Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Provenance Trials
2.2. Statistical Analysis
3. Results
3.1. Drought Years Identification
3.2. Norway Spruce Series
3.3. The Effect of Provenance and Year on Radial Width and Latewood Percentage
3.4. Genetic Variation in Drought Response
3.5. Phenotypic Correlations
3.6. The Response and Correlation Function Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AR6 Synthesis Report: Climate Change 2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 4 January 2024).
- Good, P.; Bärring, L.; Giannakopoulos, C.; Holt, T.; Palutikof, J. Non-Linear Regional Relationships between Climate Extremes and Annual Mean Temperatures in Model Projections for 1961–2099 over Europe. Clim. Res. 2006, 31, 19–34. [Google Scholar] [CrossRef]
- Briffa, K.R.; van der Schrier, G.; Jones, P.D. Wet and Dry Summers in Europe since 1750: Evidence of Increasing Drought. Int. J. Climatol. 2009, 29, 1894–1905. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I. European Drought Trends. Proc. IAHS 2015, 369, 75–79. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-Driven Risks to the Climate Mitigation Potential of Forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Escudero, A.; Iriondo, J.M.; Martínez-Vilalta, J.; Valladares, F. Extreme Climatic Events and Vegetation: The Role of Stabilizing Processes. Glob. Change Biol. 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological Analysis of Fir (A. Borisii-Regis) in Greece in the Frame of Climate Change Investigation. Forests 2022, 13, 879. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently Linked to Drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- Mateescu, E.; Smarandache, M.; Jeler, N.; Apostol, V. Drought Conditions and Management Strategies in Romania. In Initiative on “Capacity Development to Support. National Drought Management Policy”(WMO, UNCCD, FAO and UNW-DPC). Country Report. 2013, Volume 600. Available online: https://procon.bg/article/drought-conditions-and-management-strategies-romania (accessed on 13 June 2024).
- Busuioc, A.; von Storch, H. Changes in the Winter Precipitation in Romania and Its Relation to the Large Scale Circulation, Tellus, 48A, p 538–552. 1996.
- Dumitrescu, A.; Amihaesei, V.-A.; Cheval, S. RoCliB– Bias-Corrected CORDEX RCMdataset over Romania. Geosci. Data J. 2022, 10, 262–275. [Google Scholar] [CrossRef]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought Response of Five Conifer Species under Contrasting Water Availability Suggests High Vulnerability of Norway Spruce and European Larch. Glob. Change Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Zang, C.; Pretzsch, H.; Rothe, A. Size-Dependent Responses to Summer Drought in Scots Pine, Norway Spruce and Common Oak. Trees 2012, 26, 557–569. [Google Scholar] [CrossRef]
- Jansson, G.; Danusevičius, D.; Grotehusman, H.; Kowalczyk, J.; Krajmerova, D.; Skrøppa, T.; Wolf, H. Norway Spruce (Picea Abies (L.) H.Karst.). In Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives; Pâques, L.E., Ed.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2013; pp. 123–176. ISBN 978-94-007-6146-9. [Google Scholar]
- Bouriaud, O.; Popa, I. Comparative Dendroclimatic Study of Scots Pine, Norway Spruce, and Silver Fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 2009, 23, 95–106. [Google Scholar] [CrossRef]
- Cochard, H. Vulnerability of Several Conifers to Air Embolism. Tree Physiol. 1992, 11, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.-C.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate Drivers of Bark Beetle Outbreak Dynamics in Norway Spruce Forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Liepe, K.J.; van der Maaten, E.; van der Maaten-Theunissen, M.; Liesebach, M. High Phenotypic Plasticity, but Low Signals of Local Adaptation to Climate in a Large-Scale Transplant Experiment of Picea abies (L.) Karst. in Europe. Front. For. Glob. Change 2022, 5, 804857. [Google Scholar] [CrossRef]
- Buras, A.; Menzel, A. Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef]
- Mihai, G.; Teodosiu, M.; Birsan, M.-V.; Alexandru, A.-M.; Mirancea, I.; Apostol, E.-N.; Garbacea, P.; Ionita, L. Impact of Climate Change and Adaptive Genetic Potential of Norway Spruce at the South–Eastern Range of Species Distribution. Agric. For. Meteorol. 2020, 291, 108040. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.-M.; Nita, I.-A.; Birsan, M.-V. Climate Change in the Provenance Regions of Romania over the Last 70 Years: Implications for Forest Management. Forests 2022, 13, 1203. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Leites, L.P.; Bradley St Clair, J.; Jaquish, B.C.; Sáenz-Romero, C.; López-Upton, J.; Joyce, D.G. Comparative Genetic Responses to Climate in the Varieties of Pinus Ponderosa and Pseudotsuga Menziesii: Clines in Growth Potential. For. Ecol. Manag. 2014, 324, 138–146. [Google Scholar] [CrossRef]
- Arend, M.; Kuster, T.; Günthardt-Goerg, M.S.; Dobbertin, M. Provenance-Specific Growth Responses to Drought and Air Warming in Three European Oak Species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol. 2011, 31, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Burczyk, J.; Giertych, M. Response of Norway Spruce (Picea abies [L.] Karst.) Annual Increments to Drought for Various Provenances and Locations. Silvae Genet. 1991, 40, 146–152. [Google Scholar]
- George, J.-P.; Grabner, M.; Campelo, F.; Karanitsch-Ackerl, S.; Mayer, K.; Klumpp, R.T.; Schüler, S. Intra-Specific Variation in Growth and Wood Density Traits under Water-Limited Conditions: Long-Term-, Short-Term-, and Sudden Responses of Four Conifer Tree Species. Sci. Total Environ. 2019, 660, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Mihai, G.; Alexandru, A.M.; Stoica, E.; Birsan, M.V. Intraspecific Growth Response to Drought of Abies Alba in the Southeastern Carpathians. Forests 2021, 12, 387. [Google Scholar] [CrossRef]
- Trujillo-Moya, C.; George, J.-P.; Fluch, S.; Geburek, T.; Grabner, M.; Karanitsch-Ackerl, S.; Konrad, H.; Mayer, K.; Sehr, E.M.; Wischnitzki, E.; et al. Drought Sensitivity of Norway Spruce at the Species’ Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation among and within Provenances. G3 Genes Genomes Genet. 2018, 8, 1225–1245. [Google Scholar] [CrossRef] [PubMed]
- Atzmon, N.; Moshe, Y.; Schiller, G. Ecophysiological Response to Severe Drought in Pinus Halepensis Mill. Trees of Two Provenances. Plant Ecol. 2004, 171, 15–22. [Google Scholar] [CrossRef]
- Schmidtling, R.C. Use of Provenance Tests to Predict Response to Climate Change: Loblolly Pine and Norway Spruce. Tree Physiol. 1994, 14, 805–817. [Google Scholar] [CrossRef]
- Vitasse, Y.; Delzon, S.; Bresson, C.C.; Michalet, R.; Kremer, A. Altitudinal Differentiation in Growth and Phenology among Populations of Temperate-Zone Tree Species Growing in a Common Garden. Can. J. For. Res. 2009, 39, 1259–1269. [Google Scholar] [CrossRef]
- Gömöry, D.; Longauer, R.; Hlásny, T.; Pacalaj, M.; Strmeň, S.; Krajmerová, D. Adaptation to Common Optimum in Different Populations of Norway Spruce (Picea abies Karst.). Eur. J. For. Res. 2012, 131, 401–411. [Google Scholar] [CrossRef]
- Kapeller, S.; Lexer, M.J.; Geburek, T.; Hiebl, J.; Schueler, S. Intraspecific Variation in Climate Response of Norway Spruce in the Eastern Alpine Range: Selecting Appropriate Provenances for Future Climate. For. Ecol. Manag. 2012, 271, 46–57. [Google Scholar] [CrossRef]
- Klisz, M.; Ukalska, J.; Koprowski, M.; Tereba, A.; Puchałka, R.; Przybylski, P.; Jastrzębowski, S.; Nabais, C. Effect of Provenance and Climate on Intra-Annual Density Fluctuations of Norway Spruce Picea abies (L.) Karst. in Poland. Agric. For. Meteorol. 2019, 269–270, 145–156. [Google Scholar] [CrossRef]
- Sáenz-Romero, C.; Kremer, A.; Nagy, L.; Újvári-Jármay, É.; Ducousso, A.; Kóczán-Horváth, A.; Hansen, J.K.; Mátyás, C. Common Garden Comparisons Confirm Inherited Differences in Sensitivity to Climate Change between Forest Tree Species. PeerJ 2019, 7, e6213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Belien, E.; Ren, H.; Rossi, S.; Huang, J.-G. Wood Anatomy of Boreal Species in a Warming World: A Review. Iforest–Biogeosci. For. 2020, 13, 130. [Google Scholar] [CrossRef]
- Denne, M.P. Definition of Latewood According to Mork (1928). IAWA J. 1989, 10, 59–62. [Google Scholar] [CrossRef]
- Badea, L. Geografia României; Editura Academiei Republicii Socialiste România: Bucharest, Romania, 1983. [Google Scholar]
- Nițu, C.; Benea, V.; Duran, V.; Florescu, I.; Gruescu, A.; Marcu, A.; Răescu, V. Aspecte Privind Variabilitatea Genetică a Unor Proveniențe de Molid. An. Institutul De Cercet. Si Amenaj. Silvice 1974, 31, 49–58. [Google Scholar]
- Cybis.Se: Technical Writing, Software Development, Dendrochronology. Available online: https://www.cybis.se/ (accessed on 30 May 2023).
- Campelo, F. detrendeR: A Graphical User Interface (GUI) to Visualize and Analyze Dendrochronological Data. 2022. Available online: https://cran.r-project.org/web/packages/detrendeR/index.html (accessed on 23 June 2022).
- Bunn, A.; Korpela, M.; Biondi, F.; Campelo, F.; Mérian, P.; Qeadan, F.; Zang, C.; Buras, A.; Cecile, A.; Mudelsee, M.; et al. dplR: Dendrochronology Program Library in R. 2022. Available online: https://CRAN.R-project.org/package=dplR (accessed on 23 June 2022).
- R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing; R core team: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 24 June 2021).
- Bucci, G. ClimateDT—Climate Downscaling Tool. Available online: https://www.ibbr.cnr.it/climate-dt/ (accessed on 30 May 2023).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Lowe, J.; Bernie, D.; Bett, P.; Bricheno, L.; Brown, S.; Calvert, D.; Clark, R.D.; Karen; Eagle; Edwards, T.; et al. UKCP 18 Science Overview Report November 2018 (Updated March 2019); Met Office Hadley Centre: Exeter, UK, 2019.
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. 2017. Available online: https://CRAN.R-project.org/package=SPEI (accessed on 9 May 2022).
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Lloret, F.; Keeling, E.G.; Sala, A. Components of Tree Resilience: Effects of Successive Low-Growth Episodes in Old Ponderosa Pine Forests. Oikos 2011, 120, 1909–1920. [Google Scholar] [CrossRef]
- Becker, M.; Nieminen, T.M.; Gérémia, F. Short-Term Variations and Long-Term Changes in Oak Productivity in Northeastern France. The Role of Climate and Atmospheric CO2. Ann. For. Sci. 1994, 51, 477–492. [Google Scholar] [CrossRef]
- Jetschke, G.; van der Maaten, E.; van der Maaten-Theunissen, M. Towards the Extremes: A Critical Analysis of Pointer Year Detection Methods. Dendrochronologia 2019, 53, 55–62. [Google Scholar] [CrossRef]
- Popa, I. Fundamente Metodologice Şi Aplicaţii de Dendrocronologie; Editura Tehnicǎ Silvicǎ: Bucharest, Romania, 2004. [Google Scholar]
- Wu, X.; Liu, H.; Hartmann, H.; Ciais, P.; Kimball, J.S.; Schwalm, C.R.; Camarero, J.J.; Chen, A.; Gentine, P.; Yang, Y.; et al. Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth. Earth’s Future 2022, 10, e2021EF002530. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B.; Jensen, S.P. lmerTest: Tests in Linear Mixed Effects Models. 2020. Available online: https://CRAN.R-project.org/package=lmerTest (accessed on 8 December 2022).
- Nanson, A. Génétique et Amélioration des Arbres Forestiers; Presses Agronomiques de Gembloux: Gembloux, Belgium, 2004; ISBN 978-2-87016-070-1. [Google Scholar]
- Zang, C.; Biondi, F. Treeclim: An R Package for the Numerical Calibration of Proxy-Climate Relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Bueno de Mesquita, C.P.; White, C.T.; Farrer, E.C.; Hallett, L.M.; Suding, K.N. Taking Climate Change into Account: Non-Stationarity in Climate Drivers of Ecological Response. J. Ecol. 2021, 109, 1491–1500. [Google Scholar] [CrossRef]
- Stănescu, V.; Şofletea, N.; Popescu, O.C. Flora Forestiera Lemnoasa a Romaniei; Ceres: Bucharest, Romania, 1997; ISBN 978-973-40-0383-9. [Google Scholar]
- Baldi, P.; La Porta, N. Toward the Genetic Improvement of Drought Tolerance in Conifers: An Integrated Approach. Forests 2022, 13, 2016. [Google Scholar] [CrossRef]
- Forner, A.; Valladares, F.; Aranda, I. Mediterranean Trees Coping with Severe Drought: Avoidance Might Not Be Safe. Environ. Exp. Bot. 2018, 155, 529–540. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Eilmann, B.; Rigling, A. Tree-Growth Analyses to Estimate Tree Species’ Drought Tolerance. Tree Physiol. 2012, 32, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.; Lauder, J.; Musser, C.; Stathos, A.; Shu, M. The Genetics of Drought Tolerance in Conifers. New Phytol. 2017, 216, 1034–1048. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Aparicio, L.; García-Valdés, R.; Ruíz-Benito, P.; Zavala, M.A. Disentangling the Relative Importance of Climate, Size and Competition on Tree Growth in Iberian Forests: Implications for Forest Management under Global Change. Glob. Change Biol. 2011, 17, 2400–2414. [Google Scholar] [CrossRef]
- Čermák, P.; Kolar, T.; Žid, T.; Trnka, M.; Rybníček, M. Norway Spruce Responses to Drought Forcing in Area Affected by Forest Decline. For. Syst. 2019, 28, e016. [Google Scholar] [CrossRef]
- Augustaitis, A.; Augustaitienė, I.; Baugarten, M.; Bičenkienė, S.; Girgždienė, R.; Kulbokas, G.; Linkevičius, E.; Marozas, V.; Mikalajūnas, M.; Mordas, G.; et al. Tree-Ring Formation as an Indicator of Forest Capacity to Adapt to the Main Threats of Environmental Changes in Lithuania. Sci. Total Environ. 2018, 615, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Linkevičius, E.; Kliučius, A.; Šidlauskas, G.; Augustaitis, A. Variability in Growth Patterns and Tree-Ring Formation of East European Scots Pine (Pinus sylvestris L.) Provenances to Changing Climatic Conditions in Lithuania. Forests 2022, 13, 743. [Google Scholar] [CrossRef]
- Roibu, C.-C.; Sfeclă, V.; Mursa, A.; Ionita, M.; Nagavciuc, V.; Chiriloaei, F.; Leșan, I.; Popa, I. The Climatic Response of Tree Ring Width Components of Ash (Fraxinus excelsior L.) and Common Oak (Quercus robur L.) from Eastern Europe. Forests 2020, 11, 600. [Google Scholar] [CrossRef]
- Knutzen, F.; Averbeck, P.; Barrasso, C.; Bouwer, L.M.; Gardiner, B.; Grünzweig, J.M.; Hänel, S.; Haustein, K.; Johannessen, M.R.; Kollet, S.; et al. Impacts and Damages of the European Multi-Year Drought and Heat Event 2018–2022 on Forests, a Review. EGUsphere 2023, 1–56. [Google Scholar] [CrossRef]
- Antonescu, B.; Ene, D.; Boldeanu, M.; Andrei, S.; Mărmureanu, L.; Marin, C.; Pîrloagă, R. Future Changes in Heatwaves Characteristics in Romania. Theor. Appl. Clim. 2023, 153, 525–538. [Google Scholar] [CrossRef]
Year | Months with Severe and Extreme Droughts | ||
---|---|---|---|
Dorna Candrenilor | Turda | Zarnesti | |
1972 | March | March | March, April |
1973 | Jan | January, February | - |
1974 | Febr.–April | Febr.–April | Febr.–April |
1975 | March | March | March |
1977 | - | - | December |
1978 | - | - | January |
1982 | November | November | November |
1983 | December | December | April |
1986 | May, November | November | May, October |
1989 | March | March | March |
1990 | Febr., March | May | March |
1992 | - | May, September | September |
1994 | July | July | - |
1996 | - | - | July |
2000 | June, December | June–August, October–December | June, July, August, December |
2001 | January | - | January |
2002 | Febr., May, June | Febr., May, June | febr., May, June |
2003 | May, June | May, June | May, June, July, August |
2006 | - | December | December |
2007 | June | - | June, July |
2008 | - | February | - |
2009 | May, September | May | - |
2011 | Oct., November | October, November | October, November |
2012 | Aug, September | August–October | August, September |
2013 | December | - | - |
2015 | July, August, September | - | July |
2017 | - | February | - |
2018 | May, October | September–November | May, October |
2019 | August-December | October | August, September, November, December |
2020 | January | January | January |
rbar | Provenance rbar min | Provenance rbar max | Mean RW (mm) | Min RW (mm) | Max RW (mm) | |
---|---|---|---|---|---|---|
Dorna Candrenilor | 0.908 | 0.802, prov 90 | 0.961, prov 54 | 2.73 | 2.15, prov 83 | 3.11, prov 25 |
Turda | 0.876 | 0.729, prov 67 | 0.941, prov 75 | 2.81 | 2.31, prov 83 | 3.92, prov 10 |
Zarnesti | 0.876 | 0.705, prov 18 | 0.942, prov 42 | 2.55 | 2.13, prov 94 | 3.18, prov 55 |
Trait | LRTp | LRT Year x prov | MS B | MS Year | Mean ± SD | |
---|---|---|---|---|---|---|
Zarnesti | RW | 711.55 *** | 66.98 *** | 91.56 *** | 1116.66 *** | 2.55 ± 0.19 |
EW | 677.85 *** | 84.63 *** | 38.94 *** | 739.12 *** | 1.90 ± 0.17 | |
LW | 376.41 *** | 0.00 | 11.12 *** | 46.88 *** | 0.65 ± 0.05 | |
LWP | 510.66 *** | 0.00 | 4583.1 *** | 13,944.9 *** | 27.78 ± 1.65 | |
Dorna Candrenilor | RW | 712.85 *** | 12.42 *** | 47.88 *** | 1996.86 *** | 2.73 ± 0.18 |
EW | 579.62 *** | 30.60 *** | 12.07 *** | 1310.91 *** | 2.08 ± 0.14 | |
LW | 639.68 *** | 1.29 | 16.981 *** | 65.855 *** | 0.66 ± 0.07 | |
LWP | 491.92 *** | 26.37 *** | 3207.5 *** | 20,586.8 *** | 27.06 ± 1.54 | |
Turda | RW | 1259.9 *** | 0.00 | 2.09 | 1315.16 *** | 2.81 ± 0.29 |
EW | 1003.0 *** | 0.00 | 2.28 * | 835.49 *** | 2.03 ± 0.22 | |
LW | 996.03 *** | 0.00 | 0.66 ** | 56.16 *** | 0.78 ± 0.08 | |
LWP | 326.7 *** | 0.00 | 1389.3 *** | 15,916 *** | 30.76 ± 1.62 |
Year | Provenance Trial | Trait | LRTp | MS B |
---|---|---|---|---|
2000 | Dorna Candrenilor | Resistance | 0.084 ns | 0.118 * |
Recovery | 2.593 ns | 0.011 ns | ||
Resilience | 5.418 * | 0.063 ns | ||
Rel. resilience | 1.966 ns | 0.009 ns | ||
Turda | Resistance | 7.859 ** | 0.124 * | |
Recovery | 8.014 ** | 0.0009 ns | ||
Resilience | 1.850 ns | 0.120 * | ||
Rel. resilience | 9.308 ** | 0.0002 ns | ||
Zarnesti | Resistance | 25.268 *** | 0.254 *** | |
Recovery | 38.035 *** | 0.666 *** | ||
Resilience | 7.015 ** | 0.048 ns | ||
Rel. resilience | 32.521 *** | 0.458 *** | ||
2003 | Dorna Candrenilor | Resistance | 2.604 ns | 0.192 *** |
Recovery | 0 ns | 0.073 ns | ||
Resilience | 0.429 ns | 0.234 *** | ||
Rel. resilience | 5.12 × 10−13 ns | 0.029 ns | ||
Turda | Resistance | 2.297 ns | 0.087 ns | |
Recovery | 0.021 ns | 0.371 * | ||
Resilience | 0.879 ns | 0.123 * | ||
Rel. resilience | 1.42 × 10−12 ns | 0.308 ** | ||
Zarnesti | Resistance | 14.843 *** | 0.219 ** | |
Recovery | 24.834 *** | 0.576 *** | ||
Resilience | 14.084 *** | 0.064 ns | ||
Rel. resilience | 22.538 *** | 0.383 ** |
Provenance Trial | LW | LWP | RW | Latitude | Longitude | Elevation | |
---|---|---|---|---|---|---|---|
Dorna Candrenilor | EW | 0.309 *** | −0.445 *** | 0.922 *** | −0.185 ** | −0.043 | 0.179 *** |
LW | 0.625 *** | 0.653 *** | −0.159 * | −0.162 * | 0.220 ** | ||
LWP | −0.099 | −0.005 | −0.135 * | 0.034 | |||
RW | −0.212 * | −0.100 | 0.232 * | ||||
Zarnesti | EW | 0.452 *** | −0.468 *** | 0.963 *** | 0.048 | −0.010 | −0.065 |
LW | 0.502 *** | 0.676 *** | −0.048 | −0.042 | −0.016 | ||
LWP | −0.235 ** | −0.131 * | −0.020 | 0.057 | |||
RW | 0.025 | −0.021 | −0.059 | ||||
Turda | EW | 0.753 *** | −0.468 *** | 0.983 *** | −0.068 | −0.130 * | 0.010 |
LW | 0.134 * | 0.861 *** | −0.036 | −0.058 | 0.065 | ||
LWP | −0.324 *** | 0.070 | 0.155 * | 0.029 | |||
RW | −0.062 | −0.117 | 0.026 |
Provenance Trial | Latitude | Longi-Tude | Elevation | |
---|---|---|---|---|
Dorna Candrenilor | Resistance | −0.037 | −0.114 | 0.128 * |
Recovery | 0.131 * | 0.038 | −0.132 * | |
Resilience | 0.074 | −0.099 | 0.043 | |
Rel. resilience | 0.123 | 0.025 | −0.103 | |
Zarnesti | Resistance | 0.215 *** | 0.120 | −0.121 |
Recovery | −0.236 *** | −0.317 *** | 0.111 | |
Resilience | −0.223 *** | −0.277 *** | 0.124 | |
Rel. resilience | −0.239 *** | −0.312 *** | 0.117 | |
Turda | Resistance | 0.103 | 0.167 ** | 0.047 |
Recovery | −0.099 | −0.151 * | 0.048 | |
Resilience | 0.078 | 0.019 | 0.049 | |
Rel. resilience | −0.047 | −0.152 * | −0.012 |
Provenance Trial | Resistance | Recovery | Resilience | Rel. Resilience | |
---|---|---|---|---|---|
Dorna Candrenilor | EW | −0.255 *** | 0.153 * | −0.175 ** | 0.106 |
LW | 0.108 | −0.097 | 0.018 | −0.106 | |
LWP | 0.289 *** | −0.207 ** | 0.150 * | −0.173 ** | |
RW | −0.159 * | 0.082 | −0.132 * | 0.042 | |
Zarnesti | EW | −0.007 | 0.063 | −0.043 | 0.077 |
LW | −0.035 | 0.137 * | 0.084 | 0.141 * | |
LWP | −0.035 | 0.052 | 0.089 | 0.034 | |
RW | −0.016 | 0.094 | −0.011 | 0.106 | |
Turda | EW | −0.370 *** | 0.347 *** | −0.050 | 0.330 *** |
LW | −0.267 *** | 0.277 *** | −0.004 | 0.260 *** | |
LWP | 0.192 ** | −0.065 | 0.141 * | −0.090 | |
RW | −0.360 *** | 0.345 *** | −0.039 | 0.327 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandru, A.M.; Mihai, G.; Stoica, E.; Curtu, A.L. Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians. Plants 2024, 13, 2172. https://doi.org/10.3390/plants13162172
Alexandru AM, Mihai G, Stoica E, Curtu AL. Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians. Plants. 2024; 13(16):2172. https://doi.org/10.3390/plants13162172
Chicago/Turabian StyleAlexandru, Alin Madalin, Georgeta Mihai, Emanuel Stoica, and Alexandru Lucian Curtu. 2024. "Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians" Plants 13, no. 16: 2172. https://doi.org/10.3390/plants13162172
APA StyleAlexandru, A. M., Mihai, G., Stoica, E., & Curtu, A. L. (2024). Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians. Plants, 13(16), 2172. https://doi.org/10.3390/plants13162172