Shaolinia: A Fossil Link between Conifers and Angiosperms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomlinson, P.B.; Takaso, T. Seed cone structure in conifers in relation to development and pollination: A biological approach. Can. J. Bot. 2002, 80, 1250–1273. [Google Scholar] [CrossRef]
- Wang, X. The Dawn Angiosperms, 2nd ed.; Springer: Cham, Switzerland, 2018; p. 407. [Google Scholar]
- Tomlinson, P.B. Rescuing Robert Brown-The origins of angio-ovuly in seed cones of conifers. Bot. Rev. 2012, 78, 310–334. [Google Scholar] [CrossRef]
- Arber, E.A.N.; Parkin, J. On the origin of angiosperms. J. Linn. Soc. Lond. Bot. 1907, 38, 29–80. [Google Scholar] [CrossRef]
- Roe, J.L.; Nemhauser, J.L.; Zambryski, P.C. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 1997, 9, 335–353. [Google Scholar] [PubMed]
- Zhang, X.; Liu, W.; Wang, X. How the ovules get enclosed in magnoliaceous carpels. PLoS ONE 2017, 12, e0174955. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-M.; Xiao, X.; Wang, G.-X.; Gao, R.-F. Vascular anatomy of kiwi fruit and its implications for the origin of carpels. Front. Plant Sci. 2013, 4, 391. [Google Scholar] [CrossRef]
- Liu, W.-Z.; Hilu, K.; Wang, Y.-L. From leaf and branch into a flower: Magnolia tells the story. Bot. Stud. 2014, 55, 28. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, Z.J.; Wang, M.; Wang, X. Fossil and living cycads say “No more megasporophylls”. J. Morphol. Anat. 2017, 1, 107. [Google Scholar]
- Wang, X.; Luo, B. Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. Am. J. Plant Sci. 2013, 4, 53–57. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.-J.; Liu, W.; Zhang, X.; Guo, X.; Hu, G.; Zhang, S.; Wang, Y.; Liao, W. Breaking the stasis of current plant systematics. Sci. Technol. Rev. 2015, 33, 97–105. [Google Scholar]
- Fu, Q.; Diez, J.B.; Pole, M.; Garcia-Avila, M.; Liu, Z.-J.; Chu, H.; Hou, Y.; Yin, P.; Zhang, G.-Q.; Du, K.; et al. An unexpected noncarpellate epigynous flower from the Jurassic of China. eLife 2018, 7, e38827. [Google Scholar] [CrossRef]
- Han, G.; Fu, X.; Liu, Z.-J.; Wang, X. A new angiosperm genus from the Lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol. Sin. Engl. Ed. 2013, 87, 916–925. [Google Scholar]
- Han, G.; Liu, Z.; Wang, X. A Dichocarpum-like angiosperm from the Early Cretaceous of China. Acta Geol. Sin. Engl. Ed. 2017, 90, 1–8. [Google Scholar]
- Han, G.; Liu, Z.-J.; Liu, X.; Mao, L.; Jacques, F.M.B.; Wang, X. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geol. Sin. Engl. Ed. 2016, 90, 19–29. [Google Scholar]
- Liu, Z.-J.; Hou, Y.-M.; Wang, X. Zhangwuia: An enigmatic organ with bennettitalean appearance and enclosed ovules. Earth Environ. Sci. Trans. R. Soc. Edinb. 2019, 108, 419–428. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Wang, X. A perfect flower from the Jurassic of China. Hist. Biol. 2016, 28, 707–719. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Wang, X. Yuhania: A unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Hist. Biol. 2017, 29, 431–441. [Google Scholar] [CrossRef]
- Dong, C.; Wang, Y.D.; Yang, X.J.; Sun, B.N. Whole-plant reconstruction and updated phylogeny of Austrohamia acanthobractea (Cupressaceae) from the Middle Jurassic of Northeast China. Int. J. Plant Sci. 2018, 179, 640–662. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, L.; Wang, Q. Chengia laxispicata gen. et sp. nov., a new ephedroid plant from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China: Evolutionary, taxonomic, and biogeographic implications. BMC Evol. Biol. 2013, 13, 72. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Ferguson, D.K. A new macorfossil ephedroid plant with unusual bract morphology from the Lower Cretaceous Jiufotang Formation of northeastern China. BMC Evol. Biol. 2020, 20, 19. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Q. The earliest fleshy cone of Ephedra from the Early Cretaceous Yixian Formation of Northeast China. PLoS ONE 2013, 8, e53652. [Google Scholar]
- Han, L.; Zhao, Y.; Zhao, M.; Sun, J.; Sun, B.; Wang, X. New fossil evidence suggests that angiosperms flourished in the Middle Jurassic. Life 2023, 13, 819. [Google Scholar] [CrossRef]
- Santos, A.A.; Wang, X. Pre-Carpels from the Middle Triassic of Spain. Plants 2022, 11, 2833. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.N.; Taylor, E.L.; Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009; p. 1230. [Google Scholar]
- Crane, P.R. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Mo. Bot. Gard. 1985, 72, 716–793. [Google Scholar] [CrossRef]
- Scott, D.H. Studies in Fossil Botany, Vol. I. Pteridophyta, 3rd ed.; Hafner Publishing Company: New York, NY, USA, 1962. [Google Scholar]
- Florin, R. The morphology of the female fructifications in cordaites and conifers of Palaeozoic age. Bot. Not. 1939, 36, 547–565. [Google Scholar]
- Florin, R. Die Koniferen des Oberkarbons und des unteren Perms. Paläontographica B 1944, 85, 457–654. [Google Scholar]
- Florin, R. Die Koniferen des Oberkarbons und des unteren Perms. Paläontographica B 1945, 85, 655–729. [Google Scholar]
- Florin, R. Evolution in cordaites and conifers. Acta Horti Bergiani 1951, 15, 285–388. [Google Scholar]
- Doyle, J.A. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int. J. Plant Sci. 2008, 169, 816–843. [Google Scholar] [CrossRef]
- Skinner, D.J.; Hill, T.A.; Gasser, C.S. Regulation of ovule development. Plant Cell 2004, 16 (Suppl. 1), S32–S45. [Google Scholar] [CrossRef]
- Endress, P.K. The morphological relationship between carpels and ovules in angiosperms: Pitfalls of morphological interpretation. Bot. J. Linn. Soc. 2019, 189, 201–227. [Google Scholar] [CrossRef]
- Melville, R. A new theory of the angiosperm flower: I. The gynoecium. Kew Bull. 1962, 16, 1–50. [Google Scholar] [CrossRef]
- Zhang, X. Floral ontogeny of Illicium lanceolatum (Schisandraceae) and its implications on carpel homology. Phytotaxa 2019, 416, 200–210. [Google Scholar] [CrossRef]
- Krassilov, V.A. The origin of angiosperms: New and old problems. Trends Ecol. Evol. 1991, 6, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Krassilov, V.A. Dirhopalostachyaceae—A new family of proangiosperms and its bearing on the problem of angiosperm ancestry. Paläontographica B 1975, 153, 100–110. [Google Scholar]
- Han, G.; Wang, X. A new infructescence of angiosperms from the Early Cretaceous of China. Acta Geol. Sin. Engl. Ed. 2020, 94, 1711–1713. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Chen, L.-J.; Wang, X. A whole-plant monocot from Lower Cretaceous. Palaeoworld 2021, 30, 169–175. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Wang, X. A novel angiosperm from the Early Cretaceous and its implications on carpel-deriving. Acta Geol. Sin. Engl. Ed. 2018, 92, 1293–1298. [Google Scholar] [CrossRef]
- Liu, X.; Ma, L.; Liu, B.; Liu, Z.-J.; Wang, X. A novel angiosperm including various parts from the Early Cretaceous sheds new light on flower evolution. Hist. Biol. 2021, 33, 2706–2714. [Google Scholar] [CrossRef]
- Fu, Q.; Diez, J.B.; Pole, M.; García-Ávila, M.; Wang, X. Nanjinganthus is an angiosperm, isn’t it? China Geol. 2020, 3, 359–361. [Google Scholar] [CrossRef]
- Friis, E.M.; Crane, P.R.; Pedersen, K.R. The Early Flowers and Angiosperm Evolution; Cambridge University Press: Cambridge, UK, 2011; p. 596. [Google Scholar]
- Mendes, M.M.; Grimm, G.W.; Pais, J.; Friis, E.M. Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: Floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 2014, 53, 283–301. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, Y.; Yin, P.; Diez, J.B.; Pole, M.; García-Ávila, M.; Wang, X. Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus. Sci. Rep. 2023, 13, 426. [Google Scholar] [CrossRef] [PubMed]
- Posluszny, U.; Tomlinson, P.B. Aspects of inflorescence and floral development in the putative basal angiosperm Amborella trichopoda (Amborellaceae). Can. J. Bot. 2003, 81, 28–39. [Google Scholar] [CrossRef]
- Krassilov, V.A. The Jurassic disseminules with pappus and their bearing on the problem of angiosperm ancestry. Geophytology 1973, 3, 1–4. [Google Scholar]
- Krassilov, V.A. The origin of angiosperms. Bot. Rev. 1977, 43, 143–176. [Google Scholar] [CrossRef]
- Krassilov, V.A. New paleobotanical data on origin and early evolution of angiospermy. Ann. Mo. Bot. Gard. 1984, 71, 577–592. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Lu, A.-M.; Tang, Y.-C.; Chen, Z.-D.; Li, D.-Z. Synopsis of a new “polyphyletic-polychronic-polytopic” system of the angiosperms. Acta Phytotaxon. Sin. 2002, 40, 289–322. [Google Scholar]
- Krassilov, V.A. Character parallelism and reticulation in the origin of angiosperms. In Horizontal Gene Transfer; Syvanen, M., Kado, C.I., Eds.; Academic Press: Cambridge, MA, USA, 2002; pp. 373–382. [Google Scholar]
- Krassilov, V.A.; Barinova, S. Carpel-fruit in a coniferous genus Araucaria and the enigma of angiosperm origin. J. Plant Sci. 2014, 2, 159–166. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, J.; Wang, X. Offspring development conditioning (ODC): A universal evolutionary trend in sexual reproduction of organisms. J. Northwest Univ. Nat. Sci. Ed. 2021, 51, 163–172. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, L.-J. Shaolinia: A Fossil Link between Conifers and Angiosperms. Plants 2024, 13, 2162. https://doi.org/10.3390/plants13152162
Wang X, Chen L-J. Shaolinia: A Fossil Link between Conifers and Angiosperms. Plants. 2024; 13(15):2162. https://doi.org/10.3390/plants13152162
Chicago/Turabian StyleWang, Xin, and Li-Jun Chen. 2024. "Shaolinia: A Fossil Link between Conifers and Angiosperms" Plants 13, no. 15: 2162. https://doi.org/10.3390/plants13152162
APA StyleWang, X., & Chen, L. -J. (2024). Shaolinia: A Fossil Link between Conifers and Angiosperms. Plants, 13(15), 2162. https://doi.org/10.3390/plants13152162