Cell Wall Profiling of the Resurrection Plants Craterostigma plantagineum and Lindernia brevidens and Their Desiccation-Sensitive Relative, Lindernia subracemosa
Abstract
:1. Introduction
2. Results
2.1. Analysis of Cell Wall Composition
2.2. CoMPP Analysis of Cell Wall Material
3. Discussion and Conclusions
4. Materials and Methods
4.1. Plant Material
4.2. Isolation of Cell Wall Material
4.3. Saccharification Analysis
4.4. Monosaccharide Composition of Cell Walls
4.5. CoMPP Analysis of Cell Wall Material
4.6. Statistical and Univariate Tools
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marks, R.A.; Pas, L.V.D.; Schuster, J.; Gilman, I.S.; VanBuren, R. Convergent Evolution of Desiccation Tolerance in Grasses. Nat. Plants 2024, 10, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- VanBuren, R.; Wai, C.M.; Giarola, V.; Župunski, M.; Pardo, J.; Kalinowski, M.; Grossmann, G.; Bartels, D. Core Cellular and Tissue-Specific Mechanisms Enable Desiccation Tolerance in Craterostigma. Plant J. 2023, 114, 231–245. [Google Scholar] [CrossRef]
- Djilianov, D.; Moyankova, D.; Mladenov, P.; Topouzova-Hristova, T.; Kostadinova, A.; Staneva, G.; Zasheva, D.; Berkov, S.; Simova-Stoilova, L. Resurrection Plants—A Valuable Source of Natural Bioactive Compounds: From Word-of-Mouth to Scientifically Proven Sustainable Use. Metabolites 2024, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.R.; Fischer, E.; Baron, M.; Van Den Dries, N.; Facchinelli, F.; Kutzer, M.; Rahmanzadeh, R.; Remus, D.; Bartels, D. Lindernia Brevidens: A Novel Desiccation-Tolerant Vascular Plant, Endemic to Ancient Tropical Rainforests. Plant J. 2008, 54, 938–948. [Google Scholar] [CrossRef]
- Moore, J.P.; Vicré, M.; Nguema-Ona, E.; Driouich, A.; Farrant, J.M. Drying Out Walls: How Do the Cell Walls of Resurrection Plants Survive Desiccation? In Plant Cell Walls; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-317830-9. [Google Scholar]
- Ilias, I.A.; Wagiran, A.; Azizan, K.A.; Ismail, I.; Samad, A.F.A. Irreversibility of the Cell Wall Modification Acts as a Limiting Factor in Desiccation Tolerance of Oryza Sativa Ssp. Indica Cv MR303. Plant Stress 2024, 12, 100463. [Google Scholar] [CrossRef]
- Xu, X.; Legay, S.; Sergeant, K.; Zorzan, S.; Leclercq, C.C.; Charton, S.; Giarola, V.; Liu, X.; Challabathula, D.; Renaut, J.; et al. Molecular Insights into Plant Desiccation Tolerance: Transcriptomics, Proteomics and Targeted Metabolite Profiling in Craterostigma plantagineum. Plant J. 2021, 107, 377–398. [Google Scholar] [CrossRef]
- Chen, P.; Jung, N.U.; Giarola, V.; Bartels, D. The Dynamic Responses of Cell Walls in Resurrection Plants During Dehydration and Rehydration. Front. Plant Sci. 2020, 10, 1698. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.U.; Giarola, V.; Chen, P.; Knox, J.P.; Bartels, D. Craterostigma plantagineum Cell Wall Composition Is Remodelled during Desiccation and the Glycine-Rich Protein CpGRP1 Interacts with Pectins through Clustered Arginines. Plant J. 2019, 100, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Vicré, M.; Sherwin, H.W.; Driouich, A.; Jaffer, M.A.; Farrant, J.M. Cell Wall Characteristics and Structure of Hydrated and Dry Leaves of the Resurrection Plant Craterostigma Wilmsii, a Microscopical Study. J. Plant Physiol. 1999, 155, 719–726. [Google Scholar] [CrossRef]
- Vicré, M.; Lerouxel, O.; Farrant, J.; Lerouge, P.; Driouich, A. Composition and Desiccation-Induced Alterations of the Cell Wall in the Resurrection Plant Craterostigma wilmsii. Physiol. Plant 2004, 120, 229–239. [Google Scholar] [CrossRef]
- Jones, L.; McQueen-Mason, S. A Role for Expansins in Dehydration and Rehydration of the Resurrection Plant Craterostigma plantagineum. FEBS Lett. 2004, 559, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Nguema-Ona, E.; Chevalier, L.; Lindsey, G.G.; Brandt, W.F.; Lerouge, P.; Farrant, J.M.; Driouich, A. Response of the Leaf Cell Wall to Desiccation in the Resurrection Plant Myrothamnus flabellifolius. Plant Physiol. 2006, 141, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Nguema-Ona, E.E.; Vicré-Gibouin, M.; Sørensen, I.; Willats, W.G.T.; Driouich, A.; Farrant, J.M. Arabinose-Rich Polymers as an Evolutionary Strategy to Plasticize Resurrection Plant Cell Walls against Desiccation. Planta 2013, 237, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Vicré-Gibouin, M.; Farrant, J.M.; Driouich, A. Adaptations of Higher Plant Cell Walls to Water Loss: Drought vs Desiccation. Physiol. Plant 2008, 134, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Dace, H.J.; Adetunji, A.E.; Moore, J.P.; Farrant, J.M.; Hilhorst, H.W. A Review of the Role of Metabolites in Vegetative Desiccation Tolerance of Angiosperms. Curr. Opin. Plant Biol. 2023, 75, 102410. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Giarola, V.; Bartels, D. The Craterostigma plantagineum Protein Kinase CpWAK1 Interacts with Pectin and Integrates Different Environmental Signals in the Cell Wall. Planta 2021, 253, 92. [Google Scholar] [CrossRef]
- Bartels, D.; Schneider, K.; Terstappen, G.; Piatkowski, D.; Salamini, F. Molecular Cloning of Abscisic Acid-Modulated Genes Which Are Induced during Desiccation of the Resurrection Plant Craterostigma plantagineum. Planta 1990, 181, 27–34. [Google Scholar] [CrossRef]
- Gomez, L.D.; Whitehead, C.; Barakate, A.; Halpin, C.; McQueen-Mason, S.J. Automated Saccharification Assay for Determination of Digestibility in Plant Materials. Biotechnol. Biofuels 2010, 3, 23. [Google Scholar] [CrossRef]
- Anthon, G.E.; Barrett, D.M. Determination of Reducing Sugars with 3-Methyl-2-Benzothiazolinonehydrazone. Anal. Biochem. 2002, 305, 287–289. [Google Scholar] [CrossRef]
- Jones, L.; Milne, J.L.; Ashford, D.; McQueen-Mason, S.J. Cell Wall Arabinan Is Essential for Guard Cell Function. Proc. Natl. Acad. Sci. USA 2003, 100, 11783–11788. [Google Scholar] [CrossRef]
- Kračun, S.K.; Fangel, J.U.; Rydahl, M.G.; Pedersen, H.L.; Vidal-Melgosa, S.; Willats, W.G.T. Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP). In High-Throughput Glycomics and Glycoproteomics: Methods and Protocols; Lauc, G., Wuhrer, M., Eds.; Springer: New York, NY, USA, 2017; pp. 147–165. ISBN 978-1-4939-6493-2. [Google Scholar]
- Verhertbruggen, Y.; Marcus, S.E.; Haeger, A.; Ordaz-Ortiz, J.J.; Knox, J.P. An Extended Set of Monoclonal Antibodies to Pectic Homogalacturonan. Carbohydr. Res. 2009, 344, 1858–1862. [Google Scholar] [CrossRef]
- Willats, W.G.; Gilmartin, P.M.; Mikkelsen, J.D.; Knox, J.P. Cell Wall Antibodies without Immunization: Generation and Use of de-Esterified Homogalacturonan Block-Specific Antibodies from a Naive Phage Display Library. Plant J. 1999, 18, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Liners, F.; Letesson, J.-J.; Didembourg, C.; Van Cutsem, P. Monoclonal Antibodies against Pectin: Recognition of a Conformation Induced by Calcium. Plant Physiol. 1989, 91, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Ralet, M.-C.; Tranquet, O.; Poulain, D.; Moïse, A.; Guillon, F. Monoclonal Antibodies to Rhamnogalacturonan I Backbone. Planta 2010, 231, 1373–1383. [Google Scholar] [CrossRef]
- Jones, L.; Seymour, G.B.; Knox, J.P. Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[Beta]-D-Galactan. Plant Physiol. 1997, 113, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Moller, I.; Marcus, S.E.; Haeger, A.; Verhertbruggen, Y.; Verhoef, R.; Schols, H.; Ulvskov, P.; Mikkelsen, J.D.; Knox, J.P.; Willats, W. High-Throughput Screening of Monoclonal Antibodies against Plant Cell Wall Glycans by Hierarchical Clustering of Their Carbohydrate Microarray Binding Profiles. Glycoconjucate J. 2008, 25, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Marcus, S.E.; Blake, A.W.; Benians, T.A.S.; Lee, K.J.D.; Poyser, C.; Donaldson, L.; Leroux, O.; Rogowski, A.; Petersen, H.L.; Boraston, A.; et al. Restricted Access of Proteins to Mannan Polysaccharides in Intact Plant Cell Walls. Plant J. 2010, 64, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.L.; Fangel, J.U.; McCleary, B.; Ruzanski, C.; Rydahl, M.G.; Ralet, M.-C.; Farkas, V.; von Schantz, L.; Marcus, S.E.; Andersen, M.C.F.; et al. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research. J. Biol. Chem. 2012, 287, 39429–39438. [Google Scholar] [CrossRef]
- McCartney, L.; Marcus, S.E.; Knox, J.P. Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. J. Histochem. Cytochem. 2005, 53, 543–546. [Google Scholar] [CrossRef]
- Blake, A.W.; McCartney, L.; Flint, J.E.; Bolam, D.N.; Boraston, A.B.; Gilbert, H.J.; Knox, J.P. Understanding the Biological Rationale for the Diversity of Cellulose-Directed Carbohydrate-Binding Modules in Prokaryotic Enzymes. J. Biol. Chem. 2006, 281, 29321–29329. [Google Scholar] [CrossRef]
- Neumetzler, L.; Humphrey, T.; Lumba, S.; Snyder, S.; Yeats, T.H.; Usadel, B.; Vasilevski, A.; Patel, J.; Rose, J.K.C.; Persson, S.; et al. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis. PLoS ONE 2012, 7, e42914. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, M.; Beven, A.; Donovan, N.; Neill, S.J.; Peart, J.; Roberts, K.; Knox, J.P. Localization of Cell Wall Proteins in Relation to the Developmental Anatomy of the Carrot Root Apex. Plant J. 1994, 5, 237–246. [Google Scholar] [CrossRef]
- Pennell, R.I.; Janniche, L.; Kjellbom, P.; Scofield, G.N.; Peart, J.M.; Roberts, K. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. Plant Cell 1991, 3, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Yates, E.A.; Valdor, J.F.; Haslam, S.M.; Morris, H.R.; Dell, A.; Mackie, W.; Knox, J.P. Characterization of Carbohydrate Structural Features Recognized by Anti-Arabinogalactan-Protein Monoclonal Antibodies. Glycobiology 1996, 6, 131–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, J.P.; Kuhlman, B.; Hansen, J.; Gomez, L.; JØrgensen, B.; Bartels, D. Cell Wall Profiling of the Resurrection Plants Craterostigma plantagineum and Lindernia brevidens and Their Desiccation-Sensitive Relative, Lindernia subracemosa. Plants 2024, 13, 2235. https://doi.org/10.3390/plants13162235
Moore JP, Kuhlman B, Hansen J, Gomez L, JØrgensen B, Bartels D. Cell Wall Profiling of the Resurrection Plants Craterostigma plantagineum and Lindernia brevidens and Their Desiccation-Sensitive Relative, Lindernia subracemosa. Plants. 2024; 13(16):2235. https://doi.org/10.3390/plants13162235
Chicago/Turabian StyleMoore, John P., Brock Kuhlman, Jeanett Hansen, Leonardo Gomez, Bodil JØrgensen, and Dorothea Bartels. 2024. "Cell Wall Profiling of the Resurrection Plants Craterostigma plantagineum and Lindernia brevidens and Their Desiccation-Sensitive Relative, Lindernia subracemosa" Plants 13, no. 16: 2235. https://doi.org/10.3390/plants13162235
APA StyleMoore, J. P., Kuhlman, B., Hansen, J., Gomez, L., JØrgensen, B., & Bartels, D. (2024). Cell Wall Profiling of the Resurrection Plants Craterostigma plantagineum and Lindernia brevidens and Their Desiccation-Sensitive Relative, Lindernia subracemosa. Plants, 13(16), 2235. https://doi.org/10.3390/plants13162235