Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods
Abstract
:1. Introduction
2. Results
2.1. Morphological Characteristics and Molecular Identification of Isolate FTA1
2.2. Microscopic Observation of Pathogenic Infection on Bulbs of F. taipaiensis
2.3. Pot Experiment
2.4. LAMP and qPCR Primer Selection
2.5. Specificity of LAMP and qPCR Assays
2.6. Sensitivity of LAMP Primer Set
2.7. Establishment of Absolute Quantitative Standard Curve for qPCR
2.8. Application of LAMP and qPCR-Based Diagnostic Methods
3. Discussion
4. Materials and Methods
4.1. Pathogen Isolation and Identification
4.2. Microscopic Observation of Pathogen Infection on Bulbs of F. taipaiensis
4.3. Pot Experiment
4.4. Design of LAMP and qPCR Primers
4.5. Reaction Systems
4.6. Detection of LAMP Specificity and Sensitivity
4.7. Establishment of Absolute Quantitative Standard Curve for qPCR
4.8. Applications Based on LAMP and qPCR Detection Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Liu, J.; Gong, X.; Yang, X.; Zhu, Y.; Cheng, Z. Characterizing the major morphological traits and chemical compositions in the bulbs of widely cultivated Fritillaria species in China. Biochem. Syst. Ecol. 2013, 46, 130–136. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Atanasov, A.G.; Xiao, Y.; Wang, S. Plant resource availability of medicinal Fritillaria species in traditional producing regions in Qinghai-Tibet Plateau. Front. Pharmacol. 2017, 8, 502. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, C.; Cai, J.; Lin, L.; Song, W.; Yang, K.; Zhao, Y.; Wen, C.; Wei, J.; Liu, Z. Comparative analysis of sipeimine content, metabolome and chloroplast genome in cultivated and wild varieties of Fritillaria taipaiensis. J. Sci. Food Agric. 2024, 104, 7271–7280. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Wang, Y.J.; Chen, G.; Meng, C.R.; Guo, C.L.; Lu, Y.F.; Dai, S.Y.; Liu, S.X.; Li, Y.F.; Li, C.; et al. Isosteroidal alkaloids from Fritillaria verticillata Willd. and their NMR spectroscopic characteristics. Chin. J. Chem. 2022, 40, 1945–1956. [Google Scholar] [CrossRef]
- Wang, D.; Wang, S.; Chen, X.; Xu, X.; Zhu, J.; Nie, L.; Long, X. Antitussive, expectorant and anti-inflammatory activities of four alkaloids isolated from Bulbus of Fritillaria wabuensis. J. Ethnopharmacol. 2012, 139, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.W.; Liu, Y.M.; Zhu, M.M.; Ma, R.X. Isosteroidal alkaloids of Fritillaria taipaiensis and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Phytochemistry 2022, 201, 113279. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.; Yang, N.; Pu, P.; Mei, X.; Cao, L.; Yang, X.; Cao, C. Biocontrol mechanism of Bacillus subtilis C3 against bulb rot disease in Fritillaria taipaiensis P. Y. Li. Front Microbiol. 2021, 12, 855980. [Google Scholar] [CrossRef] [PubMed]
- Pfliegler, W.P.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. The Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front. Microbiol. 2020, 10, 2921. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Sánchez, A.; Plasencia, J.; Monribot-Villanueva, J.L.; Rodríguez-Haas, B.; Ruíz-May, E.; Guerrero-Analco, J.A.; Sánchez-Rangel, D. Virulence factors of the genus Fusarium with targets in plants. Microbiol. Res. 2023, 277, 127506–127525. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef]
- Hariharan, G.; Prasannath, K. Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Front. Cell Infect. Microbiol. 2021, 10, 600234. [Google Scholar] [CrossRef]
- Gudisa, R.; Harchand, R.; Rudramurthy, S.M. Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future. Diagnostics 2024, 14, 520. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Li, R. Detection and control of Fusarium oxysporum from soft rot in Dendrobium officinale by Loop-Mediated Isothermal Amplification assays. Biology 2021, 10, 1136–1150. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Ao, N.; Zou, H.; Shao, H.; Kageyama, K.; Feng, W. Host range and Loop-Mediated Isothermal Amplification Detection of Globisporangium sylvaticum from Guizhou, China. J. Fungi 2023, 9, 752. [Google Scholar] [CrossRef]
- Caruso, A.G.; Ragona, A.; Bertacca, S.; Montoya, M.A.M.; Panno, S.; Davino, S. Development of an In-Field Real-Time LAMP assay for rapid detection of Tomato Leaf Curl New Delhi Virus. Plants 2023, 12, 1475. [Google Scholar] [CrossRef]
- Wang, L.; Hou, H.; Zhou, Z.; Tu, H.; Yuan, H. Identification and detection of Botryosphaeria dothidea from Kiwifruit (Actinidia chinensis) in China. Plants 2021, 10, 401. [Google Scholar] [CrossRef]
- Supakitthanakorn, S.; Vichittragoontavorn, K.; Sunpapao, A.; Kunasakdakul, K.; Thapanapongworakul, P.; Ruangwong, O.-U. Tobacco Mosaic Virus infection of Chrysanthemums in Thailand: Development of Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification (RT–LAMP) technique for sensitive and rapid detection. Plants 2022, 11, 1788. [Google Scholar] [CrossRef]
- Deng, S.; Ma, X.; Chen, Y.; Feng, H.; Zhou, D.; Wang, X.; Zhang, Y.; Zhao, M.; Zhang, J.; Daly, P.; et al. LAMP Assay for distinguishing Fusarium oxysporum and Fusarium commune in Lotus (Nelumbo nucifera) Rhizomes. Plant Dis. 2022, 106, 231–246. [Google Scholar] [CrossRef]
- Rizzo, D.; Aglietti, C.; Benigno, A.; Bracalini, M.; Da Lio, D.; Bartolini, L.; Cappellini, G.; Aronadio, A.; Francia, C.; Luchi, N.; et al. Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for fast and reliabledetection of Geosmithia morbida (Kolařik) in infected Walnut. Plants 2022, 11, 1239. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, Q.; Liang, M.; Zhao, Q.; Lin, T.; Gao, H.; Hieno, A.; Kageyama, K.; Zhang, X.; Cui, L.; et al. Population dynamics, effective soil factors, and LAMP detection systems for Phytophthora species associated with Kiwifruit diseases in China. Plant Dis. 2022, 106, 846–853. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, M.V.; Machado, J.D.C.; Simmons, H.E.; Munkvold, G.P. Real-time quantitative PCR assays for the rapid detection and quantification of Fusarium oxysporum f. sp. phaseoli in Phaseolus vulgaris (common bean) seeds. Plant Pathol. 2014, 64, 478–488. [Google Scholar] [CrossRef]
- Dharmaraj, K.; Andersen, M.T.; Alexander, B.J.R.; Toome-Heller, M. A New TaqMan Real-Time PCR assay for detecting the blueberry pathogen Monilinia vaccinii-corymbosi. Plant Dis. 2022, 106, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, P.; Fan, H.; Liu, L.; Yin, K.; Yang, B.; Li, Y.; Huang, S.-M.; Li, X.; Zheng, S.-J. A real-time fluorescent reverse transcription quantitative PCR Assay for rapid detection of genetic markers’ expression associated with Fusarium Wilt of Banana biocontrol activities in Bacillus. J. Fungi 2021, 7, 353. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Summerell, B.A. Resolving Fusarium: Current Status of the Genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Annu. Rev. Phytopathol. 2021, 59, 373–402. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Kim, H.-S.; McCormick, S.P.; Busman, M.; Aoki, T.; et al. DNA sequence-based identification of Fusarium: A work in progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Sutton, D.A.; Fothergill, A.; McCarthy, D.; Rinaldi, M.G.; Brandt, M.E.; Zhang, N.; Geiser, D.M. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 2008, 46, 2477–2490. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Guo, Z.; Song, X.; Xu, M.; He, K.; Zhang, X.; Chi, Y. First report of peanut root rot caused by Fusarium acuminatum in Shandong Province, China. Plant Dis. 2023, 107, 2882. [Google Scholar] [CrossRef]
- Gräfenhan, T.; Schroers, H.J.; Nirenberg, H.I.; Seifert, K.A. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud. Mycol. 2011, 68, 79–113. [Google Scholar] [CrossRef]
- Schroers, H.J.; Gräfenhan, T.; Nirenberg, H.I.; Seifert, K.A. A revision of Cyanonectria and Geejayessia gen. nov.; and related species with Fusarium-like anamorphs. Stud. Mycol. 2011, 68, 115–138. [Google Scholar] [CrossRef]
- Zakaria, L. Fusarium species associated with diseases of major tropical fruit crops. Horticulturae 2023, 9, 322. [Google Scholar] [CrossRef]
- Abd Murad, N.B.; Mohamed Nor, N.M.I.; Shohaimi, S.; Mohd Zainudin, N.A.I. Genetic diversity and pathogenicity of Fusarium species associated with fruit rot disease in banana across Peninsular Malaysia. J. Appl. Microbiol. 2017, 123, 1533–1546. [Google Scholar] [CrossRef] [PubMed]
- Helal, R.B.; Hosen, S.; Shamsi, S. Mycoflora associated with post-harvest disease of papaya (Carica papaya L.) and their pathogenic potentiality. Bangl J. Bot. 2018, 47, 389–395. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Mohd, M.H.; Nor, N.M.; Zakaria, L. First report of Fusarium oxysporum and F. solani associated with pineapple rot in Peninsular Malaysia. Plant Dis. 2015, 99, 1650. [Google Scholar] [CrossRef]
- Heltoft, P.; Brierley, J.L.; Lees, A.K.; Sullivan, L.; Lynott, J.; Hermansen, A. The relationship between soil inoculum and the development of Fusarium dry rot in potato cultivars Asterix and Saturna. Eur. J. Plant Pathol. 2016, 146, 711–714. [Google Scholar] [CrossRef]
- Ma, M.; Taylor, P.W.J.; Chen, D.; Vaghefi, N.; He, J.-Z. Major soilborne pathogens of field processing tomatoes and management strategies. Microorganisms 2023, 11, 263. [Google Scholar] [CrossRef]
- Banerjee, A.; Mittra, B. Morphological modification in wheat seedlings infected by Fusarium oxysporum. Eur. J. Plant Pathol. 2018, 152, 521–524. [Google Scholar] [CrossRef]
- Reyes-Zambrano, S.J.; Lecona-Guzmán, C.A.; Gutiérrez-Miceli, F.A.; Santana-Buzzy, N.; Islas-Flores, I.; Tzec-Simá, M.; Barredo-Pool, F.A.; Ruiz-Lau, N.; Ávila-Miranda, M.E. Scanning electron microscopy and enzymatic analysis in Agave americana during Fusarium oxysporum infection. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2020, 38, 408–419. [Google Scholar] [CrossRef]
- Mentges, M.; Glasenapp, A.; Boenisch, M.; Malz, S.; Henrissat, B.; Frandsen, R.J.N.; Güldener, U.; Münsterkötter, M.; Bormann, J.; Lebrun, M.H.; et al. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Mol. Plant Pathol. 2020, 21, 1070–1087. [Google Scholar] [CrossRef] [PubMed]
- Boenisch, M.J.; Schäfer, W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol. 2011, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Yang, Q.; Liao, Y.; Sun, D.; Tang, Z.; Wang, G.; Xu, M.; Wang, C.; Kang, J. Advances in understanding Fusarium graminearum: Genes involved in the regulation of sexual development, pathogenesis, and deoxynivalenol biosynthesis. Genes 2024, 15, 475. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhang, L.; Wang, M.; Li, Y.; Jian, Y.; Wu, L.; Kistler, H.C.; Ma, Z.; Yin, Y. Plant defense compound triggers mycotoxin synthesis by regulating H2B ub1 and H3K4 me2/3 deposition. New Phytol. 2021, 232, 2106–2123. [Google Scholar] [CrossRef]
- Zuriegat, Q.; Zheng, Y.; Liu, H.; Wang, Z.; Yun, Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Mol. Plant Pathol. 2021, 22, 882–895. [Google Scholar] [CrossRef]
- Liu, J.; Liang, M.; Lin, T.; Zhao, Q.; Wang, H.; Yang, S.; Guo, Q.; Wang, X.; Guo, H.; Cui, L.; et al. A LAMP-Based toolbox developed for detecting the major pathogens affecting the production and quality of the chinese medicinal crop Aconitum carmichaelii. Plant Dis. 2023, 107, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Almasi, M.A. Development of a colorimetric Loop-mediated Isothermal Amplification assay for the visual detection of Fusarium oxysporum f. sp. melonis. Hortic. Plant J. 2019, 5, 129–136. [Google Scholar] [CrossRef]
- Adusei-Fosu, K.; Dickinson, M. Detecting Fusarium oxysporum f. sp. elaeidis by using loop-mediated isothermal amplification. J. Plant Pathol. 2023, 105, 1637–1643. [Google Scholar] [CrossRef]
- Ayukawa, Y.; Komatsu, K.; Kashiwa, T.; Akai, K.; Yamada, M.; Teraoka, T.; Arie, T. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets. Lett. Appl. Microbiol. 2016, 63, 202–209. [Google Scholar] [CrossRef]
- Lu, C.; Dai, T.; Zhang, H.; Wang, Y.; Zheng, X. Development of a Loop-Mediated Isothermal Amplification assay to detect Fusarium oxysporum. J. Phytopathol. 2014, 163, 63–66. [Google Scholar] [CrossRef]
- Rong, Z.; Yuan, Y.; Ye, W.; Wang, X.; Zheng, X. Rapid diagnosis of rice bakanae caused by Fusarium fujikuroi and F. proliferatum using loop-mediated isothermal amplification assays. J. Phytopathol. 2018, 166, 283–290. [Google Scholar] [CrossRef]
- Niessen, L.; Gräfenhan, T.; Vogel, R.F. ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. Int. J. Food Microbiol. 2012, 158, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Díaz, D.; Zamorano, A.; García, H.; Ramos, C.; Cui, W.; Carreras, C.; Beltrán, M.F.; Sagredo, B.; Pinto, M.; Fiore, N. Development of a genome-informed protocol for detection of Pseudomonas amygdali pv. morsprunorum using LAMP and PCR. Plants 2023, 12, 4119. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Li, T.; Zhang, J.; Shao, H.; Kageyama, K.; Feng, W. Rapid detection of Colletotrichum siamense from infected tea plants using Filter-Disc DNA extraction and Loop-Mediated Isothermal Amplification. Plant Dis. 2024, 108, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ngan, M.T.; Thi My Le, H.; Xuan Dang, V.; Thi Bich Ngoc, T.; Phan, L.V.; Thi Hoa, N.; Quang Lam, T.; Thi Lan, N.; Notsu, K.; Sekiguchi, S.; et al. Development of a highly sensitive point-of-care test for African swine fever that combines EZ-Fast DNA extraction with LAMP detection: Evaluation using naturally infected swine whole blood samples from Vietnam. Vet. Med. Sci. 2023, 9, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Huu, T.; Doré, J.; Aït Barka, E.; Lavire, C.; Clément, C.; Vial, L.; Sanchez, L. Development of a DNA-based real-time PCR assay To quantify Allorhizobium vitis over time in Grapevine (Vitis vinifera L.) Plantlets. Plant Dis. 2021, 105, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Scarlett, K.; Tesoriero, L.; Daniel, R.; Guest, D. Detection and quantification of Fusarium oxysporum f. sp. cucumerinum in environmental samples using a specific quantitative PCR assay. Eur. J. Plant Pathol. 2013, 137, 315–324. [Google Scholar] [CrossRef]
- Jenkins, S.; Taylor, A.; Jackson, A.C.; Armitage, A.D.; Bates, H.J.; Mead, A.; Harrison, R.J.; Clarkson, J.P. Identification and expression of Secreted In Xylem pathogenicity genes in Fusarium oxysporum f. sp. pisi. Front. Microbiol. 2021, 12, 593140. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, J.Z.; Swingle, B.; Niu, B.Y.; Xu, J.; Ma, X.; Wei, H.L.; Gao, M. First report of Rhizopus arrhizus (syn. R. oryzae) causing Garlic bulb soft rot in Hebei Province, China. Plant Dis. 2023, 107, 949. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; Volume 38, pp. 315–322. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Zhang, X.; Chen, B.; Li, M.; Zhang, G.; Cui, L. Characteristics of isolates of Pseudomonas aeruginosa and Serratia marcescens associated with post-harvest Fuzi (Aconitum carmichaelii) rot and their novel Loop-Mediated Isothermal Amplification detection methods. Front. Microbiol. 2021, 12, 705329. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Sample Source | Sampling Date | Symptoms | LAMP Results | Gene Concentration (pg/g bulb) * |
---|---|---|---|---|---|
1 | Hanzhong | June 2023 | − | + | 13.00 ± 2.72 |
2 | Hanzhong | June 2023 | − | − | 0 |
3 | Hanzhong | June 2023 | − | − | 0 |
4 | Hanzhong | June 2023 | − | − | 0 |
5 | Hanzhong | June 2023 | − | − | 0 |
6 | Hanzhong | June 2023 | − | − | 0 |
7 | Hanzhong | June 2023 | − | − | 0 |
8 | Hanzhong | June 2023 | − | − | 0 |
9 | Hanzhong | June 2023 | − | − | 0 |
10 | Hanzhong | June 2023 | − | − | 0 |
11 | Hanzhong | June 2023 | − | − | 0 |
12 | Hanzhong | June 2023 | − | − | 0 |
13 | Hanzhong | June 2023 | − | − | 0 |
14 | Hanzhong | June 2023 | − | − | 0 |
15 | Hanzhong | June 2023 | − | − | 0 |
16 | Hanzhong | June 2023 | − | − | 0 |
17 | Shangluo | May 2023 | − | − | 0 |
18 | Shangluo | May 2023 | − | − | 0 |
19 | Shangluo | May 2023 | − | − | 0 |
20 | Shangluo | May 2023 | − | − | 0 |
21 | Shangluo | May 2023 | − | − | 0 |
22 | Shangluo | May 2023 | − | − | 0 |
23 | Shangluo | May 2023 | − | − | 0 |
24 | Shangluo | May 2023 | + | + | 985.84 ± 48.62 |
25 | Shangluo | May 2023 | − | − | 0 |
26 | Shangluo | May 2023 | − | − | 0 |
27 | Shangluo | May 2023 | − | − | 0 |
28 | Shangluo | May 2023 | − | − | 0 |
29 | Shangluo | May 2023 | − | − | 0 |
30 | Shangluo | May 2023 | − | − | 0 |
31 | Shangluo | May 2023 | − | − | 0 |
32 | Shangluo | May 2023 | + | + | 126.73 ± 6.22 |
33 | Guangyuan | June 2023 | − | − | 0 |
34 | Guangyuan | June 2023 | − | − | 0 |
35 | Guangyuan | June 2023 | − | − | 0 |
36 | Guangyuan | June 2023 | − | − | 0 |
37 | Guangyuan | June 2023 | − | − | 0 |
38 | Guangyuan | June 2023 | − | − | 0 |
39 | Guangyuan | June 2023 | − | − | 0 |
40 | Guangyuan | June 2023 | + | + | 51.36 ± 8.26 |
41 | Guangyuan | June 2023 | − | − | 0 |
42 | Guangyuan | June 2023 | − | − | 0 |
43 | Guangyuan | June 2023 | − | − | 0 |
44 | Guangyuan | June 2023 | − | − | 0 |
45 | Guangyuan | June 2023 | − | − | 0 |
46 | Guangyuan | June 2023 | + | + | 22.10 ± 2.96 |
47 | Guangyuan | June 2023 | + | + | 235.94 ± 5.87 |
48 | Guangyuan | June 2023 | − | + | 3.58 ± 0.76 |
PCR Type | Gene | Primer Name | Sequence (5′→3′) | Length (bp) | Reference |
---|---|---|---|---|---|
PCR | ITS | ITS1 | TCCGTAGGTGAACCTGCGG | 530 | [60] |
ITS4 | TCCTCCGCTTATTGATATGC | ||||
EF-1α | EF-1 | ATGGGTAAGGARGACAAGAC | 714 | [29] | |
EF-2 | GGARGTACCAGTSATCATG | ||||
ACT | ACT-512F | ATGTGCAAGGCCGGTTTCGC | 269 | [61] | |
ACT-783R | TACGAGTCCTTCTGGCCCAT | ||||
qPCR | acl1 | FS-R | GGTCCGCGATGTAAGTTGAA | 221 | This study |
FS-F | AACCCACAAATCCAGACCAG | ||||
LAMP | acl1 | FS-F3 | CGGAAATCTACCGAGTGCTC | 218 | This study |
FS-B3 | GGGACGTTCTTGAGGAGAGT | ||||
FS-FIP | CCAGTCGCCCTATGGTCAATCG CGGACCACCGATCCATCT | ||||
FS-BIP | GATGTCGGTGATGTTGACGCCA TCCTCGTTGGAGGGGTAC | ||||
FS-LB | AGGCTGAGAAGCTCTTGATCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, K.; Guo, J.; Zhang, P.; Li, Y.; Xu, Z.; Cui, L.; Qiang, Y. Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods. Plants 2024, 13, 2236. https://doi.org/10.3390/plants13162236
Wang S, Chen K, Guo J, Zhang P, Li Y, Xu Z, Cui L, Qiang Y. Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods. Plants. 2024; 13(16):2236. https://doi.org/10.3390/plants13162236
Chicago/Turabian StyleWang, Shijie, Keke Chen, Jiaqi Guo, Panwang Zhang, Yuchen Li, Zhenghao Xu, Langjun Cui, and Yi Qiang. 2024. "Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods" Plants 13, no. 16: 2236. https://doi.org/10.3390/plants13162236
APA StyleWang, S., Chen, K., Guo, J., Zhang, P., Li, Y., Xu, Z., Cui, L., & Qiang, Y. (2024). Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods. Plants, 13(16), 2236. https://doi.org/10.3390/plants13162236