 | −1.6963 | 0.7371 | −1.2457 | 3 |
T3 | −7.5813 | −0.8777 | −6.3400 | 4 |
Treatment | Period of Flowering | Level of Deficit Adjustment |
---|---|---|
CK | 100% RH | Adequate irrigation |
T1 | 85% RH | Slight deficit adjustment |
T2 | 70% RH | Moderate deficit adjustment |
T3 | 55% RH | Severe deficit adjustment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Lu, Y.; Guo, L.; Liu, Y.; Li, M.; Zhang, B.; Zhang, B.; Zhang, L.; Qin, D.; Huo, J. Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle. Plants 2024, 13, 2115. https://doi.org/10.3390/plants13152115
Yan W, Lu Y, Guo L, Liu Y, Li M, Zhang B, Zhang B, Zhang L, Qin D, Huo J. Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle. Plants. 2024; 13(15):2115. https://doi.org/10.3390/plants13152115
Chicago/Turabian StyleYan, Weijiao, Yongchuan Lu, Liangchuan Guo, Yan Liu, Mingkai Li, Boyuan Zhang, Bingxiu Zhang, Lijun Zhang, Dong Qin, and Junwei Huo. 2024. "Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle" Plants 13, no. 15: 2115. https://doi.org/10.3390/plants13152115
APA StyleYan, W., Lu, Y., Guo, L., Liu, Y., Li, M., Zhang, B., Zhang, B., Zhang, L., Qin, D., & Huo, J. (2024). Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle. Plants, 13(15), 2115. https://doi.org/10.3390/plants13152115