Next Article in Journal
Exploring the Frontier of Wheat Rust Resistance: Latest Approaches, Mechanisms, and Novel Insights
Previous Article in Journal
Metabolism of Malus halliana Roots Provides Insights into Iron Deficiency Tolerance Mechanisms
Previous Article in Special Issue
Foliar Co-Applications of Nitrogen and Iron on Vines at Different Developmental Stages Impacts Wine Grape (Vitis vinifera L.) Composition
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Unveiling Iso- and Aniso-Hydric Disparities in Grapevine—A Reanalysis by Transcriptome Portrayal Machine Learning

by
Tomas Konecny
1,2,*,†,
Armine Asatryan
1,3,†,
Maria Nikoghosyan
1,4 and
Hans Binder
1,2
1
Armenian Bioinformatics Institute, Yerevan 0014, Armenia
2
Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
3
Group of Plant Genomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
4
Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Plants 2024, 13(17), 2501; https://doi.org/10.3390/plants13172501
Submission received: 27 July 2024 / Revised: 2 September 2024 / Accepted: 4 September 2024 / Published: 6 September 2024

Abstract

:
Mechanisms underlying grapevine responses to water(-deficient) stress (WS) are crucial for viticulture amid escalating climate change challenges. Reanalysis of previous transcriptome data uncovered disparities among isohydric and anisohydric grapevine cultivars in managing water scarcity. By using a self-organizing map (SOM) transcriptome portrayal, we elucidate specific gene expression trajectories, shedding light on the dynamic interplay of transcriptional programs as stress duration progresses. Functional annotation reveals key pathways involved in drought response, pinpointing potential targets for enhancing drought resilience in grapevine cultivation. Our results indicate distinct gene expression responses, with the isohydric cultivar favoring plant growth and possibly stilbenoid synthesis, while the anisohydric cultivar engages more in stress response and water management mechanisms. Notably, prolonged WS leads to converging stress responses in both cultivars, particularly through the activation of chaperones for stress mitigation. These findings underscore the importance of understanding cultivar-specific WS responses to develop sustainable viticultural strategies in the face of changing climate.

Graphical Abstract

1. Introduction

Vitis vinifera, being a cornerstone in the global wine industry, faces unprecedented challenges in the era of climate change. Among these challenges, drought stands out as one of the pivotal factors causing water(-deficient) stress (WS), influencing grape ripening and overall fruit quality. As global temperatures rise and precipitation patterns become increasingly unpredictable, the study of WS in Vitis vinifera has become paramount for ensuring the resilience of vineyards and the sustainability of wine production.
Current climate change scenarios have brought about shifts in weather patterns, leading to prolonged periods of water scarcity and extreme climatic events. These changes pose a significant threat to viticulture, impacting grapevine physiology, grape quality, and wine production. WS, characterized by a deficiency in water availability relative to the plant’s demand, triggers a cascade of physiological responses in Vitis vinifera, affecting its growth, photosynthesis, and metabolic processes [1,2,3,4]. Notably, grapevines have evolved two distinct mechanisms, isohydric and anisohydric, to navigate the complex interplay between water availability and demand [5,6,7,8,9]. Isohydric cultivars regulate water potential by actively adjusting stomatal conductance, conserving water during limited availability, and prioritizing water status regulation over continuous carbon assimilation. Conversely, anisohydric cultivars maintain sustained carbon assimilation even under declining water availability, with a more permissive control over stomatal conductance [10,11,12]. While promoting growth and productivity, this strategy exposes grapevines to higher risks of hydraulic failure under severe water deficit situations [9,13,14].
The investigation of these isohydric and anisohydric mechanisms gains significance in deciphering the adaptive strategies of Vitis vinifera to varying water conditions [15,16,17]. The importance of such research is heightened by the need to develop resilient grape cultivars or drought-resistant rootstocks and implement sustainable viticultural practices in response to the changing climate.
Even though both isohydric and anisohydric mechanisms in different grapevine cultivars are well-known and studied at the transcriptomics level [15], current advancements in the field of artificial intelligence (AI) and machine learning (ML) and their applications in analyzing molecular biology data offer exciting possibilities. AI- and ML-powered analyses, particularly through techniques like self-organizing maps (SOM), have the potential to unlock a deeper understanding of the underlying mechanisms and biological pathways that occur at specific time points during stress treatments relevant to viticulture [18]. SOM is a type of artificial neural network that can visualize high-dimensional data like gene expression profiles. By analyzing transcriptomic data using SOM, hidden patterns and relationships between genes can be identified and visualized, enhancing understanding of the underlying mechanisms governing grapevine responses to abiotic stress conditions caused, for instance, by cold temperatures or by water limitation.
A previous study [15] delved into how grapevine transcriptomes respond to WS at the molecular level. The studied isohydric cultivar (‘Montepulciano’) exhibited a faster transcriptome response after WS imposition, with rapid modulation of genes related to abscisic acid (ABA), a stress response hormone, and quicker expression of heat-shock protein (HSP) genes. On the other hand, an anisohydric cultivar (‘Sangiovese’) displayed early and robust induction of reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones, and abiotic-stress-related genes in response to deficiency of water. While this research provides valuable insights, it is important to recognize that the genes identified by significance analysis of microarrays (SAM) represent a portion of the grapevine’s response to WS [19]. Here, we apply SOM omics portrayal to these data to analyze the transcriptomic response of isohydric or anisohydric grapevines under water deficit conditions. SOM transcriptomics portrayal was developed to extract and interpret complex patterns from multidimensional transcriptomic data [20], and it has been applied recently to cold stress acting on Vitis vinifera and, particularly, to describe the transcriptomics trajectories of the grapevine plant under changing environmental conditions [18]. Our aim is to compare trajectories associated with drought response in the isohydric and anisohydric grapevine categories. We show that isohydric MP initially maintains a muted transcriptional response, prioritizing transcripts for normal growth (phloem development) before potentially shifting towards activation of stress response processes for survival. Conversely, anisohydric SG displays a rapid transcriptional response, initially focusing on stress alleviation (ketoreductase, arogenate) and water management (lignin catabolism, chitinase activity) before upregulating thiamin biosynthesis, a pathway potentially linked to broader abiotic stress tolerance. Despite their distinct genetic backgrounds related to water-use efficiency, both cultivars eventually converge toward shared responses under prolonged drought conditions.

2. Results

2.1. WS Influences Gene Expression Trajectories in Distinct Cultivars

“Drought” stresses the plants due to a hydric deficiency, i.e., the effect of water reserve (e.g., soil water deficit) defined as the difference between the maximum and the actual water availability (field capacity). The experimental setup of Dal Santo and colleagues modeled such (deficient) WS conditions to study physiological responses based on transcriptomic data [15]. They achieved it by comparing one isohydric and one anisohydric cultivar under well-watered and water-stressed conditions as a time series of three measurements in three biological replicates. Our SOM method provides “portrait” images of each of those 36 measurements, visualizing their individual transcriptome landscapes in terms of red overexpression and blue underexpression “spots” (Figure 1A). Note that SOM portrayal methods provide individual images of each sample, which visualize the expression landscape of nearly 30,000 single genes using a color code from blue (low expression) to dark red (high expression) for “spot”-like clusters of co-regulated genes. All images apply the same coordinate system of gene distribution, meaning that they can be directly compared and used for downstream analyses such as similarity and trajectory analysis as well as function mining by means of gene set enrichment analysis (see [20] for a detailed description of the method). Our focus remains on studying changing expression patterns under progressing WS. For an overview, we generated a pairwise correlation heatmap between all portraits. It revealed that the data separated between the two cultivars in terms of two distinct clusters of samples with similar expression patterns evident as dark-red squares reflecting positive correlations between them (Figure 1B). The small red quadrants along the diagonal refer to the similarities of the replicates, as expected. Interestingly, off-diagonal correlations were also observed referring to similarities between STRS and CTRL conditions at T1 and T2, between the two cultivars at T3, as well as to dissimilarities between time points T1 and T3 under WS conditions (see red and blue areas in Figure 1B, respectively). Independent component analysis (ICA) transforms the correlation matrix into a spatial distribution of the samples in the coordinate system of the first three independent components (IC1–IC3). Interestingly, it indicates linear trajectories for each of the cultivars (MP versus SG separated along component IC1) progressing with time (T1 to T3), mostly along IC2 and showing an extra increment under WS (Figure 1C). The so-called “Sample SOM” (Figure 1D) projects these relations into two dimensions. It also shows the two parallel temporal trajectories slightly converging at T3, suggesting an offset between the WS transcriptomic mechanisms of both cultivars and similar stress response mechanisms over time acting in MP and SG.
In summary, SOM portrayal visualizes the expression data of grapevine genes as sample-specific, “individual” images, which enables their visual inspection and comparison. This analysis reveals two different transcriptome clusters for the selected isohydric and anisohydric cultivars, giving rise to two virtually parallel trajectories in sample space, which are indicative of a basic difference of their transcriptomes but similar time courses of their transcriptomes under WS conditions.

2.2. Different Water Management Strategies Regulate Similar Genes under Lasting WS

To better understand the changing gene expression patterns behind the observed trajectories, we analyzed the SOM portraits in more detail. The SOM algorithm clusters genes with correlated expression profiles across the time courses together into red “spot-like” modules in the portraits, which were summarized into one overview “Overexpression map” (Figure 2A, part above; for a detailed description of the SOM portrayal method see the Materials and Methods section and references cited therein). Overall, we identified six such modules labeled with capital letters A–F. They collect the most variant genes, and contain around 300 to 600 genes each (Figure 2A,B; lists of genes in the spots are given in Table A1). The expression profiles of the spots divide into characteristic time courses of both cultivars, namely: genes upregulated permanently in SG and downregulated in MP (spot A); the antagonistic profile (spot B); genes activated in both cultivars at T1 (spot C), T2 (spot D), or T3, however differently expressed between SG and MP (spot E); and, finally, genes upregulated at T3 in both cultivars (spot F, see Figure 2B).
Gene set overrepresentation analysis of the gene lists of each of the spots provides a first glimpse at their functional background (Figure 2B). For example, the genes in spot A, differentially upregulated in SG compared with MP, are related to steroid and lipid biosynthesis, while genes in spot B, differentially upregulated in MP compared with SG, are related to stilbenoid, diarylheptanoid, and gingerol biosynthesis. These different functions of the transcriptional programs thus indicate the basic differences between both cultivars at the gene expression level. Temporal progression is driven in both cultivars by the activation of genes related to cell wall pathogen-defensive functions (T1, spot C); different transcription factors such as MYB, WRKY, and AS2 (T2, spot D); sugar biosynthesis (T3, spot E); and chaperones under long-lasting WS (T3, spot F). These factors act as master regulators, turning on genes involved in various drought tolerance mechanisms [21]. MYB transcription factors are known to regulate genes for osmoprotectant synthesis, secondary metabolite production, and WS responses [22,23,24,25,26,27]. WRKY factors are involved in signaling pathways, hormonal routes, defense responses, antioxidant production, and regulation of other stress-responsive genes [28]. AS2 (ASYMMETRIC LEAVES2) plays a co-opted role in stomatal regulation and water use efficiency, with a key role in flat symmetric leaf formation [29].
To better identify subtle changes in expression patterns in the SOM portraits, we generated mean waterline portraits averaged over all time points referring to CTRL and STRS conditions of MP and SG, respectively (Figure 2C, part above). They highlight regions of up- and downregulated genes in red and blue, respectively, and thus enable us to visualize subtle modulations of gene expression levels more clearly than the standard portraits shown in Figure 1. Two different trajectories for SG and MP in gene space under WS can be identified, pointing in clock- and counterclockwise directions, respectively, and both converging in the right upper corner around spot F (see arrows).
The spots identified in Figure 2A are activated in various combinations, depending on the experimental conditions. This results in diverse configurations of the gene expression landscapes, as depicted by the networks of spot activation (Figure 2C, second row from the top, co-expressed spots are linked by lines). Note that the activation pattern follows the arrows in the waterline portraits. For SG, the spot modules progressively activate along the left and upper edges of the map. For MP, the spot modules activate along the lower and right edges. The activation patterns of SG and MP converge in spot F under lasting WS at T3. The number of jointly activated spots is slightly larger in SG compared to MP and increases under stress, thus reflecting a more complex transcriptional pattern (Figure 2C, the two rows from the bottom). This increased number of jointly activated spots reflects a higher complexity of the underlying transcriptional programs, which slightly increases under lasting WS.
Hence, SOM portrayal complements the two different trajectories for the isohydric and anisohydric cultivars observed in the sample space (see previous subsection) by trajectories in the gene expression space, which enables identification of jointly and differently activated transcriptional programs as a function of the cultivars, the WS conditions, and the time points.

2.3. Topology of Transcriptional Programs under Progressing WS

As shown in the previous section, our spot activation analysis revealed two different trajectories in the gene expression landscape pointing from T1 to T3 in the clockwise and counterclockwise direction for the SG and MP cultivars, respectively (Figure 3A). We asked about the transcriptional programs associated with the different sets of genes taken from the spots to better understand the functional background of the observed WS dynamics. Spot A and B include genes antagonistically activated in SG and MP, respectively, forming a sort of background expression for the anisohydric and isohydric cultivars, respectively. The progression from T1 to T3 along IC2 in ICA analysis (see Figure 1C above) is driven by the sequential activation of spots C, D, and F, respectively (see the scheme in Figure 3B). Hence, the topology of gene activations as visualized by the SG- and MP-trajectories in the three-dimensional gene expression landscape (Figure 3A) and, alternatively, by the spot activation workflow in Figure 3B rationalizes the common and different properties of the isohydric and anisohydric cultivar dynamics under WS.
Figure 3C provides a functional map associating the genes in the spots with the underlying biological functions using gene set enrichment analysis. The anisohydric SG, exhibiting open stomata and being more prone to water deficiency stress, remains consistently predisposed to WS. The genes specifically activated in SG accumulate in spot A (Figure 3C). They associate with functions such as steroid and lipid biosynthesis. We found an enrichment of ketoreductase activity (GO:0045703). Hence, the upregulation of ketoreductases observed in SG background (spot A) can serve as an initial indication of stress accompanied by the plant response to reactive oxygen species [30,31].
In contrast to SG, the isohydric cultivar MP is better adapted to sustain water levels during drought, which is demonstrated by the upregulation of genes associated with plant normal growth, development, transportation, and signaling pathways (see spots B and E in Figure 3C). For instance, some of these genes are linked to stilbenoid, diarylheptanoid, and gingerol biosynthesis. Additionally, there is also GO enrichment in phloem development (GO:0010088), promoting the development of phloem cells, and terpene synthase activity (GO:0010333) that plays a role in plant defense response to environment and pathogens [32].
At the first time point T1, genes in spot C (Figure 3C) upregulate in both MP and SG cultivars. They are enriched by gene sets involved in chitin catabolism (GO:0006032) and cell wall development. A strengthened cell wall (chitin and lignin) is a common defense strategy against drought [33,34], as well as pathogens [35]. The second time point, T2, upregulated genes in spot D (Figure 3C), which is occupied by genes coding transcription factors (MYB, AS2, WRKY). The transcriptional reprogramming mediated by MYB, AS2, and WRKY transcription factors orchestrates broader regulatory networks involved in stress signaling, defense responses, and developmental adjustments reacting to prolonged water shortage. The MYB transcription factors, for example, regulate the secondary metabolism, hormone signaling, and stress responses, contributing to drought tolerance mechanisms [27,36,37]. AS2 transcription factors participate in leaf morphology and physiology which optimizes the efficiency of water management under drought conditions [29,38]. WRKY transcription factors, the integral components of many vines’ stress signaling pathways, coordinate biological processes associated with stress tolerance, such as scavenging of ROS, osmotic regulation, and ABA signaling [39]. There is also an enrichment in GO molecular activity of arogenate dehydrogenase NADP+ (GO:0033730) in spot D. Arogenate is a precursor of phenylalanine that plays a significant role in plant abiotic stress responses [40,41,42]. Hence, with the increasing time under drought, more comprehensive genes are involved in the WS response.
Spot E is upregulated at T3 in SG (under STRS) and MP (under CTRL), thus inducing a certain asymmetry between both trajectories. The gene list of this spot is enriched by sugar biosynthesis genes. For anisohydric cultivars such as SG, sugar serves as an osmoprotectant that maintains cellular hydration under lasting WS [43]. Additionally, this spot is enriched by genes related to lignin catabolism (GO:0046274), playing a role in water management, manganese ion binding (GO:0030145), and trihydroxystilbene synthesis (GO:0050350), considered to be important for pathogen defense [44,45,46]. Hence, osmoprotection and pathogen response become activated in the anisohydric cultivar under lasting WS, while the isohydric cultivar activates these functions under water excess.
STRS-specific spot F (Figure 3C) contains genes enriched by heat-shock/protein-complex oligomerization proteins (GO:0051259) from the family HSP20 acting as molecular chaperones. Such chaperones help plants fight against WS by facilitating protein folding, assembly, stabilization, and degradation [47]. Despite the differences in transcriptomes between SG and MP in T1/T2, water deficiency induces a similar response in prolonged exposure (T3).
Taken together, different “ground state” functions related to lipid and steroid biosynthesis in SG and plant growth functions in isohydric MP give rise to their specific trajectories, which both progress under WS sequentially by activation of transcription factors such as MYB, AS2, and WRKY, ABA-signaling, and arogenate-mediated stress response, and after lasting WS finally express HSP coding genes. An asymmetry in WS dynamics between SG and MP is related to osmoprotection by sugar biosynthesis and lignin catabolism in SG STRS and in MP under CTRL conditions, respectively.

2.4. Isohydric Strategy Is Characterized by Biosynthesis of Stilbenoid and Its Derivatives

Our analysis of gene expression patterns revealed that the isohydric grape cultivar, known for its water-conserving strategies, appears to activate stilbenoid biosynthesis as a marker of drought tolerance, partly in its ground state. Genes related to stilbenoid biosynthesis distribute in a characteristic fashion in the expression landscape with a certain asymmetry towards the MP trajectory (Figure 4A). Although located mostly outside the spots due to the smaller variance in their expression, they can be assigned to different conditions, as discussed in the previous subsection. The heatmap in Figure 4B explicitly provides their expression profiles, revealing their time-dependent activation under the different conditions, which shows their biased upregulation in the isohydric MP cultivar.
For a closer look, we mapped these activation patterns on the stilbenoid KEGG pathway topology, where the gene boxes are colored according to the condition-dependent activation (Figure 4C). CINNAMATE 4-HYDROXYLASE (C4H), encoded by the gene Vitvi06g00803, is an important precursor enzyme for stilbenoid biosynthesis. The gene was found to be upregulated in both SG and MP under optimal CTRL water supply conditions, as indicated by the blue and dark yellow colors, respectively. C4H catalyzes the hydroxylation of trans-cinnamic acid to produce p-coumaric acid, an important intermediate in the biosynthesis of various compounds, including stilbenoids [48]. Next, there is an enzyme HYDROXYCINNAMOYL-CoA:SHIKIMATE/QUINATE TRANSFERASE (HCT–HST/HQT), whose instability allows for various reactions to occur [49,50]. This enzyme is encoded by the genes Vitvi11g00742 and Vitvi08g00940, which exhibited interesting expression dynamics. Vitvi11g00742 showed higher expression in MP CTRL during the initial reaction, whereas it was upregulated in SG STRS. This enzyme mediates the formation of p-Coumaroyl shikimic acid and p-Coumaroyl quinic acid [50,51]. Subsequent reactions showed differential expression patterns, with Vitvi11g00742 shifting its overexpression entirely to MP STRS. The enzyme CAFFEOYL-COA O-METHYLTRANSFERASE (CCoAOMT), encoded by gene Vitvi03g00524, emerged as a dominant player in (isohydric) MP STRS as well. It is known to respond to water deficiency stress [52]. Other downstream enzymes involved in the synthesis of stilbenoids, namely RESVERATROL SYNTHASE (RS) and RESVERATROL O-METHYLTRANSFERASE (ROMT), were found to be exclusively overexpressed in MP STRS conditions. The RS enzyme, encoded by Vitvi16g01472, catalyzes the condensation of malonyl-CoA with p-Coumaroyl-CoA to form resveratrol [53], while the enzyme ROMT (encoded by Vitvi12g02241) methylates the resveratrol to produce a pterostilbene [54]. All these genes exhibited higher expression levels in MP under both control and stress conditions, suggesting a potential role for resveratrol and pterostilbene in response to water deficiency stress in MP in agreement with the topology of WS transcriptome dynamics (see Figure 3C).
In summary, the detailed mapping of gene expression patterns onto the stilbenoid pathway elucidated the overall asymmetric role of various members of this pathway in MP’s and SG’s distinct responses to WS, where, notably, resveratrol biosynthetic genes were uniquely upregulated in the isohydric MP.

2.5. Biosynthesis of Thiamine Is Promoted under WS Conditions

Next, we aimed to elucidate the thiamine biosynthesis pathway in grapevines (Figure 5). This pathway was shown to react under conditions of low-temperature stress in Vitis vinifera [18] and was assumed to play an important role also under WS conditions [55]. The “gene map” of the thiamine biosynthesis pathway genes, as well as their expression heatmap, reveal the gene activation across the whole SOM landscape except the T1-specific area (Figure 5A,B). As for the pathway of biosynthesis of stilbenoid and its derivatives, we transferred the gene expression profiles into the KEGG pathway topology (Figure 5C). Under control conditions, both MP and SG cultivars exhibited nearly stable expression of genes involved in thiamine biosynthesis. These genes encode enzyme isoforms, including THIAZOLE (TH1), PYRIMIDINE SYNTHETASE (THIC), and THIAMINE PYROPHOSPHOKINASE (TPK/THIN), which plays a role in synthesizing the active form of thiamine. In plants, three forms of thiamine are physiologically active: free thiamine, thiamine monophosphate, and thiamine pyrophosphate. The Enzyme Commission number is depicted by the colored (blue, yellow) rectangles in the pathway diagram (see Figure 5C). Notably, the expression of these genes in both cultivars is similar also under WS, indicating a basal level of thiamine biosynthesis activity in grapevine plants.
Under WS, both cultivars exhibited the upregulation of structural genes, encoding isoforms of the enzyme 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE (DXS). DXS is associated with the precursor production for both thiamine and isoprenoid biosynthesis [56], particularly DXP production from glycolysis. Isoprenoids, which have a positive correlation with the level of DXP transcript [57], play crucial roles in plant stress tolerance mechanisms [58]. Other studies have shown that the overexpression of DXS leads to increased chlorophyll and carotenoid content [59]. Furthermore, under the stress conditions, a cluster of genes was upregulated at the final stage of the pathway. Products of these genes convert the active form of thiamine, thiamine diphosphate (TPP), either to thiamine triphosphate (Vitvi01g001564, Vitvi17g00142, Vitvi11g00609, Vitvi17g00137, Vitvi14g01574, Vitvi13g00202) or thiamine monophosphate (Vitvi04g01575).
The grapevine gene Vitvi11g01303, encoding a probable enzyme 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE2 (DXS2), exhibits upregulation in SG STRS compared to SG CTRL and even higher overexpression in MP STRS (Figure 5B). The presence of multiple DXS isoforms with distinct expression patterns in both cultivars suggests a potentially intricate regulatory mechanism governing DXP production in response to WS. The third precursor gene in thiamine biosynthesis, Vitvi07g01408, producing an enzyme L-CYSTEINE DESULFURASE 1 (LCD), provides the essential sulfur atom for thiazole precursor synthesis [60]. It was notably overexpressed under the WS compared to control conditions.
In summary, our analysis shows the various activations of thiamine biosynthesis genes under WS, from the initiation of precursor production to the final conversion of thiamine di-/tri- phosphate. This comprehensive understanding offers valuable insights into the distinct responses of MP and SG cultivars, potentially influencing their resilience to prolonged water deficit.

2.6. Exploring Differentially Expressed Genes Taken from the Original Study

Mapping of specifically modulated genes from the previous study [15] into our SOM landscape supports our results regarding a set of about 6000 highly differentially expressed genes (Figure A1). SOM portrayal, however, disentangles and visualizes in detail their covariance structure not evident from the original list. Notably, SOM portrayal distributes these genes across a transcriptome landscape, obeying the topology of transcriptomic co-regulation networks. Specifically, modulated genes in SG and MP fit into the WS trajectories extracted from the SOM analysis and visualized by the upregulated regions of the waterline portraits, as expected (Figure A2). However, SOM analysis more clearly disentangles the modulated genes into distinct modules of coregulation with distinct functional impact and, moreover, extracts higher genes of stronger variance compared with the significance analysis of microarrays (SAM) and ANOVA algorithms applied in the original paper [15] and the references cited therein. SAM should be used with caution because of the limitations of the method, particularly in overrating threshold settings and variance corrections [61].
Up- and downregulated genes, due to the WS, extract additional modules of co-regulated genes with different functional impacts, such as photosynthesis and DNA repair (Figure A3). Finally, we also considered genes differentially expressed under a “recovery from the WS” (i.e., re-watering 70 days after the onset of the WS), which indicates the partial reversal of the gene expression changes caused by prolonged WS (Figure A4).
Our SOM analysis demonstrates highly similar differential gene expression patterns for the genes previously reported. SOM considers genes of higher variance, which extends the range of the functional impact of WS dynamics. Note also that our SOM landscape reflects expression patterns without pre-selecting case vs. control conditions (e.g., STRS vs. CTRL, SG vs. MP), which were addressed in downstream analyses as applied above. It thus provides a sort of holistic modular transcriptomic map that considers the cultivar, conditions, and time points independently, which is required for estimating the trajectories of WS in the SOM landscape and not explicitly available using the SAM and ANOVA approaches.

3. Discussion

In this study, we reanalyzed whole-genome transcriptional microarray data of Vitis vinifera leaves [15] by applying the SOM clustering algorithm [62,63], which has previously been successfully employed in analyzing gene expression data on grapevine cultivars under low-temperature stress conditions [18]. We are motivated for this study by a series of key advantages of SOM machine learning, such as high-resolution clustering into function-relevant modules of co-regulated genes, intuitive visualization of whole transcriptome landscapes with single-sample resolution (SOM portrayal), the combination of dimension and redundancy reduction with whole data processing, statistical power of feature selection and tracking expression trajectories in a topology-aware transcriptome landscape, which, overall, enabled the detailed analysis of gene expression changes over the stress period (2, 6, and 27 days), to compare both isohydric and anisohydric strategies of two selected cultivars against WS. For a detailed description of the method and its strength in different applications, we refer to our previous work [20,64,65,66]. Here we continue our studies on aspects of genomic regulation of grapevine physiology suffering from abiotic stress after considering cold temperature stress [18].
The isohydric and anisohydric cultivars show distinct physiological and morphological changes under WS [5,6,15,67,68,69]. To understand the underlying gene regulation of drought-responsive processes at the transcriptome and pathway levels in two grapevine genotypes differing in water management strategy, we performed SOM portrayal and WS trajectory analysis in sample and gene space in combination with detailed knowledge mining of the patterns of the identified coregulated genes. The divergence of transcriptional programs between SG and MP in response to WS exemplifies the two different stress-response strategies of these grapevine cultivars.
In accordance with the previous findings in the original reference publication [15], our research identified the activation of genes coding for chaperones and heat-shock proteins in response to prolonged WS. Chaperones and heat-shock proteins are crucial components of the cell’s machinery for protein folding. They assist in the proper folding of proteins and prevent the aggregation of misfolded proteins, which can be detrimental to cellular function and survival. Under normal conditions, proteins fold into their functional, three-dimensional structures with the help of chaperones. However, under stress conditions like drought, the normal protein folding process can be disrupted, leading to the accumulation of misfolded or unfolded proteins. Hence, the activation of genes coding for chaperones and heat-shock proteins is a critical component of the plant’s response to long-lasting WS.
Our trajectory analysis based on module activation adds a novel, more comprehensive view of WS dynamics in the anisohydric and isohydric cultivars not addressed by Dal Santo and colleagues [15]. SOM portrayal reveals that during the initial stages of water deprivation, both vine cultivars adjust the cell wall composition and structure that might be necessary to cope with reduced water availability. This suggests that it starts with physical reinforcement of the cell wall, followed by broader stress signaling and adjustment, and finally, adaptation for long-term survival through compatible solutes and protein stability. This could help the grapevine to maintain cell integrity under the pressure of water deficit, reduce water loss by creating a tighter barrier, and enhance resistance to potential secondary stresses like pathogens that might exploit drought-weakened plants. The activation of specific transcription factors like MYB, WRKY, and AS2 signifies a shift towards a broader stress response. We speculate that the WS-driven upregulation of steroid and lipid biosynthesis, specifically in anisohydric SG, strengthens cell membranes, while ketoreductases help detoxify harmful substances. This response also involves the production of phytohormones, like ABA and antioxidants, to protect cells from damage.
On the other hand, the isohydric MP prevails in water conservation and stomatal regulation, which diminishes water loss under WS. The stilbenoids, diarylheptanoids, and gingerols possess antioxidant properties so they could mitigate oxidative stress induced by drought. The isohydric vine may allocate resources towards a synthesis of such compounds to bolster the defense mechanisms against drought-induced oxidative stress and enhance tolerance to water deficit.
Moreover, our analysis indicates fast activation of stilbenoid biosynthesis genes (C4H, RS, ROMT, promiscuous HCT, and CCoAOMT) in the isohydric grape cultivar under WS. Particularly, the increased expression of resveratrol biosynthesis genes in MP (compared to SG) implies that wines derived from this cultivar may accumulate higher resveratrol content than those from the SG cultivar under WS conditions.
In our previous work, we identified the upregulation of thiamine biosynthetic genes in low- and extremely low-temperature stress [18], which motivated us to analyze this pathway under WS. Notably, recent studies have highlighted the significance of thiamine in the plant response to WS [70,71], demonstrating significant upregulation of THI1 and THIC genes under drought and dry air humidity stresses [72,73]. Our findings support the hypothesis that the production of thiamine is not only a cold acclimation stress-responsive but also a WS-responsive compound in both iso- and aniso-hydric vine cultivars. Here, we provided more elaborate insights into the cascade of gene activation underlying stress response mechanisms in grapevine.
The focus on stilbenoid and thiamine pathways is, although justified by the data and motivated by our previous work, somewhat arbitrary, but it illustrates the potency of the transcriptomic data for extracting WS responses at the pathway level. Although their phenotypes assign them isohydric and anisohydric characteristics, differential gene expression between them does not necessarily directly relate to molecular causes of the different water management strategies. Future investigations should generalize the results by extending the number of vine accessions in similar experimental and analysis settings.
In conclusion, the dynamics of biological processes in both studied cultivars under WS and control conditions might shed light on further vine research. Experimental studies are needed to fully understand these mechanisms and their potential applications in improving drought resistance, which has significant implications for vine production, particularly in regions where water availability is a major constraint. In the future, this research might help to explore the possibility of manipulating biochemical pathways to enhance drought tolerance in other vine cultivars, securing viticulture in the face of changing climate. Overall, our findings underscore the genomic diversity and different adaptability of these cultivars to changing environments.

4. Materials and Methods

4.1. Expression Data and Treatment Conditions

The gene expression data were downloaded from the supporting dataset (GEO: GSE70670; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ovqbgaqedfaxjqn&acc=GSE70670; accessed on 3 February 2024) provided by Dal Santo and colleagues [15]. It encompasses normalized gene expression data (Nimblescan v2.5 software-calculated Robust Multiarray Average/RMA-normalized signal intensities) from leaves (L) of two grapevine (Vitis vinifera L.) cultivars, ‘Montepulciano’—clone R7 (here referred to as MP) and ‘Sangiovese’—clone VCR30 (here referred to as SG), possessing isohydric and anisohydric characteristics, respectively. For a detailed description of the experimental set-up, we refer to the original publication [15]. In short, both cultivars were grafted onto 1103 Paulsen rootstock, and 8-year-old, well-maintained, greenhouse-potted vines were used in the experiment. Two groups were established for each cultivar: a water-stressed group (STRS) that received 40% of maximum water availability relative to the soil field capacity of 30.2% [(vol water/vol soil) × 100], and a well-watered control group (CTRL) that received 90% of maximum water availability. The samples were collected for the analysis of transcriptome at three time points following the initiation of WS: 2, 6, and 27 days (referred to as T1, T2, and T3, respectively). These time points represent different stages of drought stress, ranging from the initial onset of WS to prolonged exposure to the stress. The experiment included three biological replicates (r1, r2, and r3) for each condition in both cultivars. Dal Santo and colleagues complemented transcriptomic measurement with phenotypic data, particularly leaf physiological and leaf biochemical parameters. We refer to the original publication for details [15].

4.2. Self-Organizing Map

The SOM portrayal algorithm was employed to analyze the preprocessed gene expression data using the oposSOM software (version 2.2.5), as described previously [18]. A total of 36 samples were used as input, containing expression values for 28,521 genes. These represent 81.18% of the 35,134 annotated coding genes of Vitis vinifera that were found in the Ensembl database [74,75] on the 16th of May, 2023. The SOM was configured to have 1600 neurons (also called metagenes, characterizing the mean transcriptional profile of the genes collected in the respective neuron), arranged in a quadratic lattice with dimensions 40 × 40. During training, the SOM distributed the gene expression values across the neurons/metagenes, effectively reducing the high-dimensional data into a 2-dimensional representation. The gene expression profiles of each treatment condition, including control and stressed samples for both cultivars, were mapped onto the SOM grid. The resulting SOM, obtained for each treatment condition, was visualized as an expression “portrait”. To enable the visual interpretation of these SOM “portraits”, a tertiary color code was used to color each metagene, ranging from red through green to blue, corresponding to high to low gene expression. As the metagenes that are located close to each other include genes with similar expression profiles, we can define red and blue spots in the SOM “portraits”. Red spots signify transcript upregulation, while blue spots indicate transcript downregulation, deviating more than the upper or lower quartile in a positive or negative direction, respectively.
Alternatively, we used “waterline” profiles, indicating expression values above and below the mean in red and blue, respectively, to better visualize slight changes in the transcriptome patterns. Statistics of the spot expression in terms of jointly activated spots in the individual portraits, spot number frequencies, and mean numbers of spots per portrait provide details of the topology of the activated transcriptome under the different treatment conditions. For a comparison of differentially expressed genes published in the previous study [15] with our SOM results, we mapped the selected marker genes into our SOM expression landscape to show their distribution (see Figure A1, Figure A2, Figure A3 and Figure A4). The sample similarity analysis uses a pairwise correlation map, independent component analysis, and sample SOM presentations. Details of the methods used and their applications to different use cases were described previously [20,64,65,66] and are available in the R-package oposSOM [62].

4.3. Functional Annotation

KEGG [76] and VitisNet [77] databases were used to functionally annotate genes for the gene set analysis, and PANTHER (version 18.0; [78]) was employed with default settings for the gene ontology (GO) enrichment analysis (for details see [18]). Genes from the KEGG pathways mentioned in this work were mapped onto SOM overexpression spots.

Author Contributions

Conceptualization, A.A., H.B. and T.K.; methodology, A.A., T.K., H.B. and M.N.; validation, A.A., T.K., H.B. and M.N.; formal analysis, T.K., H.B. and A.A.; investigation, A.A., T.K. and H.B.; resources, A.A. and T.K.; data curation, A.A. and T.K.; writing—original draft preparation, A.A., T.K. and H.B.; writing—review and editing, A.A., T.K. and H.B.; visualization, T.K.; supervision, H.B.; project administration, H.B.; funding acquisition, H.B. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Foundation of Armenian Science and Technology (FAST) within the framework of the ADVANCE Research Grants Program project Vine Bioinformatics—grape genomics for innovative viticulture, funded by Joe Barnes. We acknowledge financial support from the German Research Foundation (DFG) and Universität Leipzig within the program of Open Access Publishing.

Data Availability Statement

Expression data were taken from a previous study [15]. The R-object of our SOM analysis is deposited online in the Leipzig Health Atlas with the accession number 611 (LHA:611; https://www.health-atlas.de/data_files/611 accessed on 26 July 2024).

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Figure A1. Covariance and population structure of the SOM expression landscape. (A) The 5947 genes significantly modulated in leaves under our experimental conditions were taken from the SAM analysis in [15] and mapped into our SOM. Occupied metagenes (pixels) are marked in greyish. They refer mostly to metagenes of high and moderate variance of gene expression (see part C). (B) The covariance structure of the SOM was estimated by calculating a weighted topological overlap (WTO) network between the spot modules [65]. It reveals strong anticorrelations (w < 0) between the two cultivars (SG vs. MP) and between the two conditions (STRS vs. CTRL; see the scheme on the right). It thus assigns the “modulated genes” (part A) to up- and downregulation under the different conditions. Note also that the SOM decomposes the “modulated genes” into clusters of co-regulated genes called spot modules. (C) The variance map of the metagenes reveals a variance gradient of gene expression from the center of the SOM (blue) towards its edges (brown). The population map color codes the number of genes per metagene from high (red) to low (blue). The gene density changes across the SOM. Also, the Euclidean distances between neighboring metagenes are variant and “amplify” regions of increased gene density. The K-means map provides a space-filling segmentation of the SOM, enabling it to consider any region for downstream analysis, such as function mining.
Figure A1. Covariance and population structure of the SOM expression landscape. (A) The 5947 genes significantly modulated in leaves under our experimental conditions were taken from the SAM analysis in [15] and mapped into our SOM. Occupied metagenes (pixels) are marked in greyish. They refer mostly to metagenes of high and moderate variance of gene expression (see part C). (B) The covariance structure of the SOM was estimated by calculating a weighted topological overlap (WTO) network between the spot modules [65]. It reveals strong anticorrelations (w < 0) between the two cultivars (SG vs. MP) and between the two conditions (STRS vs. CTRL; see the scheme on the right). It thus assigns the “modulated genes” (part A) to up- and downregulation under the different conditions. Note also that the SOM decomposes the “modulated genes” into clusters of co-regulated genes called spot modules. (C) The variance map of the metagenes reveals a variance gradient of gene expression from the center of the SOM (blue) towards its edges (brown). The population map color codes the number of genes per metagene from high (red) to low (blue). The gene density changes across the SOM. Also, the Euclidean distances between neighboring metagenes are variant and “amplify” regions of increased gene density. The K-means map provides a space-filling segmentation of the SOM, enabling it to consider any region for downstream analysis, such as function mining.
Plants 13 02501 g0a1
Figure A2. Genes specifically modulated in the accessions were taken from supporting data [15] and compared to the respective waterline portraits. Genes modulated in SG and MP accumulate in the overexpressed areas in SG and MP, respectively.
Figure A2. Genes specifically modulated in the accessions were taken from supporting data [15] and compared to the respective waterline portraits. Genes modulated in SG and MP accumulate in the overexpressed areas in SG and MP, respectively.
Plants 13 02501 g0a2
Figure A3. Genes modulated specifically under stress conditions. The cutoffs defining upregulated (UP in STRS/CTRL) and downregulated (DOWN in STRS/CTRL) genes were taken from [15] (fold change > 2 and top 20% variant genes) and mapped into the SOM. Clusters of genes accumulate in different areas of the SOM in and near the spots. The respective profiles are shown on the right, together with the respective biological functions. As expected, the profiles confirm the UP/DOWN under STRS conditions, showing the respective changes, especially under lasting stress at T3. The profiles also show that the expression changes are about one order of magnitude smaller compared with that observed in the spots. The bars are color-coded as in the other figures.
Figure A3. Genes modulated specifically under stress conditions. The cutoffs defining upregulated (UP in STRS/CTRL) and downregulated (DOWN in STRS/CTRL) genes were taken from [15] (fold change > 2 and top 20% variant genes) and mapped into the SOM. Clusters of genes accumulate in different areas of the SOM in and near the spots. The respective profiles are shown on the right, together with the respective biological functions. As expected, the profiles confirm the UP/DOWN under STRS conditions, showing the respective changes, especially under lasting stress at T3. The profiles also show that the expression changes are about one order of magnitude smaller compared with that observed in the spots. The bars are color-coded as in the other figures.
Plants 13 02501 g0a3
Figure A4. Genes specifically modulated under recovery from WS. Recovery conditions were achieved by re-watering the plants 46 days after the onset of WS, and the post-recovery plant material was collected 70 days after the onset of WS (see Materials and Methods in [15]). Upregulated (UP) and downregulated (DOWN) genes and their respective profiles are shown separately. The profiles refer to the stress experiment. Recovery virtually reverses expression changes observed for lasting stress (STRS at T3).
Figure A4. Genes specifically modulated under recovery from WS. Recovery conditions were achieved by re-watering the plants 46 days after the onset of WS, and the post-recovery plant material was collected 70 days after the onset of WS (see Materials and Methods in [15]). Upregulated (UP) and downregulated (DOWN) genes and their respective profiles are shown separately. The profiles refer to the stress experiment. Recovery virtually reverses expression changes observed for lasting stress (STRS at T3).
Plants 13 02501 g0a4
Table A1. Lists of genes in the SOM spots A–F. Number of genes per each spot is in parentheses.
Table A1. Lists of genes in the SOM spots A–F. Number of genes per each spot is in parentheses.
A (376 Genes)B (309 Genes)C (340 Genes)D (384 Genes)E (462 Genes)F (695 Genes)
Vitvi17g00237Vitvi10g02124Vitvi15g01586Vitvi04g02074Vitvi14g02553Vitvi13g00164
Vitvi16g01025Vitvi08g01847Vitvi18g00424Vitvi04g00410Vitvi09g01725Vitvi06g01513
Vitvi01g00437Vitvi10g02194Vitvi10g00667Vitvi18g02126Vitvi13g02480Vitvi13g00169
Vitvi01g00580Vitvi18g02451Vitvi15g01587Vitvi18g00833Vitvi19g02069Vitvi12g00573
Vitvi01g01028Vitvi05g01951Vitvi10g01684Vitvi01g01736Vitvi17g01664Vitvi07g02152
Vitvi19g00388Vitvi10g02121Vitvi04g00501Vitvi19g00456Vitvi07g02304Vitvi14g01193
Vitvi18g02718Vitvi07g00973Vitvi05g01760Vitvi04g02122Vitvi10g00867Vitvi19g00618
Vitvi14g01657Vitvi17g01737Vitvi13g01250Vitvi19g01484Vitvi09g01261Vitvi13g00166
Vitvi14g02664Vitvi17g01732Vitvi11g00016Vitvi02g01517Vitvi04g02117Vitvi13g00471
Vitvi15g01691Vitvi10g02195Vitvi01g01917Vitvi18g00596Vitvi17g01693Vitvi13g00162
Vitvi16g01878Vitvi08g01380Vitvi15g00970Vitvi05g01287Vitvi16g01659Vitvi04g01974
Vitvi04g00827Vitvi13g00925Vitvi07g02119Vitvi19g01674Vitvi16g00770Vitvi07g00055
Vitvi07g01789Vitvi17g01736Vitvi06g00268Vitvi10g01493Vitvi04g01870Vitvi05g01933
Vitvi03g01162Vitvi10g02181Vitvi07g02123Vitvi08g01548Vitvi18g02894Vitvi06g00526
Vitvi18g00871Vitvi04g01325Vitvi16g00941Vitvi16g00027Vitvi01g02297Vitvi18g01438
Vitvi17g01541Vitvi10g02190Vitvi18g01937Vitvi07g02288Vitvi07g02725Vitvi09g01282
Vitvi18g02157Vitvi12g00224Vitvi15g00714Vitvi03g01582Vitvi14g02863Vitvi10g00034
Vitvi16g02001Vitvi18g02293Vitvi01g01934Vitvi15g01364Vitvi14g01112Vitvi18g02423
Vitvi02g01350Vitvi11g00460Vitvi02g01404Vitvi13g02086Vitvi18g02584Vitvi10g01778
Vitvi04g01352Vitvi04g02105Vitvi07g01844Vitvi13g02044Vitvi19g01302Vitvi07g00259
Vitvi13g01356Vitvi18g02289Vitvi18g01263Vitvi10g01807Vitvi14g01082Vitvi13g02077
Vitvi05g01256Vitvi06g01097Vitvi18g02446Vitvi10g00859Vitvi14g01106Vitvi08g00731
Vitvi08g01052Vitvi00g00339Vitvi04g00760Vitvi10g02180Vitvi14g01080Vitvi18g01070
Vitvi19g01504Vitvi16g01302Vitvi15g01582Vitvi15g00736Vitvi16g01613Vitvi02g01447
Vitvi12g02444Vitvi18g03097Vitvi02g01403Vitvi14g03039Vitvi17g01674Vitvi07g00455
Vitvi18g03185Vitvi19g00216Vitvi10g00742Vitvi17g00315Vitvi15g01363Vitvi01g02273
Vitvi12g02069Vitvi12g00602Vitvi05g00011Vitvi19g01322Vitvi14g02865Vitvi18g02559
Vitvi19g01984Vitvi04g01233Vitvi18g02287Vitvi14g02789Vitvi19g02154Vitvi10g00403
Vitvi01g00350Vitvi04g01375Vitvi03g01621Vitvi18g01927Vitvi14g02533Vitvi19g02371
Vitvi14g02925Vitvi14g00297Vitvi14g00500Vitvi04g00160Vitvi16g02162Vitvi06g01575
Vitvi19g00107Vitvi13g01320Vitvi06g01604Vitvi08g02076Vitvi08g01978Vitvi02g00020
Vitvi01g01982Vitvi02g00783Vitvi06g01601Vitvi13g00109Vitvi14g01075Vitvi14g03078
Vitvi12g00927Vitvi08g02249Vitvi02g00393Vitvi16g01641Vitvi14g02548Vitvi05g00139
Vitvi18g00717Vitvi12g02165Vitvi14g01381Vitvi18g03208Vitvi14g01096Vitvi19g00381
Vitvi17g00609Vitvi04g01940Vitvi03g00708Vitvi09g01460Vitvi16g00772Vitvi05g00681
Vitvi15g00005Vitvi06g01100Vitvi07g01697Vitvi14g03080Vitvi10g01046Vitvi06g01746
Vitvi00g01279Vitvi05g02283Vitvi05g02248Vitvi08g01941Vitvi06g01301Vitvi12g00301
Vitvi11g00526Vitvi10g02113Vitvi18g02727Vitvi07g02115Vitvi10g01626Vitvi16g00205
Vitvi02g01806Vitvi07g02402Vitvi11g01674Vitvi12g02456Vitvi12g02239Vitvi11g01450
Vitvi03g01891Vitvi09g01214Vitvi18g00979Vitvi01g01387Vitvi10g00869Vitvi09g00246
Vitvi10g02223Vitvi05g00669Vitvi18g02592Vitvi07g02146Vitvi09g00878Vitvi11g01333
Vitvi10g00001Vitvi13g01889Vitvi19g00094Vitvi08g02329Vitvi18g03390Vitvi11g00251
Vitvi12g02448Vitvi18g02463Vitvi12g02244Vitvi08g01303Vitvi13g02426Vitvi10g00459
Vitvi08g01404Vitvi15g01669Vitvi11g01491Vitvi19g02218Vitvi13g01559Vitvi14g01951
Vitvi08g01617Vitvi02g01037Vitvi05g01577Vitvi04g02233Vitvi18g03068Vitvi05g00461
Vitvi14g01127Vitvi13g01404Vitvi14g01868Vitvi14g02756Vitvi18g02935Vitvi16g01985
Vitvi13g01180Vitvi15g01663Vitvi07g02735Vitvi18g01565Vitvi16g01469Vitvi12g02469
Vitvi11g01251Vitvi01g00555Vitvi09g01536Vitvi04g00988Vitvi00g02157Vitvi03g00119
Vitvi14g02469Vitvi16g02010Vitvi14g01488Vitvi12g01676Vitvi18g02870Vitvi04g02187
Vitvi05g02198Vitvi10g02119Vitvi15g00844Vitvi17g00662Vitvi14g02864Vitvi19g02000
Vitvi17g00788Vitvi18g02631Vitvi02g00391Vitvi08g00199Vitvi18g03332Vitvi00g02173
Vitvi14g02722Vitvi10g02301Vitvi06g01515Vitvi08g02328Vitvi01g01614Vitvi12g00028
Vitvi03g01584Vitvi05g01940Vitvi07g00665Vitvi13g02029Vitvi09g00908Vitvi18g02906
Vitvi01g00605Vitvi14g02575Vitvi14g02913Vitvi18g03011Vitvi14g01113Vitvi08g02117
Vitvi03g01890Vitvi16g01449Vitvi08g02147Vitvi10g01983Vitvi13g00931Vitvi07g00293
Vitvi04g02192Vitvi17g00972Vitvi01g01921Vitvi02g01439Vitvi16g01474Vitvi19g01760
Vitvi17g00639Vitvi18g02464Vitvi09g00264Vitvi05g00716Vitvi04g02121Vitvi08g02393
Vitvi03g01603Vitvi08g01848Vitvi12g02565Vitvi09g00524Vitvi17g00592Vitvi02g00543
Vitvi18g02061Vitvi10g01613Vitvi12g02718Vitvi08g02343Vitvi13g02424Vitvi05g01837
Vitvi18g02716Vitvi18g02273Vitvi07g02114Vitvi19g02019Vitvi08g00035Vitvi04g01794
Vitvi17g00405Vitvi10g02174Vitvi18g03084Vitvi14g02445Vitvi18g01019Vitvi04g01920
Vitvi14g01222Vitvi02g01850Vitvi02g01440Vitvi18g02586Vitvi16g01481Vitvi19g02268
Vitvi05g01439Vitvi12g02275Vitvi08g00768Vitvi18g00164Vitvi18g02881Vitvi02g00264
Vitvi00g02337Vitvi12g02241Vitvi11g00726Vitvi14g00940Vitvi12g02350Vitvi14g01726
Vitvi01g00065Vitvi18g03265Vitvi01g00710Vitvi14g02691Vitvi09g02069Vitvi07g02229
Vitvi03g01887Vitvi12g02245Vitvi07g02604Vitvi12g02386Vitvi16g01457Vitvi19g01791
Vitvi08g00942Vitvi07g02390Vitvi07g02650Vitvi09g00304Vitvi00g02261Vitvi14g01942
Vitvi13g02451Vitvi12g02243Vitvi08g01291Vitvi04g00013Vitvi12g02338Vitvi02g00162
Vitvi12g01836Vitvi12g02274Vitvi11g00467Vitvi09g01984Vitvi12g02340Vitvi08g01656
Vitvi18g02722Vitvi18g03098Vitvi14g01815Vitvi18g02521Vitvi16g01702Vitvi13g01839
Vitvi12g00596Vitvi11g01701Vitvi14g00461Vitvi07g01519Vitvi16g00133Vitvi05g01839
Vitvi01g00697Vitvi01g00532Vitvi06g00931Vitvi19g00604Vitvi15g01406Vitvi07g00117
Vitvi07g01990Vitvi11g01037Vitvi05g00710Vitvi07g02322Vitvi12g01852Vitvi01g00329
Vitvi04g02196Vitvi02g01649Vitvi19g00321Vitvi12g02387Vitvi09g00920Vitvi08g02274
Vitvi14g01149Vitvi13g00701Vitvi14g02930Vitvi15g01372Vitvi11g00126Vitvi16g01022
Vitvi12g02742Vitvi08g01650Vitvi18g00675Vitvi04g02129Vitvi13g01566Vitvi13g02070
Vitvi19g00656Vitvi07g01308Vitvi09g00233Vitvi10g02222Vitvi19g02190Vitvi07g01296
Vitvi12g00036Vitvi12g02292Vitvi14g00483Vitvi07g02949Vitvi18g02746Vitvi14g01354
Vitvi03g00406Vitvi05g01934Vitvi01g00784Vitvi06g00040Vitvi09g00907Vitvi06g01360
Vitvi12g00478Vitvi12g00243Vitvi15g00314Vitvi04g00467Vitvi16g00761Vitvi07g00380
Vitvi12g01984Vitvi12g02285Vitvi16g01213Vitvi17g00895Vitvi06g01812Vitvi05g00857
Vitvi12g02569Vitvi19g02111Vitvi04g00442Vitvi03g01521Vitvi07g02369Vitvi13g02192
Vitvi14g01952Vitvi09g01872Vitvi13g00509Vitvi13g00546Vitvi09g01782Vitvi09g01904
Vitvi16g01697Vitvi10g01656Vitvi14g01977Vitvi14g02916Vitvi16g00251Vitvi08g02143
Vitvi09g01145Vitvi01g00574Vitvi06g01597Vitvi13g01737Vitvi13g01564Vitvi10g00330
Vitvi06g00714Vitvi17g01739Vitvi02g01661Vitvi16g01122Vitvi14g02773Vitvi18g01510
Vitvi07g00130Vitvi03g01777Vitvi06g00790Vitvi07g03080Vitvi16g01464Vitvi00g02264
Vitvi08g01333Vitvi07g02231Vitvi18g00967Vitvi09g00700Vitvi16g00991Vitvi08g01543
Vitvi05g01151Vitvi06g01577Vitvi04g02241Vitvi06g00894Vitvi18g03026Vitvi16g01144
Vitvi17g00175Vitvi18g02508Vitvi18g00956Vitvi14g02449Vitvi09g01663Vitvi19g02274
Vitvi15g01651Vitvi18g00290Vitvi18g00476Vitvi14g00958Vitvi03g01749Vitvi13g00490
Vitvi19g02029Vitvi04g01241Vitvi08g01335Vitvi01g02264Vitvi17g01665Vitvi13g00688
Vitvi14g02515Vitvi03g01885Vitvi13g00114Vitvi14g01939Vitvi14g02570Vitvi05g00118
Vitvi12g02454Vitvi09g01187Vitvi10g01615Vitvi09g00560Vitvi02g01072Vitvi08g02015
Vitvi16g02146Vitvi12g02289Vitvi11g01488Vitvi10g01009Vitvi19g01220Vitvi17g00554
Vitvi07g00021Vitvi07g01814Vitvi16g01931Vitvi15g01257Vitvi12g02345Vitvi08g00656
Vitvi02g00171Vitvi16g02005Vitvi08g00630Vitvi07g00781Vitvi14g00218Vitvi10g00558
Vitvi18g01884Vitvi03g01896Vitvi02g01459Vitvi13g00556Vitvi05g01039Vitvi05g01392
Vitvi10g01650Vitvi15g01762Vitvi16g01932Vitvi18g02673Vitvi18g02889Vitvi04g01793
Vitvi17g01414Vitvi12g02269Vitvi08g01702Vitvi09g00708Vitvi07g02079Vitvi07g00256
Vitvi04g01815Vitvi12g01121Vitvi19g00404Vitvi08g01625Vitvi05g02015Vitvi06g00999
Vitvi14g03033Vitvi17g01302Vitvi19g00690Vitvi14g02736Vitvi14g02550Vitvi09g00996
Vitvi14g01211Vitvi08g01382Vitvi18g01938Vitvi03g01556Vitvi07g02387Vitvi05g00204
Vitvi07g00586Vitvi08g02247Vitvi04g01481Vitvi04g02014Vitvi19g01921Vitvi09g00275
Vitvi04g00282Vitvi05g02086Vitvi18g01001Vitvi07g01653Vitvi16g01473Vitvi07g03183
Vitvi18g01895Vitvi10g02106Vitvi14g01739Vitvi01g00291Vitvi16g01570Vitvi12g00444
Vitvi01g00319Vitvi00g01453Vitvi11g00641Vitvi10g01994Vitvi14g02828Vitvi05g01840
Vitvi18g02320Vitvi04g01890Vitvi03g01276Vitvi07g00843Vitvi19g00423Vitvi14g01943
Vitvi00g00342Vitvi12g00610Vitvi08g01701Vitvi18g02791Vitvi12g02277Vitvi08g01532
Vitvi01g01884Vitvi18g00860Vitvi09g00971Vitvi13g00635Vitvi19g02228Vitvi02g00263
Vitvi17g01393Vitvi14g02609Vitvi05g00094Vitvi07g01638Vitvi18g01447Vitvi05g00430
Vitvi16g01566Vitvi19g00445Vitvi10g01734Vitvi11g00914Vitvi15g01326Vitvi12g00462
Vitvi07g01720Vitvi12g02702Vitvi10g00436Vitvi18g01056Vitvi18g01442Vitvi07g02212
Vitvi16g00908Vitvi01g02003Vitvi19g02050Vitvi18g00241Vitvi12g02617Vitvi14g00971
Vitvi12g02080Vitvi10g02129Vitvi09g01399Vitvi10g00938Vitvi12g02337Vitvi07g00598
Vitvi13g00025Vitvi01g00611Vitvi01g00525Vitvi04g00570Vitvi15g01680Vitvi17g00116
Vitvi17g00358Vitvi05g02215Vitvi09g01616Vitvi07g02462Vitvi05g02038Vitvi06g00561
Vitvi06g01093Vitvi12g02238Vitvi10g02351Vitvi11g01323Vitvi08g02128Vitvi03g00206
Vitvi08g01403Vitvi13g01312Vitvi15g01355Vitvi09g01966Vitvi13g02355Vitvi19g02012
Vitvi19g01503Vitvi04g01519Vitvi17g00804Vitvi17g00119Vitvi19g01313Vitvi05g01842
Vitvi18g03070Vitvi12g02273Vitvi03g00325Vitvi02g01703Vitvi06g01980Vitvi11g00389
Vitvi13g00026Vitvi19g00424Vitvi05g00544Vitvi17g01599Vitvi14g02818Vitvi12g02668
Vitvi19g00525Vitvi14g02594Vitvi11g00243Vitvi16g01630Vitvi18g03324Vitvi14g00038
Vitvi03g00482Vitvi19g01884Vitvi06g00303Vitvi02g00042Vitvi09g00924Vitvi08g01777
Vitvi11g00528Vitvi05g01943Vitvi07g02605Vitvi15g00206Vitvi03g00976Vitvi17g00617
Vitvi16g02105Vitvi00g01462Vitvi16g01980Vitvi07g01693Vitvi05g01181Vitvi03g00164
Vitvi10g00164Vitvi16g01251Vitvi09g01694Vitvi08g01439Vitvi16g00749Vitvi13g00062
Vitvi02g00056Vitvi13g00702Vitvi10g00787Vitvi08g01047Vitvi18g03058Vitvi17g00778
Vitvi12g00598Vitvi00g01457Vitvi04g00960Vitvi19g02100Vitvi11g01574Vitvi04g01368
Vitvi04g02198Vitvi06g00379Vitvi11g01676Vitvi19g02077Vitvi17g01680Vitvi05g01834
Vitvi01g00822Vitvi19g01685Vitvi17g01467Vitvi04g01583Vitvi05g01861Vitvi05g01841
Vitvi09g00790Vitvi18g03280Vitvi08g01384Vitvi10g00881Vitvi19g01043Vitvi03g01391
Vitvi19g00205Vitvi12g02433Vitvi10g01616Vitvi17g00605Vitvi14g02547Vitvi18g01545
Vitvi18g00764Vitvi14g00896Vitvi01g00567Vitvi12g00491Vitvi16g01591Vitvi06g00440
Vitvi14g00103Vitvi12g00334Vitvi07g03053Vitvi05g01838Vitvi09g00912Vitvi08g00125
Vitvi09g01979Vitvi14g02924Vitvi18g02835Vitvi19g01305Vitvi09g00894Vitvi08g01843
Vitvi05g02009Vitvi17g01731Vitvi10g02034Vitvi10g01014Vitvi16g01619Vitvi04g00135
Vitvi19g01817Vitvi14g02759Vitvi13g00870Vitvi08g02259Vitvi13g01445Vitvi02g00395
Vitvi12g00554Vitvi12g02272Vitvi07g01739Vitvi01g01912Vitvi15g01321Vitvi05g02185
Vitvi13g01904Vitvi02g01832Vitvi06g00317Vitvi18g02806Vitvi14g02543Vitvi08g02412
Vitvi07g00810Vitvi15g00107Vitvi17g01691Vitvi17g01105Vitvi18g03041Vitvi10g00474
Vitvi01g00585Vitvi11g00990Vitvi13g01389Vitvi13g02337Vitvi07g02362Vitvi14g00318
Vitvi19g01883Vitvi09g01673Vitvi08g01221Vitvi11g00498Vitvi09g01465Vitvi02g00505
Vitvi03g01886Vitvi14g03049Vitvi03g00251Vitvi16g00808Vitvi10g01301Vitvi15g00511
Vitvi01g00320Vitvi00g01467Vitvi04g00486Vitvi03g01481Vitvi14g02544Vitvi18g01131
Vitvi19g01819Vitvi11g01222Vitvi04g00510Vitvi13g01790Vitvi13g02078Vitvi15g00816
Vitvi13g02187Vitvi07g02710Vitvi10g00613Vitvi01g00260Vitvi13g02275Vitvi01g00745
Vitvi19g00522Vitvi16g01531Vitvi16g00401Vitvi13g01862Vitvi03g01736Vitvi03g00024
Vitvi07g03077Vitvi18g02844Vitvi11g00098Vitvi01g02287Vitvi11g01249Vitvi13g02457
Vitvi19g00565Vitvi16g00913Vitvi19g00218Vitvi18g03359Vitvi06g01157Vitvi10g01237
Vitvi19g01893Vitvi05g01229Vitvi13g00172Vitvi14g01937Vitvi03g01738Vitvi03g01746
Vitvi13g02505Vitvi09g00889Vitvi02g00564Vitvi06g01975Vitvi18g02945Vitvi11g00518
Vitvi12g00330Vitvi12g02240Vitvi16g00282Vitvi18g01065Vitvi18g03349Vitvi02g01270
Vitvi03g01593Vitvi14g01681Vitvi10g01840Vitvi14g01508Vitvi04g01050Vitvi08g01391
Vitvi06g00310Vitvi09g01798Vitvi18g01705Vitvi14g02809Vitvi14g03083Vitvi14g00156
Vitvi01g00399Vitvi16g01894Vitvi11g00099Vitvi03g01863Vitvi10g01988Vitvi13g02073
Vitvi08g01032Vitvi10g02167Vitvi01g01751Vitvi12g02413Vitvi16g02163Vitvi03g00586
Vitvi19g00586Vitvi13g01006Vitvi13g01913Vitvi05g02256Vitvi03g01867Vitvi07g00732
Vitvi00g02232Vitvi17g01735Vitvi00g01963Vitvi02g01587Vitvi15g01678Vitvi18g00664
Vitvi14g02660Vitvi15g01136Vitvi08g01637Vitvi09g00142Vitvi13g02089Vitvi01g00603
Vitvi09g00177Vitvi19g02311Vitvi10g01391Vitvi06g00553Vitvi13g01562Vitvi05g00221
Vitvi00g02336Vitvi09g01552Vitvi01g00953Vitvi10g00110Vitvi06g01905Vitvi08g01718
Vitvi14g00649Vitvi03g01404Vitvi08g01423Vitvi05g00509Vitvi18g03391Vitvi10g00469
Vitvi12g02178Vitvi04g00859Vitvi19g00410Vitvi12g00555Vitvi10g00866Vitvi06g01375
Vitvi18g03059Vitvi11g00764Vitvi10g01632Vitvi18g02401Vitvi12g00196Vitvi03g00488
Vitvi18g02887Vitvi07g02430Vitvi03g01572Vitvi07g01764Vitvi14g00675Vitvi05g00271
Vitvi03g01483Vitvi02g00526Vitvi02g00114Vitvi08g02182Vitvi11g01350Vitvi15g01681
Vitvi07g01970Vitvi08g01634Vitvi18g02692Vitvi09g01752Vitvi12g00351Vitvi07g00164
Vitvi12g02435Vitvi05g01938Vitvi07g01429Vitvi07g01475Vitvi14g02535Vitvi03g00445
Vitvi18g03126Vitvi13g00716Vitvi07g02538Vitvi14g00465Vitvi12g02628Vitvi13g01337
Vitvi13g01956Vitvi14g01647Vitvi15g00889Vitvi19g01788Vitvi18g02954Vitvi19g00198
Vitvi02g00055Vitvi19g02128Vitvi16g01480Vitvi10g00751Vitvi13g02410Vitvi07g01644
Vitvi15g00522Vitvi14g01646Vitvi09g01605Vitvi02g01442Vitvi01g02166Vitvi08g02386
Vitvi13g02064Vitvi03g01773Vitvi06g01559Vitvi12g02254Vitvi18g03336Vitvi04g00470
Vitvi03g00678Vitvi04g00407Vitvi18g01264Vitvi17g01613Vitvi16g01603Vitvi01g01236
Vitvi05g01276Vitvi14g01642Vitvi06g00024Vitvi07g01856Vitvi07g02720Vitvi07g02029
Vitvi14g02934Vitvi14g00301Vitvi11g00165Vitvi12g00632Vitvi10g02060Vitvi02g00286
Vitvi01g02237Vitvi13g01307Vitvi03g01596Vitvi13g01888Vitvi17g00994Vitvi02g01022
Vitvi06g00008Vitvi03g01877Vitvi17g01465Vitvi19g01825Vitvi18g02969Vitvi18g00628
Vitvi18g03094Vitvi05g02089Vitvi18g00882Vitvi01g01181Vitvi02g00126Vitvi18g02780
Vitvi10g01552Vitvi02g01003Vitvi18g02589Vitvi18g02495Vitvi12g02291Vitvi10g00559
Vitvi18g03001Vitvi04g00831Vitvi16g01262Vitvi11g00431Vitvi07g02393Vitvi03g01431
Vitvi18g03358Vitvi16g01886Vitvi05g01860Vitvi10g01825Vitvi09g01801Vitvi18g00189
Vitvi19g00962Vitvi16g00160Vitvi10g01857Vitvi00g01122Vitvi14g02786Vitvi16g00504
Vitvi09g01210Vitvi03g00924Vitvi18g02630Vitvi13g01425Vitvi18g02028Vitvi07g01552
Vitvi13g01638Vitvi13g02605Vitvi17g00293Vitvi06g00380Vitvi10g00960Vitvi14g00065
Vitvi06g01099Vitvi16g00122Vitvi08g00793Vitvi09g01951Vitvi12g02255Vitvi14g02458
Vitvi01g01054Vitvi05g00963Vitvi19g00039Vitvi10g02187Vitvi08g02455Vitvi04g01801
Vitvi05g01435Vitvi09g01569Vitvi13g02369Vitvi02g00697Vitvi19g02168Vitvi03g01232
Vitvi04g02195Vitvi11g01231Vitvi18g00473Vitvi16g01169Vitvi05g01738Vitvi18g00131
Vitvi14g00041Vitvi10g02128Vitvi03g01352Vitvi06g01324Vitvi03g01619Vitvi04g00524
Vitvi16g00275Vitvi07g01867Vitvi16g01336Vitvi11g00010Vitvi10g01635Vitvi02g00433
Vitvi13g01102Vitvi18g00143Vitvi03g01350Vitvi01g02137Vitvi10g01596Vitvi18g00510
Vitvi08g01055Vitvi16g00118Vitvi03g01651Vitvi03g01857Vitvi18g03399Vitvi12g02200
Vitvi19g01631Vitvi09g01792Vitvi18g02617Vitvi03g00427Vitvi14g02649Vitvi12g00025
Vitvi11g01660Vitvi01g00066Vitvi06g00665Vitvi11g00081Vitvi07g02372Vitvi03g00439
Vitvi12g02476Vitvi12g01264Vitvi18g00260Vitvi12g00290Vitvi15g01655Vitvi08g00820
Vitvi02g01758Vitvi15g00078Vitvi03g01196Vitvi03g01412Vitvi18g01777Vitvi04g02049
Vitvi15g01652Vitvi12g01917Vitvi13g00066Vitvi03g01679Vitvi08g02426Vitvi05g00170
Vitvi14g02521Vitvi18g00107Vitvi04g01389Vitvi10g01774Vitvi15g00874Vitvi17g00885
Vitvi14g02721Vitvi13g01873Vitvi03g00473Vitvi07g02071Vitvi18g03079Vitvi03g00023
Vitvi12g00080Vitvi06g01599Vitvi16g00890Vitvi13g01085Vitvi14g02537Vitvi13g02292
Vitvi07g01718Vitvi14g02584Vitvi14g01390Vitvi09g00966Vitvi12g01879Vitvi07g02588
Vitvi14g02749Vitvi03g00925Vitvi18g01320Vitvi08g01205Vitvi10g01595Vitvi03g01729
Vitvi14g02513Vitvi12g00644Vitvi08g00886Vitvi18g00609Vitvi10g01617Vitvi14g00398
Vitvi13g01013Vitvi12g02475Vitvi10g00562Vitvi10g02191Vitvi15g00875Vitvi01g00821
Vitvi12g00039Vitvi09g00409Vitvi10g02389Vitvi09g01584Vitvi11g01553Vitvi12g02599
Vitvi02g00424Vitvi07g00301Vitvi18g00313Vitvi09g01983Vitvi11g01418Vitvi03g00338
Vitvi12g00037Vitvi18g03314Vitvi14g00952Vitvi07g02112Vitvi10g01293Vitvi10g00621
Vitvi17g01101Vitvi12g02458Vitvi04g00641Vitvi18g02404Vitvi11g01699Vitvi12g01841
Vitvi19g02316Vitvi12g02318Vitvi08g01572Vitvi07g00063Vitvi11g01654Vitvi07g00337
Vitvi12g01838Vitvi04g01638Vitvi18g01238Vitvi04g00884Vitvi01g02146Vitvi13g00070
Vitvi04g02153Vitvi08g02056Vitvi03g01348Vitvi12g02657Vitvi07g02258Vitvi05g00402
Vitvi05g01288Vitvi10g02215Vitvi15g01495Vitvi18g00366Vitvi13g02539Vitvi18g00691
Vitvi16g01529Vitvi09g01770Vitvi02g01407Vitvi15g01204Vitvi09g01675Vitvi10g00442
Vitvi00g00889Vitvi07g00899Vitvi18g02730Vitvi00g01940Vitvi03g01859Vitvi01g00264
Vitvi04g02194Vitvi01g00739Vitvi09g01581Vitvi01g01836Vitvi09g00902Vitvi17g01318
Vitvi09g01141Vitvi13g01945Vitvi18g00061Vitvi13g01969Vitvi05g01985Vitvi12g02147
Vitvi06g00610Vitvi03g00702Vitvi02g00017Vitvi01g00566Vitvi02g01673Vitvi04g01799
Vitvi18g02060Vitvi09g01181Vitvi13g01001Vitvi06g00351Vitvi10g02061Vitvi14g01637
Vitvi13g00127Vitvi07g02109Vitvi10g01624Vitvi15g00754Vitvi04g02061Vitvi07g00542
Vitvi18g01914Vitvi18g02455Vitvi03g00936Vitvi12g01832Vitvi19g02066Vitvi18g00268
Vitvi17g01397Vitvi10g02170Vitvi11g00365Vitvi16g01779Vitvi18g01585Vitvi02g00052
Vitvi12g02641Vitvi15g01687Vitvi02g01705Vitvi10g01795Vitvi10g01993Vitvi14g01341
Vitvi19g00484Vitvi08g01293Vitvi17g00955Vitvi14g02455Vitvi15g01448Vitvi10g00399
Vitvi11g01105Vitvi18g02628Vitvi03g01358Vitvi01g00680Vitvi12g02284Vitvi13g00143
Vitvi19g00412Vitvi14g02408Vitvi15g00641Vitvi14g03087Vitvi15g01722Vitvi02g01446
Vitvi00g02220Vitvi13g01874Vitvi11g00838Vitvi10g02081Vitvi14g02737Vitvi05g00377
Vitvi01g00796Vitvi00g01102Vitvi08g01348Vitvi07g01658Vitvi15g01379Vitvi19g02064
Vitvi05g01903Vitvi16g01884Vitvi06g01921Vitvi16g00879Vitvi02g01590Vitvi05g01901
Vitvi04g02197Vitvi07g03001Vitvi04g01635Vitvi06g01638Vitvi09g01918Vitvi04g01653
Vitvi10g00535Vitvi09g01791Vitvi01g00864Vitvi13g01861Vitvi09g01820Vitvi19g00682
Vitvi12g00002Vitvi07g02477Vitvi04g00735Vitvi18g01168Vitvi18g03021Vitvi06g01459
Vitvi18g02857Vitvi01g02000Vitvi10g01715Vitvi05g00126Vitvi19g01041Vitvi10g01756
Vitvi14g01402Vitvi12g02179Vitvi17g01520Vitvi18g02661Vitvi09g00918Vitvi05g02177
Vitvi18g01376Vitvi14g00775Vitvi08g02121Vitvi18g02648Vitvi18g03389Vitvi13g02075
Vitvi12g01911Vitvi06g01944Vitvi14g02558Vitvi07g01759Vitvi15g01749Vitvi03g00397
Vitvi16g00022Vitvi14g01645Vitvi10g01029Vitvi08g02381Vitvi09g00808Vitvi05g00864
Vitvi05g01469Vitvi07g02368Vitvi12g00251Vitvi04g00801Vitvi14g02675Vitvi15g00396
Vitvi10g01651Vitvi05g00604Vitvi08g01342Vitvi05g01259Vitvi04g02060Vitvi07g00176
Vitvi12g02125Vitvi16g00129Vitvi16g01175Vitvi19g01727Vitvi10g01823Vitvi03g00443
Vitvi09g01371Vitvi05g00381Vitvi15g00921Vitvi05g00861Vitvi02g01784Vitvi15g01021
Vitvi05g00523Vitvi03g01531Vitvi19g00041Vitvi12g00148Vitvi09g00884Vitvi17g00098
Vitvi10g00519Vitvi17g01395Vitvi16g01979Vitvi05g01828Vitvi11g01360Vitvi15g00915
Vitvi13g02425Vitvi03g01525Vitvi19g00397Vitvi15g00929Vitvi18g03317Vitvi02g01358
Vitvi19g01061Vitvi14g01805Vitvi13g02005Vitvi14g00243Vitvi17g00593Vitvi13g00076
Vitvi05g02199Vitvi12g02639Vitvi01g00477Vitvi09g00241Vitvi15g01717Vitvi04g00241
Vitvi04g01895Vitvi13g01684Vitvi09g01398Vitvi07g02228Vitvi18g03345Vitvi09g01409
Vitvi01g01886Vitvi02g00521Vitvi13g02009Vitvi13g01871Vitvi09g01956Vitvi14g02990
Vitvi01g02020Vitvi11g00634Vitvi11g01681Vitvi19g02118Vitvi14g02545Vitvi04g02087
Vitvi01g00815Vitvi03g00411Vitvi15g00537Vitvi13g02023Vitvi14g00220Vitvi11g01532
Vitvi03g01571Vitvi11g01634Vitvi03g01597Vitvi01g01437Vitvi00g02009Vitvi05g00046
Vitvi18g03182Vitvi16g01123Vitvi05g00360Vitvi08g02368Vitvi18g01839Vitvi11g00727
Vitvi12g02259Vitvi18g02993Vitvi08g01789Vitvi08g02325Vitvi18g02942Vitvi11g01428
Vitvi05g01453Vitvi18g00204Vitvi07g01734Vitvi18g01637Vitvi15g01331Vitvi09g00995
Vitvi17g01476Vitvi19g00479Vitvi03g01361Vitvi04g02308Vitvi16g01651Vitvi18g03254
Vitvi14g02522Vitvi03g01522Vitvi18g02075Vitvi16g01952Vitvi14g02873Vitvi03g01430
Vitvi11g01471Vitvi16g01800Vitvi13g01744Vitvi08g00108Vitvi15g01343Vitvi13g00405
Vitvi02g00811Vitvi13g01876Vitvi18g02616Vitvi13g02043Vitvi11g01497Vitvi03g01428
Vitvi12g02231Vitvi03g01742Vitvi07g01847Vitvi01g00892Vitvi00g01834Vitvi04g01795
Vitvi19g00052Vitvi11g00950Vitvi02g00022Vitvi15g01647Vitvi15g01739Vitvi08g01089
Vitvi19g01863Vitvi03g00699Vitvi08g02126Vitvi10g02083Vitvi18g02701Vitvi08g01276
Vitvi18g00623Vitvi18g00816Vitvi05g00478Vitvi09g00021Vitvi18g03024Vitvi18g02754
Vitvi19g02236Vitvi14g01318Vitvi12g02434Vitvi09g01603Vitvi09g00916Vitvi18g02399
Vitvi18g01763Vitvi12g02213Vitvi04g00060Vitvi11g01266Vitvi06g01870Vitvi08g01602
Vitvi07g02711Vitvi12g01172Vitvi10g01628Vitvi01g01885Vitvi18g03350Vitvi14g01865
Vitvi05g01156Vitvi13g02592Vitvi04g02239Vitvi14g02477Vitvi13g01254Vitvi07g02433
Vitvi15g01425Vitvi10g01699Vitvi04g01160Vitvi10g01017Vitvi17g00009Vitvi16g01352
Vitvi06g00547Vitvi14g01907Vitvi01g00612Vitvi10g02214Vitvi07g02673Vitvi01g01654
Vitvi13g02459Vitvi07g02413Vitvi10g01023Vitvi17g01427Vitvi09g02096Vitvi04g00527
Vitvi03g00574Vitvi07g01837Vitvi01g01808Vitvi04g01264Vitvi10g01392Vitvi17g00565
Vitvi17g00224Vitvi12g02523Vitvi01g00656Vitvi09g00717Vitvi03g01737Vitvi11g00183
Vitvi10g01930Vitvi03g01819Vitvi03g01364Vitvi09g00472Vitvi03g01674Vitvi01g00424
Vitvi06g00672Vitvi03g01530Vitvi10g01623Vitvi09g01490Vitvi09g01526Vitvi07g00807
Vitvi05g02208Vitvi10g01455Vitvi08g00868Vitvi09g00621Vitvi12g02762Vitvi14g02811
Vitvi16g00715Vitvi12g02317Vitvi08g01024Vitvi06g01574Vitvi17g01539Vitvi00g01020
Vitvi19g02392Vitvi19g01636Vitvi01g00608Vitvi08g02282Vitvi16g02154Vitvi09g00007
Vitvi08g01846Vitvi03g01528Vitvi03g00144Vitvi15g01641Vitvi18g02899Vitvi10g00276
Vitvi00g01239Vitvi11g01442Vitvi15g01035Vitvi17g00556Vitvi12g02257Vitvi01g01038
Vitvi19g01371Vitvi12g02324Vitvi17g00292Vitvi11g01366Vitvi18g02901Vitvi11g00317
Vitvi05g00109Vitvi19g01525Vitvi18g01098Vitvi09g01851Vitvi10g02044Vitvi04g00106
Vitvi18g01919Vitvi12g01431Vitvi07g03142Vitvi07g01728Vitvi12g02605Vitvi12g02495
Vitvi16g00900Vitvi18g01849Vitvi19g00141Vitvi18g00746Vitvi18g03025Vitvi05g00486
Vitvi18g00153Vitvi11g01437Vitvi19g02057Vitvi14g02599Vitvi03g01785Vitvi15g00906
Vitvi00g01276Vitvi05g01944Vitvi18g00274Vitvi18g02534Vitvi09g00886Vitvi00g01061
Vitvi10g01910Vitvi07g02404Vitvi07g01737Vitvi16g01132Vitvi15g01356Vitvi05g01786
Vitvi03g01591Vitvi12g02634Vitvi07g03112Vitvi05g02255Vitvi03g00933Vitvi19g00153
Vitvi05g01419Vitvi03g01535Vitvi16g01176Vitvi13g02139Vitvi14g01946Vitvi18g00435
Vitvi18g03095Vitvi04g02252Vitvi17g00046Vitvi07g02858Vitvi09g02095Vitvi07g02265
Vitvi09g01914Vitvi12g01323Vitvi09g00193Vitvi17g01357Vitvi18g02896Vitvi08g00014
Vitvi19g01832Vitvi05g02253Vitvi17g00977Vitvi10g02241Vitvi06g00266Vitvi07g02240
Vitvi08g01972Vitvi08g01235Vitvi04g00680Vitvi09g01982Vitvi13g02143Vitvi08g00030
Vitvi12g02701Vitvi03g01482Vitvi07g01773Vitvi18g02838Vitvi18g03083Vitvi04g00636
Vitvi02g01355Vitvi08g02266Vitvi13g00669Vitvi19g01896Vitvi18g02902Vitvi12g02138
Vitvi05g01617Vitvi11g00001Vitvi11g00811Vitvi16g00971Vitvi08g02464Vitvi05g01571
Vitvi09g02007Vitvi05g01945Vitvi10g00605Vitvi02g01325Vitvi15g01389Vitvi16g01164
Vitvi09g01790Vitvi11g01576Vitvi08g00970Vitvi00g00989Vitvi10g02105Vitvi13g00591
Vitvi09g01912Vitvi16g00787Vitvi13g01932Vitvi04g00696Vitvi07g02373Vitvi05g01350
Vitvi16g01699Vitvi18g00878Vitvi16g01418Vitvi18g02591Vitvi10g01195Vitvi01g00673
Vitvi18g01959Vitvi04g00432Vitvi05g01269Vitvi04g00136Vitvi11g01357Vitvi08g02163
Vitvi18g01877Vitvi03g01486Vitvi03g01363Vitvi14g02655Vitvi15g01665Vitvi19g01902
Vitvi02g01354Vitvi16g00349Vitvi03g01292Vitvi19g01948Vitvi18g03038Vitvi19g00515
Vitvi12g00452Vitvi08g00267Vitvi13g00012Vitvi08g00155Vitvi18g02949Vitvi04g01095
Vitvi03g01540Vitvi18g00444Vitvi02g00327Vitvi13g01267Vitvi07g02378Vitvi01g01304
Vitvi15g01705Vitvi06g01060Vitvi04g00289Vitvi18g00807Vitvi14g00223Vitvi08g01767
Vitvi11g00882Vitvi19g02009Vitvi04g02238Vitvi02g01744Vitvi04g02018Vitvi01g02158
Vitvi18g02198Vitvi04g02310Vitvi07g02990Vitvi08g01503Vitvi00g02357Vitvi13g01107
Vitvi19g02286Vitvi05g01200Vitvi03g01872Vitvi16g01325Vitvi15g01323Vitvi14g01344
Vitvi05g02141Vitvi15g00675Vitvi05g00067Vitvi19g01601Vitvi10g01519Vitvi09g00599
Vitvi19g01217 Vitvi18g00687Vitvi15g01642Vitvi19g01821Vitvi07g01454
Vitvi14g01938 Vitvi15g00753Vitvi03g00047Vitvi15g00494Vitvi04g02313
Vitvi05g00485 Vitvi05g00802Vitvi13g01245Vitvi18g02905Vitvi09g00223
Vitvi10g01431 Vitvi04g01934Vitvi10g00439Vitvi01g02168Vitvi17g01050
Vitvi14g00025 Vitvi17g01389Vitvi02g01363Vitvi05g02073Vitvi01g00292
Vitvi12g02153 Vitvi04g00722Vitvi14g00401Vitvi18g03341Vitvi04g01097
Vitvi17g00306 Vitvi08g01190Vitvi04g02221Vitvi05g02103Vitvi14g00185
Vitvi06g01765 Vitvi07g02987Vitvi05g02050Vitvi14g02536Vitvi10g00946
Vitvi06g01334 Vitvi07g01240Vitvi19g02049Vitvi18g02936Vitvi19g00164
Vitvi07g01714 Vitvi01g00638Vitvi09g01980Vitvi18g02947Vitvi12g00026
Vitvi11g00013 Vitvi05g00637Vitvi19g02025Vitvi10g01989Vitvi13g00278
Vitvi10g01941 Vitvi16g01078Vitvi01g02124Vitvi10g01201Vitvi02g00938
Vitvi18g03362 Vitvi02g00532Vitvi14g02868Vitvi15g01677Vitvi07g01596
Vitvi05g02085 Vitvi13g00375Vitvi14g02781Vitvi18g02953Vitvi02g00374
Vitvi14g00577 Vitvi14g03042Vitvi09g01742Vitvi16g01764Vitvi08g00808
Vitvi14g02692 Vitvi10g02177Vitvi12g02737Vitvi18g02944Vitvi08g01126
Vitvi05g01153 Vitvi06g01830Vitvi14g02497Vitvi04g00352Vitvi02g00223
Vitvi14g00707 Vitvi07g00400Vitvi06g01711Vitvi15g00323Vitvi03g00378
Vitvi18g01962 Vitvi18g01735Vitvi14g03007Vitvi16g01622Vitvi19g00029
Vitvi04g00433 Vitvi19g00735Vitvi06g00359Vitvi16g01738Vitvi09g00582
Vitvi17g00309 Vitvi16g00071Vitvi14g00997Vitvi16g00859Vitvi17g01593
Vitvi12g01861 Vitvi09g01122Vitvi07g00822Vitvi07g00478Vitvi02g00228
Vitvi01g00088 Vitvi12g00721Vitvi12g02258Vitvi09g01142Vitvi07g01354
Vitvi16g01278 Vitvi07g02989Vitvi15g01560Vitvi18g03061Vitvi11g01602
Vitvi13g02470 Vitvi09g00185Vitvi16g01312Vitvi19g01083Vitvi14g02009
Vitvi12g01908 Vitvi09g01954Vitvi04g02207Vitvi13g02439Vitvi06g00329
Vitvi19g01820 Vitvi18g01253Vitvi05g01611Vitvi10g01829Vitvi10g00209
Vitvi03g00504 Vitvi07g02573Vitvi13g02489Vitvi09g00682Vitvi06g00785
Vitvi16g02028 Vitvi11g00360Vitvi13g00388Vitvi02g01280Vitvi07g02634
Vitvi05g02155 Vitvi11g00417Vitvi12g00648Vitvi16g01760Vitvi01g00309
Vitvi13g00940 Vitvi11g00089Vitvi05g01451Vitvi18g03067Vitvi10g01641
Vitvi18g01716 Vitvi08g01991Vitvi00g02238Vitvi02g00265
Vitvi05g01923 Vitvi05g01768Vitvi19g01836Vitvi18g00149
Vitvi13g02026 Vitvi05g02093Vitvi14g02554Vitvi03g01337
Vitvi18g02649 Vitvi05g01370Vitvi16g00391Vitvi07g01078
Vitvi08g01110 Vitvi10g02035Vitvi17g01046Vitvi07g03014
Vitvi07g01045 Vitvi08g01938Vitvi00g01769Vitvi13g01066
Vitvi17g01286 Vitvi05g00411Vitvi18g03022Vitvi04g00846
Vitvi07g02077 Vitvi18g02656Vitvi19g01929Vitvi15g01575
Vitvi19g01850 Vitvi03g00953Vitvi02g01764Vitvi09g01204
Vitvi04g01836 Vitvi14g00296Vitvi05g02036Vitvi06g00709
Vitvi19g01824 Vitvi05g02147Vitvi15g01330Vitvi02g00409
Vitvi11g01181 Vitvi12g00549Vitvi17g01673Vitvi08g01470
Vitvi05g00905 Vitvi05g02144Vitvi18g02703Vitvi07g02595
Vitvi18g03217 Vitvi09g00475Vitvi05g00152Vitvi12g00414
Vitvi18g00154 Vitvi06g00078Vitvi10g01620Vitvi01g00246
Vitvi13g02473 Vitvi05g01530Vitvi15g00918Vitvi09g02017
Vitvi07g01719 Vitvi15g01450Vitvi09g00914Vitvi17g01122
Vitvi09g00356 Vitvi13g00948Vitvi19g01950Vitvi13g01556
Vitvi09g00867 Vitvi10g01121Vitvi12g02763Vitvi02g00719
Vitvi01g00873 Vitvi04g02214Vitvi12g02189Vitvi19g00071
Vitvi13g00037 Vitvi13g00458Vitvi18g02698Vitvi13g01778
Vitvi01g01949 Vitvi10g00478Vitvi13g01676Vitvi08g02168
Vitvi18g00470 Vitvi16g00515Vitvi16g01461Vitvi11g00022
Vitvi12g02726 Vitvi14g01053Vitvi07g02665Vitvi08g02184
Vitvi14g02004 Vitvi06g01233Vitvi12g02730Vitvi07g01329
Vitvi18g00191 Vitvi03g01336Vitvi13g02423Vitvi11g00336
Vitvi13g02028 Vitvi18g00604Vitvi08g02081Vitvi01g00637
Vitvi13g00425 Vitvi02g00181Vitvi18g02873Vitvi07g01816
Vitvi15g01710 Vitvi08g02221Vitvi01g02134Vitvi01g02263
Vitvi19g00101 Vitvi13g02241Vitvi09g00809Vitvi07g01273
Vitvi11g01270 Vitvi14g02977Vitvi18g03065Vitvi12g00560
Vitvi16g01701 Vitvi16g01491Vitvi10g01599Vitvi04g01261
Vitvi00g02329 Vitvi01g02178Vitvi19g02229Vitvi17g01625
Vitvi05g00930 Vitvi15g00570Vitvi16g01465Vitvi07g02969
Vitvi01g02105 Vitvi01g00546Vitvi13g02583Vitvi18g00181
Vitvi13g00474 Vitvi04g00774Vitvi16g00321Vitvi10g00687
Vitvi16g01955Vitvi10g01598Vitvi10g01605
Vitvi03g01098Vitvi18g03356Vitvi16g01103
Vitvi08g01369Vitvi08g02159Vitvi04g00264
Vitvi18g01533Vitvi12g01701Vitvi15g00998
Vitvi17g01373Vitvi18g03027Vitvi12g00221
Vitvi09g01553Vitvi18g03351Vitvi06g00494
Vitvi08g02046Vitvi15g01253Vitvi12g00086
Vitvi10g01095Vitvi03g01682Vitvi01g02030
Vitvi15g00308Vitvi12g00542
Vitvi03g00407Vitvi14g01685
Vitvi16g01824Vitvi09g00568
Vitvi07g02360Vitvi06g00518
Vitvi05g02210Vitvi08g01724
Vitvi14g02552Vitvi05g00539
Vitvi15g01704Vitvi05g02190
Vitvi17g01464Vitvi06g01057
Vitvi07g02357Vitvi08g02261
Vitvi07g02315Vitvi05g00736
Vitvi18g03039Vitvi07g00015
Vitvi03g01732Vitvi04g02297
Vitvi14g02532Vitvi10g01540
Vitvi04g00723Vitvi02g01778
Vitvi08g02255Vitvi05g01833
Vitvi16g01459Vitvi08g02225
Vitvi18g02668Vitvi17g01474
Vitvi08g00728Vitvi05g01855
Vitvi16g02161Vitvi08g01011
Vitvi10g01313Vitvi18g00283
Vitvi04g02215Vitvi04g00047
Vitvi15g01419Vitvi16g01830
Vitvi18g03033Vitvi08g01406
Vitvi01g02143Vitvi10g01103
Vitvi02g00809Vitvi05g01113
Vitvi14g02534Vitvi09g01273
Vitvi18g02895Vitvi19g00113
Vitvi12g02425Vitvi04g02296
Vitvi09g01957Vitvi06g00074
Vitvi03g01446Vitvi06g00202
Vitvi09g01778Vitvi08g01839
Vitvi01g02311Vitvi10g00612
Vitvi18g02723Vitvi13g01068
Vitvi12g02662Vitvi07g01766
Vitvi10g01824Vitvi19g01917
Vitvi17g00458Vitvi06g01709
Vitvi14g02787Vitvi10g00711
Vitvi10g02008Vitvi05g00128
Vitvi09g02051Vitvi14g01721
Vitvi10g00504Vitvi18g00694
Vitvi03g01359Vitvi09g01519
Vitvi09g01757Vitvi05g00337
Vitvi15g01360Vitvi05g00218
Vitvi07g00957Vitvi07g01363
Vitvi05g01982Vitvi16g00553
Vitvi17g01630Vitvi10g00465
Vitvi06g01720Vitvi17g00892
Vitvi04g02193Vitvi04g00252
Vitvi18g03174Vitvi14g02461
Vitvi03g01640Vitvi10g00694
Vitvi10g02052Vitvi10g01250
Vitvi03g01663Vitvi04g01296
Vitvi16g01608Vitvi17g00757
Vitvi09g01971Vitvi14g01305
Vitvi15g01319Vitvi16g01217
Vitvi14g00676Vitvi01g00363
Vitvi11g00982Vitvi08g01040
Vitvi12g01849Vitvi16g02078
Vitvi04g00349Vitvi07g01325
Vitvi12g02182Vitvi18g02813
Vitvi18g03403Vitvi10g00880
Vitvi00g01835Vitvi11g00284
Vitvi18g02104Vitvi07g00444
Vitvi04g00874Vitvi04g00090
Vitvi00g01893Vitvi10g00266
Vitvi19g02363Vitvi02g01644
Vitvi12g00509Vitvi04g01802
Vitvi09g01626Vitvi00g00894
Vitvi12g01154Vitvi08g01550
Vitvi10g01964Vitvi06g00548
Vitvi14g03088Vitvi14g02462
Vitvi16g00442Vitvi13g00994
Vitvi03g01714Vitvi16g00518
Vitvi09g02085Vitvi09g00355
Vitvi01g02312Vitvi08g01013
Vitvi12g00920Vitvi19g00285
Vitvi01g02156Vitvi10g00705
Vitvi03g01793Vitvi17g01275
Vitvi06g00465
Vitvi06g00569
Vitvi18g01217
Vitvi06g00299
Vitvi14g00902
Vitvi14g02457
Vitvi07g02753
Vitvi07g00105
Vitvi14g00152
Vitvi14g01859
Vitvi06g01635
Vitvi00g00936
Vitvi17g00918
Vitvi14g01524
Vitvi03g00579
Vitvi17g00384
Vitvi16g01126
Vitvi01g01583
Vitvi06g00774
Vitvi16g00921
Vitvi13g00865
Vitvi19g02276
Vitvi02g00499
Vitvi17g00030
Vitvi09g00187
Vitvi15g01146
Vitvi05g00684
Vitvi18g00708
Vitvi18g02420
Vitvi02g01314
Vitvi12g00771
Vitvi04g01664
Vitvi11g00231
Vitvi01g00941
Vitvi06g00169
Vitvi04g01100
Vitvi11g00413
Vitvi09g00647
Vitvi05g00841
Vitvi06g00757
Vitvi03g00104
Vitvi09g00166
Vitvi04g01883
Vitvi05g01848
Vitvi03g01328
Vitvi12g00729
Vitvi10g00011
Vitvi19g02045
Vitvi11g00459
Vitvi13g00270
Vitvi05g02077
Vitvi15g00989
Vitvi14g00063
Vitvi06g01621
Vitvi17g00631
Vitvi05g02181
Vitvi08g00145
Vitvi10g01086
Vitvi02g00025
Vitvi04g01529
Vitvi18g01170
Vitvi01g00078
Vitvi00g01106
Vitvi01g00648
Vitvi18g01237
Vitvi19g00572
Vitvi19g00190
Vitvi12g00383
Vitvi14g01796
Vitvi06g01673
Vitvi10g00470
Vitvi14g01894
Vitvi07g01333
Vitvi16g00024
Vitvi04g00091
Vitvi02g00482
Vitvi18g00145
Vitvi03g00230
Vitvi19g00470
Vitvi05g00575
Vitvi09g00772
Vitvi17g00578
Vitvi01g00825
Vitvi14g01984
Vitvi19g00012
Vitvi01g00150
Vitvi01g00903
Vitvi18g01173
Vitvi05g00513
Vitvi02g01274
Vitvi07g00457
Vitvi18g02501
Vitvi07g02191
Vitvi05g00770
Vitvi02g01779
Vitvi05g00535
Vitvi03g01432
Vitvi05g00628
Vitvi15g00740
Vitvi05g01048
Vitvi07g02172
Vitvi08g01119
Vitvi19g00182
Vitvi07g02971
Vitvi08g00217
Vitvi01g01826
Vitvi10g02169
Vitvi11g01241
Vitvi15g00691
Vitvi16g01135
Vitvi05g00538
Vitvi13g01253
Vitvi13g02017
Vitvi09g00045
Vitvi15g00886
Vitvi12g00714
Vitvi18g00055
Vitvi12g00426
Vitvi02g01192
Vitvi04g01159
Vitvi08g01408
Vitvi16g00183
Vitvi18g01661
Vitvi03g01805
Vitvi00g00951
Vitvi10g01471
Vitvi02g00454
Vitvi09g00165
Vitvi04g00317
Vitvi07g00701
Vitvi08g00798
Vitvi07g00048
Vitvi05g00012
Vitvi06g00944
Vitvi13g00274
Vitvi18g02052
Vitvi04g02184
Vitvi14g00475
Vitvi14g02562
Vitvi12g00486
Vitvi10g00113
Vitvi08g02411
Vitvi18g00795
Vitvi04g01792
Vitvi17g00634
Vitvi14g00495
Vitvi01g01173
Vitvi04g00210
Vitvi02g01313
Vitvi11g00411
Vitvi10g02166
Vitvi00g01333
Vitvi07g02170
Vitvi10g01360
Vitvi17g00415
Vitvi04g01800
Vitvi18g02796
Vitvi02g00018
Vitvi00g00816
Vitvi17g00071
Vitvi11g00249
Vitvi14g01730
Vitvi05g01117
Vitvi02g01211
Vitvi17g00661
Vitvi00g01309
Vitvi02g00563
Vitvi06g01119
Vitvi06g01000
Vitvi12g00144
Vitvi18g00719
Vitvi01g01476
Vitvi17g01025
Vitvi08g01841
Vitvi16g01306
Vitvi18g01088
Vitvi06g00625
Vitvi16g00184
Vitvi13g02507
Vitvi11g00278
Vitvi09g00198
Vitvi06g00943
Vitvi10g01422
Vitvi10g01075
Vitvi14g00289
Vitvi01g00296
Vitvi06g00538
Vitvi16g01014
Vitvi08g02186
Vitvi06g01113
Vitvi07g03100
Vitvi14g00396
Vitvi04g00184
Vitvi14g01877
Vitvi19g00652
Vitvi07g01410
Vitvi12g02143
Vitvi04g00397
Vitvi03g00376
Vitvi08g01835
Vitvi14g02566
Vitvi03g00717
Vitvi18g01448
Vitvi17g00171
Vitvi01g01459
Vitvi10g01318
Vitvi04g00962
Vitvi05g00325
Vitvi10g01456
Vitvi13g02024
Vitvi07g00581
Vitvi02g00194
Vitvi13g01743
Vitvi18g00888
Vitvi12g00576
Vitvi02g01005
Vitvi03g00182
Vitvi16g00928
Vitvi17g00114
Vitvi12g00755
Vitvi14g01470
Vitvi14g00233
Vitvi09g00997
Vitvi18g01172
Vitvi08g01616
Vitvi09g00629
Vitvi06g00506
Vitvi08g01891
Vitvi14g01858
Vitvi12g00681
Vitvi10g00702
Vitvi07g02242
Vitvi08g01143

References

  1. Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
  2. Pou, A.; Medrano, H.; Tomàs, M.; Martorell, S.; Ribas-Carbó, M.; Flexas, J. Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant Soil 2012, 359, 335–349. [Google Scholar] [CrossRef]
  3. Hochberg, U.; Degu, A.; Fait, A.; Rachmilevitch, S. Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar. Physiol. Plant. 2013, 147, 443–452. [Google Scholar] [CrossRef]
  4. Martínez-Vilalta, J.; Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant Cell Environ. 2017, 40, 962–976. [Google Scholar] [CrossRef]
  5. Schultz, H.R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
  6. Soar, C.J.; Speirs, J.; Maffei, S.M.; Penrose, A.B.; McCarthy, M.G.; Loveys, B.R. Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: Apparent links with ABA physiology and gene expression in leaf tissue. Aust. J. Grape Wine Res. 2006, 12, 2–12. [Google Scholar] [CrossRef]
  7. Tombesi, S.; Nardini, A.; Farinelli, D.; Palliotti, A. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiol. Plant. 2014, 152, 453–464. [Google Scholar] [CrossRef]
  8. Lavoie-Lamoureux, A.; Sacco, D.; Risse, P.-A.; Lovisolo, C. Factors influencing stomatal conductance in response to water availability in grapevine: A meta-analysis. Physiol. Plant. 2017, 159, 468–482. [Google Scholar] [CrossRef]
  9. Serrano, A.S.; Martínez-Gascueña, J.; Chacón-Vozmediano, J.L. Variability in water use behavior during drought of different grapevine varieties: Assessment of their regulation of water status and stomatal control. Agric. Water Manag. 2024, 291, 108642. [Google Scholar] [CrossRef]
  10. Rogiers, S.Y.; Greer, D.H.; Hatfield, J.M.; Hutton, R.J.; Clarke, S.J.; Hutchinson, P.A.; Somers, A. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiol. 2012, 32, 249–261. [Google Scholar] [CrossRef]
  11. Garcia-Forner, N.; Biel, C.; Savé, R.; Martínez-Vilalta, J. Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Meinzer, F.; editor. Tree Physiol. 2017, 37, 441–455. [Google Scholar] [CrossRef] [PubMed]
  12. Yi, K.; Dragoni, D.; Phillips, R.P.; Roman, D.T.; Novick, K.A. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Tree Physiol. 2017, 37, 1379–1392. [Google Scholar] [CrossRef]
  13. McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
  14. Dayer, S.; Scharwies, J.D.; Ramesh, S.A.; Sullivan, W.; Doerflinger, F.C.; Pagay, V.; Tyerman, S.D. Comparing Hydraulics Between Two Grapevine Cultivars Reveals Differences in Stomatal Regulation Under Water Stress and Exogenous ABA Applications. Front Plant Sci. 2020, 11, 705. [Google Scholar] [CrossRef] [PubMed]
  15. Santo, S.D.; Palliotti, A.; Zenoni, S.; Tornielli, G.B.; Fasoli, M.; Paci, P.; Tombesi, S.; Frioni, T.; Silvestroni, O.; Bellincontro, A.; et al. Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars. BMC Genom. 2016, 17, 815. [Google Scholar] [CrossRef]
  16. Villalobos-González, L.; Muñoz-Araya, M.; Franck, N.; Pastenes, C. Controversies in Midday Water Potential Regulation and Stomatal Behavior Might Result from the Environment, Genotype, and/or Rootstock: Evidence from Carménère and Syrah Grapevine Varieties. Front. Plant Sci. 2019, 10, 1522. [Google Scholar] [CrossRef]
  17. Fu, X.; Meinzer, F.C. Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): A global data set reveals coordination and trade-offs among water transport traits. Tree Physiol. 2019, 39, 122–134. [Google Scholar] [CrossRef]
  18. Konecny, T.; Nikoghosyan, M.; Binder, H. Machine learning extracts marks of thiamine’s role in cold acclimation in the transcriptome of Vitis vinifera. Front. Plant Sci. 2023, 14, 1303542. [Google Scholar] [CrossRef]
  19. Tusher, V.G.; Tibshirani, R.; Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 2001, 98, 5116–5121. [Google Scholar] [CrossRef]
  20. Wirth, H.; Löffler, M.; Von Bergen, M.; Binder, H. Expression cartography of human tissues using self organizing maps. BMC Bioinform. 2011, 12, 306. [Google Scholar] [CrossRef]
  21. Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
  22. Urao, T.; Yamaguchi-Shinozaki, K.; Urao, S.; Shinozaki, K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 1993, 5, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
  23. Chen, B.-J.; Wang, Y.; Hu, Y.-L.; Wu, Q.; Lin, Z.-P. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci. 2005, 168, 493–500. [Google Scholar] [CrossRef]
  24. Jung, C.; Seo, J.S.; Han, S.W.; Koo, Y.J.; Kim, C.H.; Song, S.I.; Nahm, B.H.; Choi, Y.D.; Cheong, J.-J. Overexpression of AtMYB44 Enhances Stomatal Closure to Confer Abiotic Stress Tolerance in Transgenic Arabidopsis. Plant Physiol. 2008, 146, 323–324. [Google Scholar] [CrossRef]
  25. SSeo, P.J.; Xiang, F.; Qiao, M.; Park, J.-Y.; Na Lee, Y.; Kim, S.-G.; Lee, Y.-H.; Park, W.J.; Park, C.-M. The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis. Plant Physiol. 2009, 151, 275–289. [Google Scholar] [CrossRef]
  26. Prabu, G.; Prasad, D.T. Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Rep. 2012, 31, 661–669. [Google Scholar] [CrossRef]
  27. Wang, X.; Niu, Y.; Zheng, Y. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. Int. J. Mol. Sci. 2021, 22, 6125. [Google Scholar] [CrossRef]
  28. Li, S.; Khoso, M.A.; Wu, J.; Yu, B.; Wagan, S.; Liu, L. Exploring the mechanisms of WRKY transcription factors and regulated pathways in response to abiotic stress. Plant Stress 2024, 12, 100429. [Google Scholar] [CrossRef]
  29. Ando, S.; Nomoto, M.; Iwakawa, H.; Vial-Pradel, S.; Luo, L.; Sasabe, M.; Ohbayashi, I.; Yamamoto, K.T.; Tada, Y.; Sugiyama, M.; et al. Arabidopsis ASYMMETRIC LEAVES2 and Nucleolar Factors Are Coordinately Involved in the Perinucleolar Patterning of AS2 Bodies and Leaf Development. Plants 2023, 12, 3621. [Google Scholar] [CrossRef]
  30. Hyndman, D.; Bauman, D.R.; Heredia, V.V.; Penning, T.M. The aldo-keto reductase superfamily homepage. Chem.-Biol. Interact. 2003, 143–144, 621–631. [Google Scholar] [CrossRef]
  31. Kirankumar, T.V.; Madhusudhan, K.V.; Nareshkumar, A.; Kiranmai, K.; Lokesh, U.; Venkatesh, B.; Sudhakar, C. Expression Analysis of Aldo-Keto Reductase 1 (AKR1) in Foxtail Millet (Setaria italica L.) Subjected to Abiotic Stresses. Am. J. Plant Sci. 2016, 7, 500–509. [Google Scholar] [CrossRef]
  32. Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.-M.; Chan, T.-F.; Hui, J.H. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
  33. Tu, M.; Wang, X.; Yin, W.; Wang, Y.; Li, Y.; Zhang, G.; Li, Z.; Song, J.; Wang, X. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes. Hortic. Res. 2020, 7, 150. [Google Scholar] [CrossRef] [PubMed]
  34. Han, X.; Zhao, Y.; Chen, Y.; Xu, J.; Jiang, C.; Wang, X.; Zhuo, R.; Lu, M.-Z.; Zhang, J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. For. Res. 2022, 2, 9. [Google Scholar] [CrossRef]
  35. Malerba, M.; Cerana, R. Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water. Polysaccharides 2020, 1, 21–30. [Google Scholar] [CrossRef]
  36. Pratyusha, D.S.; Sarada, D.V.L. MYB transcription factors—Master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep. 2022, 41, 2245–2260. [Google Scholar] [CrossRef] [PubMed]
  37. Czemmel, S.; Stracke, R.; Weisshaar, B.; Cordon, N.; Harris, N.N.; Walker, A.R.; Robinson, S.P.; Bogs, J. The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries. Plant Physiol. 2009, 151, 1513–1530. [Google Scholar] [CrossRef]
  38. Machida, Y.; Suzuki, T.; Sasabe, M.; Iwakawa, H.; Kojima, S.; Machida, C. Arabidopsis ASYMMETRIC LEAVES2 (AS2): Roles in plant morphogenesis, cell division, and pathogenesis. J. Plant Res. 2022, 135, 3–14. [Google Scholar] [CrossRef]
  39. Goyal, P.; Devi, R.; Verma, B.; Hussain, S.; Arora, P.; Tabassum, R.; Gupta, S. WRKY transcription factors: Evolution, regulation, and functional diversity in plants. Protoplasma 2023, 260, 331–348. [Google Scholar] [CrossRef]
  40. Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
  41. Kumari, S.; Nazir, F.; Maheshwari, C.; Kaur, H.; Gupta, R.; Siddique, K.H.; Khan, M.I.R. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. Plant Physiol. Biochem. 2024, 206, 108238. [Google Scholar] [CrossRef] [PubMed]
  42. Muhammad, D.; Alameldin, H.F.; Oh, S.; Montgomery, B.L.; Warpeha, K.M. Arogenate dehydratases: Unique roles in light-directed development during the seed-to-seedling transition in Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1220732. [Google Scholar] [CrossRef] [PubMed]
  43. Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Bio. Technol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
  44. Xu, Z.; Zhang, D.; Hu, J.; Zhou, X.; Ye, X.; Reichel, K.L.; Stewart, N.R.; Syrenne, R.D.; Yang, X.; Gao, P.; et al. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinform. 2009, 10, S3. [Google Scholar] [CrossRef]
  45. Lu, Y.; Shao, D.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Strategies for enhancing resveratrol production and the expression of pathway enzymes. Appl. Microbiol. Biotechnol. 2016, 100, 7407–7421. [Google Scholar] [CrossRef]
  46. Dubrovina, A.S.; Kiselev, K.V. Regulation of stilbene biosynthesis in plants. Planta 2017, 246, 597–623. [Google Scholar] [CrossRef]
  47. Roy, S.; Mishra, M.; Dhankher, O.P.; Singla-Pareek, S.L.; Pareek, A. Molecular Chaperones: Key Players of Abiotic Stress Response in Plants. In Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol I; Rajpal, V.R., Sehgal, D., Kumar, A., Raina, S.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 125–165. [Google Scholar] [CrossRef]
  48. Khatri, P.; Chen, L.; Rajcan, I.; Dhaubhadel, S. Functional characterization of Cinnamate 4-hydroxylase gene family in soybean (Glycine max). PLoS ONE 2023, 18, e0285698. [Google Scholar] [CrossRef]
  49. Kriegshauser, L.; Knosp, S.; Grienenberger, E.; Tatsumi, K.; Gütle, D.D.; Sørensen, I.; Herrgott, L.; Zumsteg, J.; Rose, J.K.C.; Reski, R.; et al. Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. Plant Cell 2021, 33, 1472–1491. [Google Scholar] [CrossRef]
  50. Serrani-Yarce, J.C.; Escamilla-Trevino, L.; Barros, J.; Gallego-Giraldo, L.; Pu, Y.; Ragauskas, A.; Dixon, R.A. Targeting hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon. Biotechnol. Biofuels 2021, 14, 50. [Google Scholar] [CrossRef]
  51. Petersen, M. Hydroxycinnamoyltransferases in plant metabolism. Phytochem. Rev. 2016, 15, 699–727. [Google Scholar] [CrossRef]
  52. Giordano, D.; Provenzano, S.; Ferrandino, A.; Vitali, M.; Pagliarani, C.; Roman, F.; Cardinale, F.; Castellarin, S.D.; Schubert, A. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiol. Biochem. 2016, 101, 23–32. [Google Scholar] [CrossRef]
  53. Austin, M.B.; Bowman, M.E.; Ferrer, J.-L.; Schröder, J.; Noel, J.P. An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases. Chem. Biol. 2004, 11, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
  54. Schmidlin, L.; Poutaraud, A.; Claudel, P.; Mestre, P.; Prado, E.; Santos-Rosa, M.; Wiedemann-Merdinoglu, S.; Karst, F.; Merdinoglu, D.; Hugueney, P. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine. Plant Physiol. 2008, 148, 1630–1639. [Google Scholar] [CrossRef]
  55. Tunc-Ozdemir, M.; Miller, G.; Song, L.; Kim, J.; Sodek, A.; Koussevitzky, S.; Misra, A.N.; Mittler, R.; Shintani, D. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol. 2009, 151, 421–432. [Google Scholar] [CrossRef] [PubMed]
  56. Tian, S.; Wang, D.; Yang, L.; Zhang, Z.; Liu, Y. A systematic review of 1-Deoxy-D-xylulose-5-phosphate synthase in terpenoid biosynthesis in plants. Plant Growth Regul. 2022, 96, 221–235. [Google Scholar] [CrossRef]
  57. Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Grando, M.S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 2009, 118, 653–669. [Google Scholar] [CrossRef]
  58. Lange, B.M.; Ghassemian, M. Genome organization in Arabidopsis thaliana: A survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol. 2003, 51, 925–948. [Google Scholar] [CrossRef]
  59. Zhang, S.; Ding, G.; He, W.; Liu, K.; Luo, Y.; Tang, J.; He, N. Functional Characterization of the 1-Deoxy-D-Xylulose 5-Phosphate Synthase Genes in Morus notabilis. Front. Plant Sci. 2020, 11, 1142. [Google Scholar] [CrossRef]
  60. Kambampati, R.; Lauhon, C.T. Evidence for the Transfer of Sulfane Sulfur from IscS to ThiI during the in vitro Biosynthesis of 4-Thiouridine in Escherichia coli tRNA. J. Biol. Chem. 2000, 275, 10727–10730. [Google Scholar] [CrossRef]
  61. Larsson, O.; Wahlestedt, C.; Timmons, J.A. Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinform. 2005, 6, 129. [Google Scholar] [CrossRef]
  62. Löffler-Wirth, H.; Kalcher, M.; Binder, H. oposSOM: R-package for high-dimensional portraying of genome-wide expression landscapes on bioconductor. Bioinformatics 2015, 31, 3225–3227. [Google Scholar] [CrossRef]
  63. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
  64. Wirth, H.; Bergen, M.; von Binder, H. Mining SOM expression portraits: Feature selection and integrating concepts of molecular function. BioData Min. 2012, 5, 18. [Google Scholar] [CrossRef] [PubMed]
  65. Hopp, L.; Wirth, H.; Fasold, M.; Binder, H. Portraying the expression landscapes of cancer subtypes: A case study of glioblastoma multiforme and prostate cancer. Syst. Biomed. 2013, 1, 99–121. [Google Scholar] [CrossRef]
  66. Loeffler-Wirth, H.; Kreuz, M.; Hopp, L.; Arakelyan, A.; Haake, A.; Cogliatti, S.B.; Feller, A.C.; Hansmann, M.-L.; Lenze, D.; Möller, P.; et al. A modular transcriptome map of mature B cell lymphomas. Genome Med. 2019, 11, 27. [Google Scholar] [CrossRef] [PubMed]
  67. Prieto, J.A.; Lebon, É.; Ojeda, H. Stomatal behavior of different grapevine cultivars in response to soil water status and air water vapor pressure deficit. OENO One 2010, 44, 9. [Google Scholar] [CrossRef]
  68. Coupel-Ledru, A.; Lebon, É.; Christophe, A.; Doligez, A.; Cabrera-Bosquet, L.; Péchier, P.; Hamard, P.; This, P.; Simonneau, T. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J. Exp. Bot. 2014, 65, 6205–6218. [Google Scholar] [CrossRef]
  69. Coupel-Ledru, A.; Tyerman, S.D.; Masclef, D.; Lebon, E.; Christophe, A.; Edwards, E.J.; Simonneau, T. Abscisic Acid Down-Regulates Hydraulic Conductance of Grapevine Leaves in Isohydric Genotypes Only. Plant Physiol. 2017, 175, 1121–1134. [Google Scholar] [CrossRef]
  70. Zhang, W.; Wang, S.-C.; Li, Y. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera): Insights from transcriptomics. Ecotoxicol. Environ. Saf. 2023, 263, 115307. [Google Scholar] [CrossRef]
  71. Rapala-Kozik, M.; Wolak, N.; Kujda, M.; Banas, A.K. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol. 2012, 12, 2. [Google Scholar] [CrossRef]
  72. Ye, X.-F.; Li, Y.; Liu, H.-L.; He, Y.-X. Physiological analysis and transcriptome sequencing reveal the effects of drier air humidity stress on Pterocarya stenoptera. Genomics 2020, 112, 5005–5011. [Google Scholar] [CrossRef]
  73. Li, Y.; Si, Y.-T.; He, Y.-X.; Li, J.-X. Comparative analysis of drought-responsive and -adaptive genes in Chinese wingnut (Pterocarya stenoptera C. DC). BMC Genomics 2021, 22, 155. [Google Scholar] [CrossRef]
  74. Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
  75. Yates, A.D.; Allen, J.; Amode, R.M.; Azov, A.G.; Barba, M.; Becerra, A.; Bhai, J.; I Campbell, L.; Martinez, M.C.; Chakiachvili, M.; et al. Ensembl Genomes 2022: An expanding genome resource for non-vertebrates. Nucleic Acids Res. 2022, 50, D996–D1003. [Google Scholar] [CrossRef]
  76. Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
  77. Grimplet, J.; Cramer, G.R.; Dickerson, J.A.; Mathiason, K.; Hemert, J.V.; Fennell, A.Y. VitisNet: “Omics” Integration through Grapevine Molecular Networks. PLoS ONE 2009, 4, e8365. [Google Scholar] [CrossRef] [PubMed]
  78. Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.-P.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
Figure 1. Transcriptome portrayal of the WS experiment reveals distinct trajectories for isohydric (MP) and anisohydric (SG) cultivars. (A) SOM transcriptome portraits of all samples studied. (B) The pairwise correlation map of the SOM portraits indicates two distinct clusters for the two cultivars, correlation squares along the diagonal due to the replicates, and off-diagonal correlations between different time points and stress-induced effects in both cultivars (see arrows). (C) The independent component plot of the portraits shows linear trajectories along the IC2 axis of both cultivars. IC1, IC2, and IC3 denote the first three independent components. (D) Sample SOM represents a two-dimensional presentation of the trajectories: Transcriptome trajectories separate due to isohydric and anisohydric cultivars in the horizontal direction and develop with time vertically with an additional increment due to WS. Dots inside each “Sample SOM” represent samples. The color code of samples is indicated in the bottom right corner.
Figure 1. Transcriptome portrayal of the WS experiment reveals distinct trajectories for isohydric (MP) and anisohydric (SG) cultivars. (A) SOM transcriptome portraits of all samples studied. (B) The pairwise correlation map of the SOM portraits indicates two distinct clusters for the two cultivars, correlation squares along the diagonal due to the replicates, and off-diagonal correlations between different time points and stress-induced effects in both cultivars (see arrows). (C) The independent component plot of the portraits shows linear trajectories along the IC2 axis of both cultivars. IC1, IC2, and IC3 denote the first three independent components. (D) Sample SOM represents a two-dimensional presentation of the trajectories: Transcriptome trajectories separate due to isohydric and anisohydric cultivars in the horizontal direction and develop with time vertically with an additional increment due to WS. Dots inside each “Sample SOM” represent samples. The color code of samples is indicated in the bottom right corner.
Plants 13 02501 g001
Figure 2. Transcriptome dynamics under WS in isohydric (MP) and anisohydric (SG) water management. (A) The regions of characteristic overexpression as red areas labeled A–F (see “Overexpression map”) agree with regions of highest expression variance (see “Variance map”). (B) Spots usually contain a few hundred genes of different functional contexts (left). Expression profiles of the spots across all conditions reveal characteristic courses of transcriptomic co-regulation (right). (C) Transcriptome dynamics under WS is characterized by waterline portraits revealing different stress trajectories for SG and MP (gray arrows), time, as well as by spot activation patterns (spots jointly activated in the portraits are connected by lines at the time points indicated). The number of jointly expressed spots increases under WS, thus indicating a more complex transcriptomic pattern compared to the controls (see text).
Figure 2. Transcriptome dynamics under WS in isohydric (MP) and anisohydric (SG) water management. (A) The regions of characteristic overexpression as red areas labeled A–F (see “Overexpression map”) agree with regions of highest expression variance (see “Variance map”). (B) Spots usually contain a few hundred genes of different functional contexts (left). Expression profiles of the spots across all conditions reveal characteristic courses of transcriptomic co-regulation (right). (C) Transcriptome dynamics under WS is characterized by waterline portraits revealing different stress trajectories for SG and MP (gray arrows), time, as well as by spot activation patterns (spots jointly activated in the portraits are connected by lines at the time points indicated). The number of jointly expressed spots increases under WS, thus indicating a more complex transcriptomic pattern compared to the controls (see text).
Plants 13 02501 g002
Figure 3. Topology of expression trajectories under WS. (A) The stress trajectories in the three-dimensional expression landscape. (B) Schematic spot activation along the T1-T2-T3 trajectory. (C) Gene ontology enrichment in spots A–F (biological processes in green, molecular functions in pink text).
Figure 3. Topology of expression trajectories under WS. (A) The stress trajectories in the three-dimensional expression landscape. (B) Schematic spot activation along the T1-T2-T3 trajectory. (C) Gene ontology enrichment in spots A–F (biological processes in green, molecular functions in pink text).
Plants 13 02501 g003
Figure 4. Stilbenoid, diarylheptanoid, and gingerol biosynthetic pathway. (A) Genes of the pathway (downstream flow visualized by black arrows) are along the two STRS trajectories (gray arrows), indicating their condition-specific activation. (B) The heatmap shows the expression changes in response to WS. (C) KEGG pathway with gene color code derived from their positions in the SOM portrait indicated by the colored waterline portraits of SG CTRL and STRS and MP CTRL and STRS (see the lower right part).
Figure 4. Stilbenoid, diarylheptanoid, and gingerol biosynthetic pathway. (A) Genes of the pathway (downstream flow visualized by black arrows) are along the two STRS trajectories (gray arrows), indicating their condition-specific activation. (B) The heatmap shows the expression changes in response to WS. (C) KEGG pathway with gene color code derived from their positions in the SOM portrait indicated by the colored waterline portraits of SG CTRL and STRS and MP CTRL and STRS (see the lower right part).
Plants 13 02501 g004
Figure 5. Thiamine biosynthetic pathway. (A) Map of the pathway (downstream flow visualized by black arrows). Genes accumulate in areas related to stress response, and the two STRS trajectories are shown by gray arrows. (B) Heatmap depicting the thiamine biosynthetic pathway gene expression in response to WS. (C) KEGG pathway with gene color code derived from their positions in the SOM portrait indicated by the colored waterline portraits of SG CTRL and STRS and MP CTRL and STRS (see the upper right part).
Figure 5. Thiamine biosynthetic pathway. (A) Map of the pathway (downstream flow visualized by black arrows). Genes accumulate in areas related to stress response, and the two STRS trajectories are shown by gray arrows. (B) Heatmap depicting the thiamine biosynthetic pathway gene expression in response to WS. (C) KEGG pathway with gene color code derived from their positions in the SOM portrait indicated by the colored waterline portraits of SG CTRL and STRS and MP CTRL and STRS (see the upper right part).
Plants 13 02501 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Konecny, T.; Asatryan, A.; Nikoghosyan, M.; Binder, H. Unveiling Iso- and Aniso-Hydric Disparities in Grapevine—A Reanalysis by Transcriptome Portrayal Machine Learning. Plants 2024, 13, 2501. https://doi.org/10.3390/plants13172501

AMA Style

Konecny T, Asatryan A, Nikoghosyan M, Binder H. Unveiling Iso- and Aniso-Hydric Disparities in Grapevine—A Reanalysis by Transcriptome Portrayal Machine Learning. Plants. 2024; 13(17):2501. https://doi.org/10.3390/plants13172501

Chicago/Turabian Style

Konecny, Tomas, Armine Asatryan, Maria Nikoghosyan, and Hans Binder. 2024. "Unveiling Iso- and Aniso-Hydric Disparities in Grapevine—A Reanalysis by Transcriptome Portrayal Machine Learning" Plants 13, no. 17: 2501. https://doi.org/10.3390/plants13172501

APA Style

Konecny, T., Asatryan, A., Nikoghosyan, M., & Binder, H. (2024). Unveiling Iso- and Aniso-Hydric Disparities in Grapevine—A Reanalysis by Transcriptome Portrayal Machine Learning. Plants, 13(17), 2501. https://doi.org/10.3390/plants13172501

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop