A Hierarchical Model to Predict Time of Flowering of Kiwifruit Using Weather Data and Budbreak Dynamics
Abstract
:1. Introduction
2. Results
2.1. Flowering Time of Observational Data
2.2. Budbreak Time Prediction
2.3. Flowering Time Prediction
2.3.1. Classification Models
2.3.2. Regression Models
- f(CV,DD,DD) denotes the function for calculating the first flowering date.
- CV is a binary variable for cultivar. CL equals 1 if it is ‘Hayward’.
- BB is the degree day accumulation at predicted 5% budbreak.
- DD is the degree day accumulation on 1 September.
2.4. Flowering Time Prediction with Position Information
- f(CV,BB,DD) denotes the function for calculating the first flowering date.
- CV is a binary variable for cultivar. CL equals 1 if it is ‘Hayward’.
- BB is the degree day accumulation at predicted 5% budbreak.
- DD is the degree day accumulation on 1 September.
3. Discussion
3.1. Cultivar and Regional Difference in Flowering Date
3.2. Model Selection and Validation
3.3. Challenges and Restrictions
4. Materials and Methods
4.1. Data
4.1.1. Budbreak and Flowering
4.1.2. Weather Data
4.2. Methodology
4.2.1. Predicting 5% Budbreak
4.2.2. Predicting Day of First Flowering
- Presence or absence of flowering (i.e., classification models).
- The day of year when the first flower was observed (i.e., regression models).
- The GDD accumulated at 5% budbreak at the nearest weather station.
- Degree day accumulation from the nearest weather station on 1 September of that year.
- Chilling units below 7 °C accumulations [32] from the nearest weather station on 1 September of that year.
- Daylength on 1 September of that year.
- Predicted degree day accumulation for 5% budbreak (i.e., once budbreak is established, does it predict flowering time?) [14].
4.2.3. Predicting Day of First Flowering Where Locational Information Is Known
4.2.4. Model Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamberlain, J.E. 2 Global Industry and Markets. In Kiwifruit: Botany, Production and Uses; CABI GB: Wallingford, UK, 2023; pp. 16–28. [Google Scholar]
- Cattani, A.M.; Sartor, T.; da Silveira Falavigna, V.; Porto, D.D.; Silveira, C.P.; Dias de Oliveira, P.R.; Revers, L.F. Chapter Nine—The Control of Bud Break and Flowering Time in Plants: Contribution of Epigenetic Mechanisms and Consequences in Agriculture and Breeding. In Advances in Botanical Research; Mirouze, M., Bucher, E., Gallusci, P., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 277–325. ISBN 9780128154038. [Google Scholar]
- Richardson, A.C.; Varkonyi-Gasic, E. 14 Axillary Bud, Shoot and Flower Development. In Kiwifruit: Botany, Production and Uses; CABI GB: Wallingford, UK, 2023; pp. 228–254. [Google Scholar]
- Piña-Rey, A.; Ribeiro, H.; Fernández-González, M.; Abreu, I.; Rodríguez-Rajo, F.J. Phenological Model to Predict Budbreak and Flowering Dates of Four Vitis vinifera L. Cultivars Cultivated in DO. Ribeiro (North-West Spain). Plants 2021, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Tanino, K.K.; Kalcsits, L.; Silim, S.; Kendall, E.; Gray, G.R. Temperature-Driven Plasticity in Growth Cessation and Dormancy Development in Deciduous Woody Plants: A Working Hypothesis Suggesting How Molecular and Cellular Function Is Affected by Temperature during Dormancy Induction. Plant Mol. Biol. 2010, 73, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Campoy, J.A.; Ruiz, D.; Egea, J. Dormancy in Temperate Fruit Trees in a Global Warming Context: A Review. Sci. Hortic. 2011, 130, 357–372. [Google Scholar] [CrossRef]
- Chmielewski, F.-M. Phenology in Agriculture and Horticulture. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 539–561. ISBN 978-94-007-6925-0. [Google Scholar]
- Solga, M.J.; Harmon, J.P.; Ganguli, A.C. Timing Is Everything: An Overview of Phenological Changes to Plants and Their Pollinators. Nat. Areas J. 2014, 34, 227–234. [Google Scholar] [CrossRef]
- Mcpherson, H.G.; Hallt, A.J.; Stanleyt, C.J. The Influence of Current Temperature on the Time from Bud Break to Flowering in Kiwifruit (Actinidia deliciosa). J. Hortic. Sci. 1992, 67, 509–519. [Google Scholar] [CrossRef]
- McPherson, H.G.; Hall, A.J.; Stanley, C.J. Seasonal and Regional Variation in Budbreak and Flowering of Kiwifruit Vines in New Zealand. N. Z. J. Crop Hortic. Sci. 1994, 22, 263–276. [Google Scholar] [CrossRef]
- Pyke, N.B.; Stanley, C.J.; Warrington, I.J. Kiwifruit: Frost Tolerance of Plants in Controlled Frost Conditions. N. Z. J. Exp. Agric. 1986, 14, 443–447. [Google Scholar] [CrossRef]
- Salinger, M.J.; Kenny, G.J.; Morley-Bunker, M.J. Climate and Kiwifruit Cv. Hayward 1. Influences on Development and Growth. N. Z. J. Crop Hortic. Sci. 1993, 21, 235–245. [Google Scholar] [CrossRef]
- Salinero, M.C.; Vela, P.; Sainz, M.J. Phenological Growth Stages of Kiwifruit (Actinidia deliciosa ‘Hayward’). Sci. Hortic. 2009, 121, 27–31. [Google Scholar] [CrossRef]
- Austin, P.T.; Hall, A.J.; Snelgar, W.P.; Currie, M.J. Modelling Kiwifruit Budbreak as a Function of Temperature and Bud Interactions. Ann. Bot. 2002, 89, 695–706. [Google Scholar] [CrossRef]
- Sibley, J.L.; Dozier, W.A., Jr.; Pitts, J.A.; Caylor, A.W.; Himelrick, D.G.; Ebel, R.C. Kiwifruit Cultivars Differ in Response to Winter Chilling. Small Fruits Rev. 2005, 4, 19–29. [Google Scholar] [CrossRef]
- Mcpherson, H.G.; Richardson, A.C.; Snelgar, W.P.; Currie, M.B. Effects of Hydrogen Cyanamide on Budbreak and Flowering in Kiwifruit (Actinidia deliciosa ’Hayward’). N. Z. J. Crop Hortic. Sci. 2001, 29, 277–285. [Google Scholar] [CrossRef]
- Morley-Bunker, M.J.; Salinger, M.J. Kiwifruit Development the Effect of Temperature on Budburst and Flowering. Weather Clim. 1987, 7, 26–30. [Google Scholar] [CrossRef]
- Hall, A.J.; McPherson, H.G. Modelling the Influence of Temperature on the Timing of Bud Break in Kiwifruit. In Proceedings of the III International Symposium on Kiwifruit 444, Thessaloniki, Greece, 19–22 September 1995; pp. 401–406. [Google Scholar]
- Snelgar, W.; Hall, A.; McPherson, H. Modelling Flower Production of Kiwifruit (Actinidia deliciosa) from Winter Chilling. N. Z. J. Crop Hortic. Sci. 2008, 36, 273–284. [Google Scholar] [CrossRef]
- Hall, A.; Snelgar, W.P. GP1565: Predicting the Start of Budbreak for “Hayward” and Gold3 Kiwifruit; Zespri Group Limited: Mount Maunganui, New Zealand, 2014. [Google Scholar]
- Hanley, Z. Kiwifruit (Actinidia spp.) Breeding. In Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 3, pp. 377–401. ISBN 978-3-319-91944-7. [Google Scholar]
- Kilgour, M.; Saunders, C.; Scrimgeour, F.; Zellman, E. The Key Elements of Success and Failure in the NZ Kiwifruit Industry; Lincoln University: Lincoln, New Zealand, 2008. [Google Scholar]
- Kim, K.-H.; Jeong, Y.M.; Cho, Y.-S.; Chung, U. Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do. Korean J. Agric. For. Meteorol. 2016, 18, 42–54. [Google Scholar] [CrossRef]
- Vetharaniam, I.; Müller, K.; Stanley, C.J.; van den Dijssel, C.; Timar, L.; Clothier, B. Modelling Continuous Location Suitability Scores and Spatial Footprint of Apple and Kiwifruit in New Zealand. Land 2022, 11, 1528. [Google Scholar] [CrossRef]
- Richardson, A.; Boldingh, H.; Kashuba, P.; Knight, G.; Ellingham, D. Flowering Time Determines the Weight and Composition of Actinidia chinensis Var. chinensis ‘Zesy002’ Kiwifruit. Sci. Hortic. 2019, 246, 741–748. [Google Scholar] [CrossRef]
- Hartmann, T.P.; Spiers, J.D.; Stein, L.A.; Scheiner, J.J. Effect of Warm Temperature Interruption on the Accumulation of Winter Chilling in Kiwifruit (Actinidia chinensis Planch. and A. deliciosa A. Chev.). HortScience 2024, 59, 691–698. [Google Scholar] [CrossRef]
- Cesaraccio, C.; Spano, D.; Snyder, R.L.; Duce, P. Chilling and Forcing Model to Predict Bud-Burst of Crop and Forest Species. Agric. For. Meteorol. 2004, 126, 1–13. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Ingram, B.; García de Cortázar-Atauri, I.; Tisseyre, B. Towards an Empirical Model to Estimate the Spatial Variability of Grapevine Phenology at the within Field Scale. Precis. Agric. 2020, 21, 107–130. [Google Scholar] [CrossRef]
- Yalcin, H. Phenology Recognition Using Deep Learning. In Proceedings of the 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018; pp. 1–5. [Google Scholar]
- Hernández, G.; Craig, R.; Tanner, D. Assessment of Alternative Bud Break Enhancers for Commercial Kiwifruit Production of ‘Zesy002’(Gold3). In Advances in Plant Dormancy; Springer: Cham, Switzerland, 2015; pp. 289–300. [Google Scholar]
- Brundell, D. Flower Development of the Chinese Gooseberry (Actinidia chinensis Planch.) II. Development of the Flower Bud. N. Z. J. Bot. 1975, 13, 485–496. [Google Scholar] [CrossRef]
- Hernández, G.; Craig, R. Exploring Alternative Bud Break Enhancing Product in ‘Zesy003’ (Gold9) by Painting Application. In Advances in Plant Dormancy; Anderson, J.V., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 279–288. ISBN 978-3-319-14451-1. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News, 3 December 2002; pp. 18–22. [Google Scholar]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef]
- Fushiki, T. Estimation of Prediction Error by Using K-Fold Cross-Validation. Stat. Comput. 2011, 21, 137–146. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 August 2024).
Region | Cultivar | Prediction | Flowering | % Classification | ||
---|---|---|---|---|---|---|
Binomial Glm | Ranger | Random Forests | ||||
Kerikeri | ‘Zesy002’ | 0 | 0 | 0 | 0 | 0 |
Kerikeri | ‘Zesy002’ | 0 | 1 | 33.0 | 23.8 | 23.8 |
Kerikeri | ‘Zesy002’ | 1 | 0 | 0 | 0 | 0 |
Kerikeri | ‘Zesy002’ | 1 | 1 | 67.0 | 76.2 | 76.2 |
Kerikeri | ‘Hayward’ | 0 | 0 | 0 | 0 | 0 |
Kerikeri | ‘Hayward’ | 0 | 1 | 65.8 | 60.9 | 58.5 |
Kerikeri | ‘Hayward’ | 1 | 0 | 0 | 0 | 0 |
Kerikeri | ‘Hayward’ | 1 | 1 | 34.2 | 39.1 | 41.5 |
Te Puke | ‘Hayward’ | 0 | 0 | 4.1 | 0 | 0 |
Te Puke | ‘Hayward’ | 0 | 1 | 29.6 | 0 | 0 |
Te Puke | ‘Hayward’ | 1 | 0 | 2.3 | 6.4 | 6.4 |
Te Puke | ‘Hayward’ | 1 | 1 | 64.0 | 93.6 | 93.6 |
Model | 99% Prediction Interval (Days) | Percentage of Observed Flowering within the Range of Prediction (%) | AIC | R2 | |
---|---|---|---|---|---|
Min | Max | ||||
CV.DL | 31.7 | 31.7 | 95.9 | 7905.4 | 0.68 |
CV.DD | 35.3 | 36.2 | 94.5 | 8170.2 | 0.60 |
CV.BB | 24.2 | 24.7 | 92.6 | 7248.7 | 0.81 |
CV.CU | 35.4 | 35.5 | 97.9 | 8181.3 | 0.60 |
CV.BB.DD | 21.4 | 31.7 | 85.7 | 6953.7 | 0.85 |
CV.BB.DD_1 | 21.4 | 23 | 87.1 | 6950.5 | 0.85 |
CV.BB.CU | 23.7 | 25.1 | 92.6 | 7206.1 | 0.82 |
CV.BB.DL | 23.1 | 24.4 | 87.8 | 7137.2 | 0.83 |
CV.DD.DL | 30.2 | 32.5 | 90.6 | 7796.8 | 0.71 |
CV.CU.DL | 30.9 | 31.1 | 96.6 | 7846.9 | 0.70 |
Year | Region | Cultivar | Flowering Day of the Year | |||
---|---|---|---|---|---|---|
Predicted | Observed | Difference | Range of Prediction | |||
2020 | Kerikeri | ’Zesy002’ | 312.0 | 306.4 | 5.6 | 301.2–326.9 |
2020 | Kerikeri | ‘Hayward’ | 330.4 | 330.2 | 0.2 | 319.6–343.6 |
2020 | Te Puke | ‘Hayward’ | 326.6 | 326.7 | −0.1 | 315.9–339.8 |
2021 | Kerikeri | ’Zesy002’ | 314.0 | 319.0 | −5.0 | 303.2–328.9 |
2021 | Kerikeri | ‘Hayward’ | 334.5 | 329.1 | 5.5 | 323.8–347.8 |
2022 | Kerikeri | ’Zesy002’ | 325.8 | 319.3 | 6.5 | 309.2–337.8 |
2022 | Kerikeri | ‘Hayward’ | 340.8 | 330.5 | 10.3 | 314.9–354.3 |
2022 | Te Puke | ‘Hayward’ | 328.4 | 332.2 | −3.7 | 312.1–344.8 |
Model | Row Bay | 99% Prediction Interval (Days) | % Observed Flowering within the Range of Prediction | AIC | R2 | |
---|---|---|---|---|---|---|
Min | Max | |||||
CV.BB | included | 19.7 | 27.7 | 80.4 | 302.1 | 0.84 |
CV.BB | excluded | 20.0 | 21.1 | 92.2 | 295.7 | 0.83 |
CV.BB.CU | included | 18.7 | 28.3 | 74.5 | 302.1 | 0.84 |
CV.BB.CU | excluded | 19.3 | 22.9 | 84.3 | 292.3 | 0.84 |
CV.BB.DD | included | 20.5 | 52.6 | 96.1 | 302.1 | 0.84 |
CV.BB.DD | excluded | 19.8 | 22.4 | 98.0 | 292.3 | 0.84 |
CV.BB.DD_1 | included | 20.1 | 32.0 | 96.1 | 302.1 | 0.84 |
CV.BB.DD_1 | excluded | 19.6 | 20.8 | 98.0 | 292.3 | 0.84 |
CV.CU | included | 36.8 | 49.7 | 100.0 | 322.7 | 0.76 |
CV.CU | excluded | 33.3 | 33.7 | 98.0 | 331.5 | 0.65 |
CV.CU.DL | included | 37.7 | 62.7 | 100.0 | 322.7 | 0.76 |
CV.CU.DL | excluded | 31.2 | 40.7 | 62.7 | 331.5 | 0.65 |
CV.DD | included | 36.9 | 75.4 | 98.0 | 322.7 | 0.76 |
CV.DD | excluded | 32.8 | 33.3 | 94.1 | 331.5 | 0.65 |
CV.DD.DL | included | 44.7 | 141.4 | 100.0 | 322.7 | 0.76 |
CV.DD.DL | excluded | 31.2 | 37.7 | 41.2 | 331.5 | 0.65 |
CV.DL | included | 37.4 | 52.8 | 100.0 | 322.7 | 0.76 |
CV.DL | excluded | 33.0 | 33.5 | 100.0 | 330.7 | 0.65 |
Year | Cultivar | Flowering Day of the Year | |||
---|---|---|---|---|---|
Predicted | Observed | Difference | Range of Prediction | ||
2019 | ‘Zesy002’ | 305.1 | 317.2 | −12.1 | 291.4–318.8 |
2019 | ‘Hayward’ | 330.2 | 324.5 | 5.7 | 316.4–344.1 |
2020 | ‘Zesy002’ | 316.6 | 308.5 | 8.2 | 302.6–330.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Alavi, M.; Guo, L.; Richardson, A.C.; Kramer-Walter, K.; French, V.; Jesson, L. A Hierarchical Model to Predict Time of Flowering of Kiwifruit Using Weather Data and Budbreak Dynamics. Plants 2024, 13, 2231. https://doi.org/10.3390/plants13162231
Zhang J, Alavi M, Guo L, Richardson AC, Kramer-Walter K, French V, Jesson L. A Hierarchical Model to Predict Time of Flowering of Kiwifruit Using Weather Data and Budbreak Dynamics. Plants. 2024; 13(16):2231. https://doi.org/10.3390/plants13162231
Chicago/Turabian StyleZhang, Jingjing, Maryam Alavi, Lindy Guo, Annette C. Richardson, Kris Kramer-Walter, Victoria French, and Linley Jesson. 2024. "A Hierarchical Model to Predict Time of Flowering of Kiwifruit Using Weather Data and Budbreak Dynamics" Plants 13, no. 16: 2231. https://doi.org/10.3390/plants13162231
APA StyleZhang, J., Alavi, M., Guo, L., Richardson, A. C., Kramer-Walter, K., French, V., & Jesson, L. (2024). A Hierarchical Model to Predict Time of Flowering of Kiwifruit Using Weather Data and Budbreak Dynamics. Plants, 13(16), 2231. https://doi.org/10.3390/plants13162231