Comparative Physiological and Transcriptomic Analyses of Oat (Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms
Abstract
:1. Introduction
2. Results and Analysis
2.1. Physiological Changes under Salt Stress
2.2. Quality Analysis of De Novo Assembly and Sequencing
2.3. Unigene Functional Annotation and Classification
2.4. Analysis of Differentially Expressed Genes (DEGs)
2.5. GO Analysis of DEGs
2.6. KEGG Enrichment of DEGs
2.7. Analysis of DEGs in Oat under Salt Stress
2.7.1. Analysis of DEGs Related to Photosynthesis
2.7.2. Analysis of DEGs Associated with Reactive Oxygen Species (ROS) Scavenging Systems
2.7.3. Analysis of Differentially Expressed Genes Related to Na+ and K+ Transport
2.7.4. Analysis of Expressed Genes Related to Ca2+ Transport
2.8. Fluorescence Quantitative PCR Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Experimental Treatments
4.3. Physiological Parameters Determination
4.4. Transcriptomic Analysis
4.4.1. RNA Extraction, cDNA Library Construction, and RNA-Seq
4.4.2. De Novo Transcriptome Assembly and Unigene Functional Annotation
4.4.3. Identification and Analysis of Differentially Expressed Genes (DEGs)
4.5. qRT-PCR Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, Z.Z.; Xion, L.M.; Shi, H.Z.; Yang, S.H.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.-Y.; Li, J.; Wang, P.-Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.R. Spatial Distribution and Influencing Factors of Farmland Soil Salinization in Weibei, Shaanxi Province; Northwest A&F University: Xianyang, China, 2017. [Google Scholar] [CrossRef]
- Li, J.; Liu, M. Biological features and regulatory mechanisms of salt tolerance in plants. J. Cell. Biochem. 2019, 120, 10914–10920. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.T. Genetic Diversity Analysis and Salt Tolerance of Thinopyrum Intermediate Germplasm Resources; Harbin Normal University: Harbin, China, 2020. [Google Scholar] [CrossRef]
- Gong, W.L.; Ju, Z.L.; Chai, J.K.; Zhou, X.R.; Lin, D.D.; Su, W.J.; Zhao, G.Q. Physiological and transcription analyses reveal the regulatory mechanism in Oat (Avena sativa) seedlings with different drought resistance under PEG-induced drought stress. Agronomy 2022, 12, 1005. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.W.; Wu, B. Comprehensive evaluation of salt tolerance of naked Oat at germination stage and screening of salt tolerance germplasm. Sci. Agric. Sin. 2014, 47, 2038–2046. [Google Scholar] [CrossRef]
- Wang, B.; Song, F.B. Response and adaptability of Oat to saline-alkali stress. Ecol. Environ. 2006, 15, 625. [Google Scholar] [CrossRef]
- Wu, J.Y.; Liu, J.H.; Zhai, L.J.; Li, Q.; Li, L.J. Salt tolerance in seed germination and seedling growth of different varieties of Oat. Chin. J. Ecol. 2009, 28, 1960–1965. [Google Scholar] [CrossRef]
- Xu, Z.H. Response of Oat at germination stage to different gradient salt stress. Chin. Herbiv. Sci. 2020, 40, 36–39. [Google Scholar]
- Sun, R.G.; Zhao, G.Q.; Hu, K.J.; Man, Y.R. Effects of salt stress on aboveground dry Matter accumulation and photosynthetic Characteristics of Oat at grout Stage. Chin. J. Grassl. 2010, 32, 15–20. [Google Scholar]
- Liu, J.X.; Wang, J.C.; Wang, R.J.; Jia, H.Y. Effects of cross stress of drought and salt on growth and osmotic regulation substances of Oat seedlings. J. Soil Water Conserv. 2012, 26, 244–248. [Google Scholar] [CrossRef]
- Liu, F.Q.; Liu, J.L.; Zhu, R.F.; Zhang, Y.; Guo, Y.; Hai, G.Q.; Tang, F.L. Physiological response and salt tolerance evaluation of four Oat species to NaCl stress. Pratacultural J. 2015, 24, 83–189. [Google Scholar] [CrossRef]
- Zhang, M.X.; Bai, R.; Nan, M.; Ren, W.; Wang, C.M.; Shabala, S.; Zhang, J.L. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. J. Plant Physiol. 2022, 273, 153708. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Liu, J.H.; Li, Q. Effects of salt stress on growth, K+, Na+ absorption and photosynthetic performance of Oat seedlings. Northwest Agric. J. 2010, 19, 100–105. [Google Scholar]
- Yin, X.X.; Chen, Q.Q.; Liu, H.S.; Ma, C.L.; Wang, S.M. Research progress in the role of calcium signaling in plant response to salt stress. Mol. Plant Breed. 2023, 21, 850–857. [Google Scholar]
- Wei, H.; Wang, X.L.; He, Y.Q.; Xu, H.; Wang, L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-ediated sodium homeostasis. EMBO J. 2020, 40, e105086. [Google Scholar] [CrossRef]
- Bushman, B.S.; Amundsen, K.L.; Warnke, S.E.; Robins, J.G.; Johnson, P.G. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress. BMC Genom. 2016, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Goyal, E.; Amit, S.K.; Singh, R.S.; Mahato, A.K.; Kumar, K.S.C. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci. Rep. 2016, 6, 27752. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Wei, L.Y.; Li, Z.H.; Zhu, L.Y.; Pai, X.F. Transcriptome analysis of Shore wheat leaves. J. Wheat Crops 2018, 38, 1084–1093. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wu, Y.; Wang, Y.X.; Wang, R.L.; Zhou, W.X.; Li, R.L.; Cheng, Y. Transcriptome analysis of maize in response to salt stress at germination stage. Mol. Plant Breed. 2023, 21, 370–378. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Yan, H.H.; Guo, L.C.; Deng, C.; Wang, C.; Wang, Y.; Kang, L.; Zhou, P.; Yu, K.; Dong, X.; et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat. Genet. 2022, 54, 1248–1258. [Google Scholar] [CrossRef]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Hao, D.C.; Ge, G.B.; Xiao, P.G.; Zhang, Y.Y.; Yang, L. The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing. PLoS ONE 2011, 6, e21220. [Google Scholar] [CrossRef] [PubMed]
- Amombo, E.; Li, X.N.; Wang, G.Y.; An, S.; Wang, W.; Fu, J.M. Comprehensive transcriptome profiling and identification of potential genes responsible for salt tolerance in tall fescue leaves under salinity stress. Genes 2018, 9, 466. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.L.; Ding, Z.H.; Sun, X.P.; Zhang, J.M. Physiological and transcriptomic analysis reveals distorted ion homeostasis and responses in the freshwater plant Spirodela polyrhiza under salt stress. Genes 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, J.Y.; Zhang, Y.D.; Fan, F.J.; Li, W.Q.; Wang, F.Q.; Zhong, W.G.; Wang, C.L.; Yang, J. Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage. Sci. Rep. 2018, 8, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Nevo, R.; Charuvi, D.; Tsabari, O.; Reich, Z. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 2012, 70, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; ZetuNiculli, K.B.; Lv, P.; Du, R.H.; Ye, K.; Hou, S.L.; Liu, G.Q. Transcriptome analysis and gene mining of salt tolerance in sorghum seedling stage. Sci. Agric. Sin. 2019, 52, 3987–4001. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Yang, B.; Neil, S.; Deyholos, M.K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 2007, 58, 3591–3607. [Google Scholar] [CrossRef]
- Wu, B.; Hu, Y.N.; Huo, P.J.; Zhang, Q.; Chen, X.; Zhang, Z.W. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PLoS ONE 2017, 12, e0171451. [Google Scholar] [CrossRef]
- Lu, R.; Li, P.Y. Transcriptome analysis of Thinopyrum triticum under salt stress. Acta Agron. Sin. 2020, 28, 31–44. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.J.; Choi, W.G.; Gilroy, S.; Morris, R.J. A ROS-Assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol. 2016, 171, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Sathee, L.; Sairam, R.K.; Chinnusamy, V.; Jha, S.K.; Singh, D. Upregulation of genes encoding plastidic isoforms of antioxidant enzymes and osmolyte synthesis impart tissue tolerance to salinity stress in bread wheat. Physiol. Mol. Biol. Plants 2022, 28, 1639–1655. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.X.; Guo, J.F.; Zhong, Y.L.; Hsu, C.C.; Zou, C.S.; Wang, P.C.; Zhu, J.K.; Shi, H. The plasma-membrane polyamine transporter PUT3 is regulated by the Na+/H+ antiporter SOS1 and protein kinase SOS2. New Phytol. 2020, 226, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Y.; Zhang, H.; Sun, L.R.; Jiao, Y.H.; Zhang, G.Z.; Miao, C.; Hao, F.S. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/ K+ homeostasis in Arabidopsis under salt stress. J. Exp. Bot. 2012, 63, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, M.; Sun, J.; Li, S.N.; Li, W.B.; Wu, X.X. Research progress of Na+(K+)/H+ transporter NHX gene. Soybean Sci. 2011, 30, 1035–1039. [Google Scholar]
- Zhou, M.Y.; Wang, T.T.; Chen, R.H.; Jing, S.S.; Li, M.; Ma, L.Y. Cloning and Functional identification of NHX2 gene from Spartina alterniflora. Acta Bot. Sin. Northwest China 2019, 39, 2093–2099. [Google Scholar] [CrossRef]
- Ali, A.; Maggio, A.; Bressan, R.A.; Yun, D.J. Role and Functional Differences of HKT1-Type Transporters in Plants under Salt Stress. Int. J. Med. Sci. 2019, 20, 1059. [Google Scholar] [CrossRef]
- Luan, S.; Kudla, J.; Rodriguez-Concepcion, M.; Yalovsky, S.; Gruissem, W. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell 2002, 14 (Suppl. S1), S389–S400. [Google Scholar] [CrossRef]
- Bose, J.; Pottosin, I.I.; Shabala, S.S.; Palmgren, M.G.; Shabala, S. Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci. 2011, 2, 85. [Google Scholar] [CrossRef]
- Luan, S.; Wang, C. Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 2021, 37, 311–340. [Google Scholar] [CrossRef]
- Boudsocq, M.; Droillard, M.J.; Regad, L.; Lauriere, C. Characterization of Arabidopsis calcium-dependent protein kinases: Activated or not by calcium? Biochem. J. 2012, 447, 291–299. [Google Scholar] [CrossRef]
- Gifford, J.L.; Walsh, M.P.; Vogel, H.J. Structures and metal-ionbinding properties of the Ca2+-binding helix-loop-helix EFhand motifs. Biochem. J. 2007, 405, 199–221. [Google Scholar] [CrossRef]
- Zhang, M.; Tanaka, T.; Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 1995, 2, 758–767. [Google Scholar] [CrossRef]
- Wernimont, A.K.; Artz, J.D.; Finerty, J.P.; Lin, Y.H.; Amani, M.; Allali-Hassani, A.; Senisterra, G.; Vedadi, M.; Tempel, W.; Mackenzie, F.; et al. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat. Struct. Mol. Biol. 2010, 17, 596–601. [Google Scholar] [CrossRef]
- Liese, A.; Romeis, T. Biochemical regulation of in vivo function of plant calcium dependent protein kinases (CDPK), Biochim. Biophys. Acta—Mol. Cell Res. 2013, 1833, 1582–1589. [Google Scholar] [CrossRef]
- Hepler, P.K. Calcium: A Central Regulator of Plant Growth and Development. Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef]
- Zou, J.; Li, X.; Ratnasekera, D.; Wang, C.; Liu, W.; Song, L.; Zhang, W.; Wu, W. Arabidopsis Calcium-Dependent Protein Kinase 8 and Catalase 3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells Under Drought Stress. Plant Cell 2015, 27, 1445–1460. [Google Scholar] [CrossRef]
- Zou, J.; Wei, F.; Wang, C.; Wu, J.; Ratnasekera, D.; Liu, W.; Wu, W. Arabidopsis Calcium-Dependent Protein Kinase CPK10 Functions in Abscisic Acid- and Ca2+-Mediated Stomatal Regulation in Response to Drought Stress. Plant Physiol. 2010, 154, 1232–1243. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhou, X.R.; Liang, G.L.; Zhao, G.Q.; Jiao, R.A.; Chai, J.K.; Gao, X.M.; Li, J.N. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage. Acta Prataculturae Sin. 2020, 29, 143–154. [Google Scholar]
- Wang, M.M.; Zhou, X.R.; Liang, G.L.; Zhao, G.Q. Evaluation of salt tolerance of different oat materials during germination period. Grassl. Turf. 2019, 39, 84–90. [Google Scholar]
- Elavarthi, S.; Martin, B. Spectrophotometric assays for antioxidant enzymes in plants. Methods Mol. Biol. 2010, 639, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, M.; Wu, Y.; Miao, Y.H.; Wang, Q.; Han, Y.L. Evaluation of salt tolerance and its underlying physiological mechanisms in different oats. Pratacultural Sci. 2018, 35, 2903–2914. [Google Scholar]
- Sa, R.L.; Liu, J.H.; Liu, W.; Bai, J.H. Effects of alkali salt stress on mineral ion absorption and distribution of oats. J. Triticeae Crops 2014, 34, 261–266. [Google Scholar]
Gene ID | Log2(Fold Change) | Qingyongjiu 195 | Log2(Fold Change) | 709 | Gene | ||
---|---|---|---|---|---|---|---|
6 h/0 h | 24 h/0 h | 72 h/0 h | 6 h/0 h | 24 h/0 h | 72 h/0 h | ||
CL6997.Contig13_All | 6.43 | 5.08 | 3.92 | 1.86 | 2.26 | −1.48 | NHX2 |
CL17722.Contig19_All | 7.12 | - | 6.04 | 1.07 | 1.69 | −0.04 | AKT2 |
CL4133.Contig1_All | 2.14 | 2.24 | 0.97 | 1.08 | 1.15 | 0.23 | NHX6 |
CL18436.Contig3_All | 1.14 | 0.02 | −0.32 | 0.81 | −0.46 | −0.70 | HAK18 |
CL4014.Contig17_All | −1.32 | −0.55 | −0.25 | −2.05 | −2.01 | −1.06 | SOS1 |
CL2008.Contig3_All | −2.03 | 0.63 | 0.51 | −2.76 | −0.44 | −1.14 | HKT6 |
CL3919.Contig1_All | −1.24 | −0.52 | 0.89 | −0.71 | −1.02 | 0.18 | KAT1 |
CL6904.Contig3_All | −2.24 | 1.44 | 0.15 | −0.92 | 0.16 | −0.21 | HKT3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wang, M.; Yang, L.; Wang, W.; Zhang, Y.; Liu, L.; Chai, J.; Liu, H.; Zhao, G. Comparative Physiological and Transcriptomic Analyses of Oat (Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms. Plants 2024, 13, 2238. https://doi.org/10.3390/plants13162238
Zhou X, Wang M, Yang L, Wang W, Zhang Y, Liu L, Chai J, Liu H, Zhao G. Comparative Physiological and Transcriptomic Analyses of Oat (Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms. Plants. 2024; 13(16):2238. https://doi.org/10.3390/plants13162238
Chicago/Turabian StyleZhou, Xiangrui, Miaomiao Wang, Li Yang, Wenping Wang, Yuehua Zhang, Linbo Liu, Jikuan Chai, Huan Liu, and Guiqin Zhao. 2024. "Comparative Physiological and Transcriptomic Analyses of Oat (Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms" Plants 13, no. 16: 2238. https://doi.org/10.3390/plants13162238
APA StyleZhou, X., Wang, M., Yang, L., Wang, W., Zhang, Y., Liu, L., Chai, J., Liu, H., & Zhao, G. (2024). Comparative Physiological and Transcriptomic Analyses of Oat (Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms. Plants, 13(16), 2238. https://doi.org/10.3390/plants13162238