Foliar Co-Applications of Nitrogen and Iron on Vines at Different Developmental Stages Impacts Wine Grape (Vitis vinifera L.) Composition
Abstract
:1. Introduction
2. Results
2.1. Effect of Co-Application of N and Fe on Photosynthetic Parameters of Wine Grape Leaves at Different Developmental Stages
2.2. Effect of Co-Application of N and Fe on N and Fe Contents in Leaves and Petioles of Wine Grape at Different Developmental Stages
2.3. Effect of Co-Application of N and Fe on N and Fe Contents in Leaves and Petioles of Wine Grape at Different Developmental Stages
2.4. Effect of Co-Application of N and Fe on Wine Grape Quality at Different Developmental Stages
2.5. Effect of Co-Application of N and Fe on Wine Grape Relative Content of Essential Amino Acids at Different Developmental Stages
2.6. Effect of Co-Application of N and Fe on Wine Grape Yield Flavonoids Content at Different Developmental Stages
3. Discussion
3.1. Physiological Growth of Wine Grape
3.2. Quality and Morphology of Wine Grape
3.3. Amino Acids and Flavonoids of Wine Grape
4. Materials and Methods
4.1. Cultivation and Experimental Design
4.2. Photosynthetic Characteristics and N and Fe Contents of Leaves
4.3. Berry Quality, Yield, and Amino Acid and Flavonoid Content
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef]
- Dai, Z.W.; Ollat, N.; Gomès, E.; Decroocq, S.; Tandonnet, J.P.; Bordenave, L.; Pieri, P.; Hilbert, G.; Kappel, C.; van Leeuwen, C.; et al. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. Am. J. Enol. Vitic. 2011, 62, 413–425. [Google Scholar] [CrossRef]
- Coombe, B.G. Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine R. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Morton, J.; Jaspers, M. Changes in pathogenesis-related proteins and phenolics in Vitis vinifera L. cv.‘Sauvignon Blanc’grape skin and pulp during ripening. Sci. Hortic. 2019, 243, 78–83. [Google Scholar] [CrossRef]
- Daglia, M.; Di Lorenzo, A.; FNabavi, S.; STalas, Z.; MNabavi, S. Polyphenols: Well beyond the antioxidant capacity: Gallic acid and related compounds as neuroprotective agents: You are what you eat! Curr. Pharm. Biotechnol. 2014, 15, 362–372. [Google Scholar] [CrossRef]
- Garrido-Bañuelos, G.; Buica, A.; Schückel, J.; Zietsman, A.J.; Willats, W.G.; Moore, J.P.; Du Toit, W.J. Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: Vintage and ripeness effects. Food Chem. 2019, 278, 36–46. [Google Scholar] [CrossRef]
- Keller, M.; Kummer, M.; Vasconcelos, M.C. Reproductive growth of grapevines in response to nitrogen supply and rootstock. Aust. J. Grape Wine R. 2001, 7, 12–18. [Google Scholar] [CrossRef]
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Pascual, M.; Villar, J.M.; Rufat, J. Water use efficiency in peach trees over a four-years experiment on the effects of irrigation and nitrogen application. Agr. Water Manag. 2016, 164, 253–266. [Google Scholar] [CrossRef]
- Curie, C.; Briat, J.-F. Iron transport and signaling in plants. Annu. Rev. Plant Biol. 2003, 54, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Le Jean, M.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, A.; Paniagua, P.; Abadía, J.; Abadía, A. Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). J. Agric. Food Chem. 2003, 51, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Li, B.; Chen, H.; Song, C.; Meng, J.; Xi, Z.; Zhang, Z. Iron supply affects anthocyanin content and related gene expression in berries of Vitis vinifera cv. Cabernet Sauvignon. Molecules 2017, 22, 283. [Google Scholar] [CrossRef]
- Jiménez, S.; Gogorcena, Y.; Hévin, C.; Rombola, A.D.; Ollat, N. Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 2007, 290, 343–355. [Google Scholar] [CrossRef]
- Clarkson, D.T.; Marschner, H. Mineral nutrition of higher plants. In Annals of Botany, 2nd ed.; Academic Press: London, UK, 1996; Volume 78, pp. 527–528. 889p. [Google Scholar]
- Ashraf, U.; Salım, M.N.; Sher, A.; Khan, A.; Pan, S.; Tang, X. Maize growth, yield formation and water-nitrogen usage in response to varied irrigation and nitrogen supply under semi-arid climate. Turk. J. Field Crops 2016, 21, 88–96. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Gao, M.; Gu, C.; Wang, R. Effects of different iron treatments on wine grape berry quality and peel flavonoid contents. Food Sci. Nutr. 2022, 10, 3598–3607. [Google Scholar] [CrossRef]
- Fernández, V.; Del Río, V.; Pumariño, L.; Igartua, E.; Abadía, J.; Abadía, A. Foliar fertilization of peach (Prunus persica (L.) Batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci. Hortic. 2008, 117, 241–248. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Prasad, S.M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol. Biochem. 2016, 109, 72–83. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, Q.; Zhang, X.; Li, F.; Ding, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; et al. Controlled-release nitrogen fertilizer management influences grain yield in winter wheat by regulating flag leaf senescence post-anthesis and grain filling. Food Energy Secur. 2022, 11, e361. [Google Scholar] [CrossRef]
- Shi, G.; Sun, L.; Wang, X.; Liu, C. Leaf responses to iron nutrition and low cadmium in peanut: Anatomical properties in relation to gas exchange. Plant Soil 2014, 375, 99–111. [Google Scholar] [CrossRef]
- Greer, D.H. Photosynthetic light responses of apple (Malus domestica) leaves in relation to leaf temperature, CO2 and leaf nitrogen on trees grown in orchard conditions. Funct. Plant Biol. 2018, 45, 1149–1161. [Google Scholar] [CrossRef]
- James, D. General summary of the second international symposium on iron nutrition and interactions in plants. J. Plant Nutr. 1984, 7, 859–864. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takashi, A. Substrate specificity of the granule-bound and chloroplastic starch synthetase. Plant Cell Physiol. 1968, 9, 405–410. [Google Scholar]
- Karimi, R.; Koulivand, M.; Ollat, N. Soluble sugars, phenolic acids and antioxidant capacity of grape berries as affected by iron and nitrogen. Acta Physiol. Plant. 2019, 41, 117. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, C.R.; Li, X.Y.; Yao, Y.X.; Hao, Y.J. Modifications of Kyoho grape berry quality under long-term NaCl treatment. Food Chem. 2013, 139, 931–937. [Google Scholar] [CrossRef]
- Nestby, R.; Lieten, F.; Pivot, D.; Lacroix, C.R.; Tagliavini, M. Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs: A review. Int. J. Fruit Sci. 2005, 5, 139–156. [Google Scholar] [CrossRef]
- Àlvarez-Fernàndez, A.; Abadía, J.; Abadía, A. Iron Deficiency, Fruit Yield and Fruit Quality. In Iron Nutrition in Plants and Rhizospheric Microorganisms; Barton, L.L., Abadia, J., Eds.; Springer Nature: Dordrecht, The Netherlands, 2006; pp. 85–101. [Google Scholar]
- Wang, Y.; Hui, Y.; Sun, Q.; Wang, R. Effect of nitrogen and iron synergistic application on physiological growth, berry quality, and flavonoid content of wine grapes. Hortic. Environ. Biotechnol. 2024, 65, 725–736. [Google Scholar] [CrossRef]
- Soong, Y.-Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, Y.; Zhang, A.; Wang, P.; He, S.; Zhang, K.; Wang, J.; Fang, Y.; Sun, X. Using foliar nitrogen application during veraison to improve the flavor components of grape and wine. J. Sci. Food Agr. 2021, 101, 1288–1300. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Gonzalo-Diago, A.; Moreno-Simunovic, Y.; Martínez-Gil, A.M. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. LWT-Food Sci. Technol. 2017, 75, 147–154. [Google Scholar] [CrossRef]
- Cheng, X.; Ma, T.; Wang, P.; Liang, Y.; Zhang, J.; Zhang, A.; Chen, Q.; Li, W.; Ge, Q.; Sun, X.; et al. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines. Food Res. Int. 2020, 137, 109566. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, A.; Melgar, J.C.; Abadía, J.; Abadía, A. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.) Batsch). Environ. Exp. Bot. 2011, 71, 280–286. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Ding, Z.; Long, S.; Chen, Q.; Zhu, R. Study on the remediation of rare earth contaminated soil with iron salt leaching agent. Geochimica 2024, 53, 110–121. [Google Scholar]
- Huang, Q.; Tong, F.; Wang, B.; Du, X.; Fan, G.; Liu, L.; Zhang, M.; Qiu, Y.; Gao, Y. Study on mechanism of manganese modified biochar regulating arsenic occurrence in soil-solution system. Acta Pedol. Sin. 2024, 8, 1–14. [Google Scholar]
- Nasar, J.; Wang, G.Y.; Ahmad, S.; Muhammad, I.; Zeeshan, M.; Gitari, H.; Adnan, M.; Fahad, S.; Khalid, M.H.B.; Zhou, X.B.; et al. Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 2022, 13, 988055. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gan, W.; Rengel, Z.; Zhao, P. Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize. J. Soil. Sci. Plant Nutr. 2016, 16, 550–562. [Google Scholar] [CrossRef]
- Bravdo, B. Effect of mineral nutrition and salinity on grape production and wine quality. Acta Hortic. 2000, 512, 23–30. [Google Scholar] [CrossRef]
- Cruz, A.F.; Almeida, G.M.D.; Wadt, P.G.S.; Pires, M.D.C.; Ramos, M.L.G. Seasonal variation of plant mineral nutrition in fruit trees. Braz. Arch. Biol. Technol. 2019, 62, e19180340. [Google Scholar] [CrossRef]
- Webb, L.; Whetton, P.; Barlow, E. Climate change and winegrape quality in Australia. Clm Res. 2008, 36, 99–111. [Google Scholar] [CrossRef]
- Fortes, G.A.; Naves, S.S.; Godoi, F.F.; Duarte, A.R.; Ferri, P.H.; Santos, S.D.C. Assessment of a maturity index in jabuticaba fruit by the evaluation of phenolic compounds, essential oil components, sugar content and total acidity. Am. J. Food Technol. 2011, 6, 974–984. [Google Scholar] [CrossRef]
- Martín, J.F.G.; Sun, D.-W. Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of-the-art research. Trends Food Sci. Technol. 2013, 33, 40–53. [Google Scholar] [CrossRef]
- Han, X.; Yao, F.; Wang, Y.; Duan, X.; Wang, Z.; Li, Y.; Xue, T.; Liu, X.; Wang, H.; Li, H. Effects of biodegradable liquid film on cabernet sauvignon (V. vinifera L.) Grape Quality. Agriculture 2022, 12, 604. [Google Scholar] [CrossRef]
- Yue, X.F.; Ju, Y.L.; Tang, Z.Z.; Zhao, Y.M.; Jiao, X.L.; Zhang, Z.W. Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines. J. Integr. Agr. 2019, 18, 2052–2062. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Chen, H.; Yang, B.; Ge, M.; Zhang, Z. Effects of gibberellin applications before flowering on the phenotype, ripening, and flavonoid compounds of Syrah grape berries. J. Sci. Food Agr. 2022, 102, 6100–6111. [Google Scholar] [CrossRef]
Treatment | Pn (μmol m−2 s−1) | Gs (mmol m−2 s−1) | Tr (vμmol m−2 s−1) | Ci (μmol mol−1) | WUE (%) |
---|---|---|---|---|---|
N1Fe1 | 14.20 a | 124.5 a | 3.73 a | 167.5 e | 3.81 bc |
N1Fe2 | 11.5 b | 89.50 b | 3.00 bc | 145.5 f | 3.84 b |
N1Fe3 | 8.95 cd | 82.33 bc | 3.00 bc | 180.5 de | 2.98 bcd |
N2Fe1 | 9.43 c | 123.3 a | 3.37 ab | 204.5 c | 2.78 bcd |
N2Fe2 | 8.1 de | 76.50 c | 2.70 c | 188.0 d | 2.91 bcd |
N2Fe3 | 6.87 f | 84.00 bc | 2.96 bc | 226.0 b | 2.26 d |
N3Fe1 | 13.35 a | 122.0 a | 2.11 d | 332.0 a | 6.48 a |
N3Fe2 | 7.43 ef | 65.00 d | 1.76 d | 179.0 de | 2.72 cd |
N3Fe3 | 7.47 ef | 58.00 d | 2.11 d | 133.5 f | 3.34 bcd |
N application | ** | ** | ** | ** | ** |
Fe application | ** | ** | ** | ** | ** |
Interaction | ** | ** | NS | ** | ** |
Treatment | Berry Size (mm) | Raceme Length (cm) | Berries Weight (g) | Yield Plant (kg) | Yield (kg ha−2) |
---|---|---|---|---|---|
N1Fe1 | 10.28 d | 16.96 ab | 101.4 c | 1.15 b | 5418 b |
N1Fe2 | 11.44 bcd | 15.28 b | 127.4 abc | 1.19 b | 5626 b |
N1Fe3 | 10.47 cd | 15.77 b | 127.9 abc | 1.11 b | 5227 b |
N2Fe1 | 11.57 bcd | 16.21 b | 110.4 abc | 1.16 b | 5462 b |
N2Fe2 | 13.21 ab | 13.63 b | 137.7 ab | 1.18 b | 5592 b |
N2Fe3 | 12.13 bcd | 15.88 b | 102.7 bc | 1.29 ab | 6080 ab |
N3Fe1 | 12.53 abc | 21.29 a | 143.1 a | 1.56 a | 7355 a |
N3Fe2 | 14.55 a | 17.74 ab | 142.5 a | 1.38 ab | 6505 ab |
N3Fe3 | 13.41 ab | 15.68 b | 139.7 a | 1.28 ab | 6064 ab |
N application | ** | ** | ** | NS | NS |
Fe application | ** | ** | * | NS | NS |
Interaction | NS | NS | * | NS | NS |
Treatment | SSC (%) | TAC (Tartaric Acid %) | SSC/TAC (%) | Tannins (mg g−1) | Anthocyanins (mg g−1) | Total Phenols (mg g−1) |
---|---|---|---|---|---|---|
N1Fe1 | 24.40 ab | 0.69 a | 35.07 bc | 3.92 bc | 6.64 c | 9.23 c |
N1Fe2 | 22.97 ab | 0.66 a | 34.81 c | 3.98 abc | 9.05 b | 11.46 ab |
N1Fe3 | 24.17 ab | 0.68 a | 36.53 bc | 4.23 ab | 8.76 bc | 11.36 ab |
N2Fe1 | 21.80 b | 0.60 ab | 36.26 bc | 4.16 ab | 8.9 bc | 10.92 b |
N2Fe2 | 23.83 ab | 0.58 ab | 41.11 b | 4.19 ab | 6.49 c | 9.26 c |
N2Fe3 | 25.00 ab | 0.66 a | 37.83 bc | 4.23 a | 8.75 bc | 12.63 a |
N3Fe1 | 25.97 a | 0.52 b | 50.42 a | 3.69 cd | 7.28 bc | 7.24 d |
N3Fe2 | 24.13 ab | 0.68 a | 35.36 bc | 3.73 cd | 9.03 b | 7.26 d |
N3Fe3 | 25.27 ab | 0.6 ab | 41.92 b | 3.58 d | 12.56 a | 7.68 d |
N application | NS | * | * | ** | NS | ** |
Fe application | NS | NS | NS | NS | * | ** |
Interaction | NS | NS | * | NS | * | ** |
Essential Amino Acid | N1Fe1 | N1Fe2 | N1Fe3 | N2Fe1 | N2Fe2 | N2Fe3 | N3Fe1 | N3Fe2 | N3Fe3 | N Application | Fe Application | Interaction |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg L−1) | ||||||||||||
L-Serine | 1.17 e | 1.15 e | 2.47 de | 5.05 bc | 3.18 cde | 2.53 de | 7.57 a | 6.59 ab | 3.69 cd | ** | NS | NS |
L-Proline | 0.82 e | 0.73 e | 2.22 bcd | 2.91 abc | 2.45 bcd | 1.34 de | 3.57 a | 3.20 ab | 1.68 cde | * | NS | ** |
L-Threonine | 0.93 c | 0.82 c | 2.18 c | 2.22 c | 2.33 c | 2.49 c | 3.74 a | 3.53 b | 2.21 c | ** | ** | ** |
L-Aspartic Acid | 0.60 c | 0.62 c | 1.46 bc | 1.59 bc | 1.48 bc | 2.2 ab | 3.42 a | 1.85 bc | 1.57 bc | ** | NS | NS |
L-Lysine | 0.94 f | 0.51 f | 3.36 cd | 4.52 c | 1.33 ef | 2.29 de | 6.65 a | 4.64 b | 3.64 c | ** | ** | ** |
L-Methionine | 0.46 c | 0.21 c | 1.53 c | 1.52 c | 1.85 c | 0.89 c | 2.88 b | 2.97 a | 0.79 c | * | ** | ** |
L-Histidine | 1.15 c | 1.35 c | 1.52 c | 1.41 c | 1.63 c | 2.87 b | 3.79 a | 2.63 b | 2.59 b | ** | NS | ** |
L-Phenylalanine | 0.98 c | 0.77 c | 2.43 c | 2.84 bc | 2.22 c | 2.25 c | 4.65 b | 5.85 a | 2.07 c | * | NS | ** |
L(+)-Arginine | 1.07 b | 1.57 b | 1.17 b | 1.90 b | 1.75 b | 1.97 b | 2.99 a | 2.77 a | 2.09 b | ** | ** | ** |
Glycine | 1.17 c | 1.40 c | 2.09 c | 2.73 c | 1.49 c | 1.09 c | 3.23 a | 3.07 b | 1.70 c | ** | ** | ** |
L-Glutamic acid | 0.92 d | 1.2 cd | 1.71 bcd | 2.33 b | 0.99 d | 1.69 bc | 3.50 a | 3.55 a | 1.06 cd | ** | * | ** |
Flavonoids | N1Fe1 | N1Fe2 | N1Fe3 | N2Fe1 | N2Fe2 | N2Fe3 | N3Fe1 | N3Fe2 | N3Fe3 | N Application | Fe Application | Interaction |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg L−1) | ||||||||||||
Silibinin | 19.79 a | 33.30 a | 51.92 a | 59.41 a | 60.83 a | 65.21 a | 33.53 a | 56.93 a | 67.47 a | * | NS | NS |
Puerarin | 12.86 a | 21.30 a | 11.56 a | 7.91 a | 12.86 a | 5.50 a | 13.14 a | 26.84 a | 17.84 a | NS | NS | NS |
Quercetin | 678.7 ab | 520.2 b | 525.7 b | 626.8 b | 723.3 ab | 698.3 ab | 541.8 b | 997.0 a | 777.0 ab | ** | NS | ** |
Genistein | 10.89 ab | 22.16 ab | 11.16 ab | 10.51 b | 15.70 ab | 7.36 b | 58.94 a | 24.59 ab | 8.51 b | NS | NS | NS |
Apigenin | 3.44 b | 4.09 b | 4.86 b | 2.73 b | 2.04 b | 3.21 b | 64.98 a | 4.31 b | 2.86 b | * | * | ** |
Baicalein | 212.9 a | 335.1 a | 285.5 a | 174.4 a | 241.8 a | 231.9 a | 371.2 a | 469.2 a | 260.1 a | NS | NS | NS |
Baicalin | 12.93 b | 61.76 b | 16.26 b | 21.39 b | 15.92 b | 21.96 b | 794.6 a | 27.98 b | 12.68 b | * | * | ** |
Rutin | 2704 a | 4565 a | 2680 a | 4138 a | 1823 a | 1987 a | 3534 a | 3896 a | 3805 a | NS | NS | NS |
hesperetin | 16.6 b | 59.00.b | 33.70 b | 20.40 b | 21.30 b | 17.4 b | 379.9 a | 24.00 b | 5.90 b | * | * | ** |
Hesperidin | 2354 b | 3487 b | 3238 b | 2809 b | 2373 b | 2904 b | 11313 a | 3657 b | 2962 b | ** | * | ** |
Cianidanol | 532.3 a | 808.9 a | 478.4 a | 301.0 a | 113.3 a | 75.90 a | 242.7 a | 509.4 a | 322.1 a | NS | NS | NS |
Protocatechua-ldehyde | 135.4 ab | 198.1 ab | 74.70 b | 123.8 ab | 137.5 ab | 95.00 b | 415.2 a | 226.4 ab | 140.8 ab | * | NS | NS |
3,4-Dihydroxy-benzoic acid | 624.2 a | 663.3 a | 545.3 a | 464.1 a | 721.4 a | 543.1 a | 957.3 a | 1182.6 a | 735.4 a | NS | NS | NS |
Naringenin | 16.34 a | 31.29 a | 50.60 a | 33.19 a | 26.21 a | 33.71 a | 63.47 a | 52.15 a | 49.41 a | * | ||
Luteolin | 8.60 b | 14.30 b | 17.00 b | 11.20 b | 8.80 b | 12.40 b | 226.4 a | 17.90 b | 13.00 b | * | * | ** |
Myricetin | 1488 a | 1155 a | 2074 a | 1775 a | 1351 a | 830.0 a | 1464 a | 1513 a | 2192 a | NS | NS | NS |
Diosmin | 3287 ab | 3900 ab | 4266 ab | 3559 ab | 2847 b | 4103 ab | 5491 a | 4296 ab | 3888 ab | NS | NS | NS |
morin | 137.7 a | 179.0 a | 117.8 a | 96.60 a | 165.0 a | 170.9 a | 219.7 a | 1145.5 a | 100.7 a | NS | NS | NS |
Neohesperidin | 4980 b | 678.0 b | 643.0 b | 490.0 b | 388.0 b | 505.0 b | 2541 a | 721.0 b | 571 b | ** | * | ** |
Myricitrin | 9170 a | 7607 b | 6245 b | 6391 b | 6165 b | 6263 b | 7238 b | 7255 b | 6228 b | ** | *** | *** |
Hyperoside | 8200 a | 4403 b | 3789 b | 3860 b | 3784 b | 3800 b | 4148 b | 5005 b | 4075 b | *** | *** | *** |
Taxifolin 3-o-rhamnoside | 160.1 bc | 105.0 bc | 91.19 c | 92.76 c | 96.74 c | 153.0 bc | 81.62 c | 272.7 a | 202.5 ab | *** | * | *** |
Daidzin | 28.44 a | 71.62 a | 38.91 a | 39.03 a | 41.88 a | 33.84 a | 28.40 a | 54.15 a | 36.40 a | NS | NS | NS |
quercitrin | 2050 b | 14166 a | 8784 ab | 11246 ab | 5551 ab | 5264 ab | 8909 ab | 7486 ab | 8891 ab | NS | NS | * |
Vitexin | 3.48 a | 4.84 a | 5.25 a | 11.26 a | 5.41 a | 12.83 a | 24.30 a | 16.28 a | 5.19 a | NS | NS | NS |
artemisinin | 1660 b | 1785 b | 1462 b | 407.0 b | 180.0 b | 493.0 b | 19882 a | 490.0 b | 215.0 b | * | * | ** |
astragalin | 3050 a | 10741 b | 5986 b | 7443 b | 8353 b | 5837 b | 9405 b | 5948 b | 6017 b | * | *** | |
Icariin | 55.54 a | 62.60 a | 56.17 a | 33.74 a | 33.63 a | 101.25 a | 37.87 a | 26.14 a | 34.87 a | NS | NS | NS |
Troxerutin | 64.50 a | 91.80 a | 120.2 a | 114.7 a | 166.6 a | 116.9 a | 222.6 a | 220.1 a | 97.20 a | NS | NS | NS |
L-Epicatechin | 71.60 a | 120.9 a | 118.8 a | 220.1 a | 153.5 a | 149.1 a | 127.2 a | 130.5 a | 91.70 a | NS | NS | NS |
Isorhamnetin | 749.1 a | 639.2 a | 699.6 a | 541.9 a | 525.9 a | 519.8 a | 851.2 a | 725.5 a | 781.3 a | * | NS | NS |
Genistin | 605.0 a | 910.0 a | 851.0 a | 790.0 a | 721.0 a | 991.0 a | 1138 a | 855.0 a | 642.0 a | NS | NS | NS |
procyanidin B2 | 34.65 a | 44.41 a | 40.76 a | 32.28 a | 23.60 a | 20.41 a | 27.51 a | 55.81 a | 44.04 a | NS | NS | NS |
Soil Layer | pH | Organic Matter | Available N | Available P | Available K | Total N | Available Fe | Total Fe |
---|---|---|---|---|---|---|---|---|
(cm) | (g kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | |
0–20 | 8.32 | 6.26 | 33.42 | 7.30 | 145.0 | 0.58 | 4.90 | 16.62 |
20–40 | 8.47 | 5.78 | 25.07 | 6.98 | 81.11 | 0.25 | 3.90 | 16.03 |
40–60 | 8.40 | 4.82 | 18.67 | 7.07 | 72.13 | 0.23 | 3.40 | 15.12 |
Treatment | N Application Period | Specific Date | Fe Application Period | Specific Date |
---|---|---|---|---|
N1Fe1 | Early stage of expansion period | 9/6, 18/6, 29/6 | Early stage of expansion period | 9/6, 18/6, 29/6 |
N1Fe2 | Early stage of expansion period | 9/6, 18/6, 29/6 | Expansion period to Veraison period | 9/7, 16/7, 24/7 |
N1Fe3 | Early stage of expansion period | 9/6, 18/6, 29/6 | Later stage of Veraison period | 31/7, 6/8, 13/8 |
N2Fe1 | Expansion period to Veraison period | 9/7, 16/7, 24/7 | Early stage of expansion period | 9/6, 18/6, 29/6 |
N2Fe2 | Expansion period to Veraison period | 9/7, 16/7, 24/7 | Expansion period to Veraison period | 9/7, 16/7, 24/7 |
N2Fe3 | Expansion period to Veraison period | 9/7, 16/7, 24/7 | Later stage of Veraison period | 31/7, 6/8, 13/8 |
N3Fe1 | Later stage of Veraison period | 31/7, 6/8, 13/8 | Early stage of expansion period | 9/6, 18/6, 29/6 |
N3Fe2 | Later stage of Veraison period | 31/7, 6/8, 13/8 | Expansion period to Veraison period | 9/7, 16/7, 24/7 |
N3Fe3 | Later stage of Veraison period | 31/7, 6/8, 13/8 | Later stage of Veraison period | 31/7, 6/8, 13/8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Chen, X.; Chen, Y.; Hui, Y.; Wang, R.; Wang, Y. Foliar Co-Applications of Nitrogen and Iron on Vines at Different Developmental Stages Impacts Wine Grape (Vitis vinifera L.) Composition. Plants 2024, 13, 2203. https://doi.org/10.3390/plants13162203
Fu X, Chen X, Chen Y, Hui Y, Wang R, Wang Y. Foliar Co-Applications of Nitrogen and Iron on Vines at Different Developmental Stages Impacts Wine Grape (Vitis vinifera L.) Composition. Plants. 2024; 13(16):2203. https://doi.org/10.3390/plants13162203
Chicago/Turabian StyleFu, Xiaoke, Xi Chen, Yiwen Chen, Yueran Hui, Rui Wang, and Yaqi Wang. 2024. "Foliar Co-Applications of Nitrogen and Iron on Vines at Different Developmental Stages Impacts Wine Grape (Vitis vinifera L.) Composition" Plants 13, no. 16: 2203. https://doi.org/10.3390/plants13162203
APA StyleFu, X., Chen, X., Chen, Y., Hui, Y., Wang, R., & Wang, Y. (2024). Foliar Co-Applications of Nitrogen and Iron on Vines at Different Developmental Stages Impacts Wine Grape (Vitis vinifera L.) Composition. Plants, 13(16), 2203. https://doi.org/10.3390/plants13162203