Biochar Improves Yield by Reducing Saline–Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline–Alkaline Paddy Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. The Properties of Biochar
2.3. Sampling and Measurements
2.3.1. Measurement of Leaf Concentration of Na+, K+, and Na+/K+ Ratio
2.3.2. Sugar-Soluble Protein and Proline
2.3.3. Malondialdehyde (MDA), Superoxide Anions (O2−), and Hydrogen Peroxide (H2O2)
2.3.4. Superoxide Dismutase (SOD), Peroxidase (POD), Catalase (CAT), and Ascorbate Peroxidase (APX)
2.3.5. Leaf Area Index (LAI), Photosynthetic Potential, Leaf Area Decreasing Rate (LAD), and Net Assimilation Rate (NAR)
2.3.6. Sucrose Synthase (SuSase), ADPG Pyrophosphorylase (AGPase), Starch Synthase (StSase), and Starch Branching Enzyme (SBE)
2.3.7. Determination of Grain-Filling Parameters
2.3.8. Rice Yield and Yield Component
2.4. Statistical Analysis
3. Results
3.1. Concentration of Na+, K+, and Na+/K+ Ratio
3.2. Soluble Sugar, Soluble Protein, and Proline Concentration
3.3. MDA, (O2−) and H2O2 Concentration
3.4. SOD, POD, CAT, and APX Concentrations
3.5. LAI, Photosynthetic Potential, LAD, and NAR
3.6. Activity of Key Enzymes of the Sucrose–Starch Metabolic Pathway
3.7. Grain-Filling Parameters of Superior and Inferior Grains
3.8. Yield and Yield Components
3.9. Correlation and Principal Component Analysis of Na+/K+, Physiological Indicators, Enzymes Activities, Filling Parameters, and Yield
4. Discussion
4.1. Relationship between Biochar and Rice Ion Balance in Soda Saline–Alkaline Paddy Soils
4.2. Relationship between Biochar and Rice Physiological Indicators in Soda Saline–Alkaline Paddy Soils
4.3. Relationship between Biochar and Rice LAI, Photosynthetic Potential and NAR in Soda Saline–Alkaline Paddy Soils
4.4. Relationship of Biochar with Key Enzyme Activities of Starch Synthesis and Grain-Filling Parameters in Soda Saline–Alkaline Paddy Soils
4.5. Relationship between Biochar and Soda Saline–Alkaline Paddy Soils Yield and Its Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, H.Y.; Li, Y.F.; Li, S.J. Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: A review. Glob. Ecol. Conserv. 2021, 26, e01449. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed]
- Ling, F.; Su, Q.; Jiang, H.; Cui, J.J.; He, X.L.; Wu, Z.H.; Zhang, Z.A.; Liu, J.; Zhao, Y.J. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci. Rep. 2020, 10, 6183. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Siringam, K.; Juntawong, N.; Cha-um, S.; Kirdmanee, C. Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under isoosmotic conditions. Afr. J. Biotechnol. 2011, 10, 1340–1346. [Google Scholar]
- Santos, W.M.; Gonzaga, M.I.S.; Silva, J.A.; Almeida, A.Q.; Santos, J.C.J.; Gonzaga, T.A.S.; Lima, I.S.; Araújo, E.M. Effectiveness of different biochars in remediating a salt affected Luvisol in Northeast Brazil. Biochar 2021, 3, 149–159. [Google Scholar] [CrossRef]
- Kamran, M.; Wang, D.; Xie, K.Z.; Lu, Y.S.; Shi, C.H.; Sabagh, A.E.L.; Gu, W.J.; Xu, P.Z. Pre-sowing seed treatment with kinetin and calcium mitigates salt induced inhibition of seed germination and seedling growth of choysum (Brassica rapa var. parachinensis). Ecotoxicol. Environ. Saf. 2021, 227, 112921. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Li, H.B.; Song, J.X.; Chen, W.F.; Shi, L.H. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiol. Biochem. 2022, 183, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.M.; Zhao, C.W.; Sun, X.J.; Wang, Z.C. Reclamation of saline sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. Geoderma 2012, 187–188, 24–30. [Google Scholar] [CrossRef]
- Huang, L.H.; Liu, Y.; Ferreira, J.F.S.; Wang, M.M.; Na, J.; Huang, J.X.; Liang, Z.W. Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in Northeast China. Soil. Tillage Res. 2022, 215, 105222. [Google Scholar] [CrossRef]
- Ran, C.; Gulaqa, A.; Zhu, J.; Wang, W.W.; Zhang, S.Q.; Geng, Y.Q.; Guo, L.Y.; Jin, F.; Shao, X.W. Benefits of biochar for improving ion contents, cell membrane permeability, leaf water status and yield of rice under saline-sodic paddy field condition. J. Plant Growth Regul. 2019, 39, 370–377. [Google Scholar] [CrossRef]
- Jin, F.; Ran, C.; Anwari, Q.; Geng, Y.Q.; Guo, L.Y.; Li, J.B.; Han, D.; Zhang, X.Q.; Liu, X.; Shao, X.W. Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China. Plant Soil Environ. 2018, 64, 612–618. [Google Scholar] [CrossRef]
- Cui, R.L.; Zhuo, T.Y.; Shu, C.C.; Zhu, K.Y.; Ye, M.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Gu, J.F.; et al. Effects of Salt Stress on Grain Quality and Starch Properties of High-Quality Rice Cultivars. Agronomy 2024, 14, 444. [Google Scholar] [CrossRef]
- Sakamoto, T.; Matsuoka, M. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 2008, 11, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Das, D.; Zhu, F.; Chen, X.; Chen, M.; Yang, F.; Zhang, J. Effect of Alternate Wetting and Drying Irrigation on the Nutritional Qualities of Milled Rice. Front. Plant Sci. 2021, 12, 1914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, H.W.; Yuan, L.M.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J. Exp. Bot. 2012, 63, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Piao, J.L.; Miao, S.H.; Che, W.K.; Li, X.; Li, X.B.; Shiraiwa, T.; Tanaka, T.; Taniyoshi, K.; Hua, S.; et al. Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: Based on a 6-year field experiment. Biochar 2024, 6, 40. [Google Scholar] [CrossRef]
- El-Desouki, Z.; Xia, H.; Abouseif, Y.; Cong, M.I.; Zhang, M.Y.; Riaz, M.; Moustafa-Farag, M.; Jiang, C.C. Improved chlorophyll fluorescence, photosynthetic rate, and plant growth of Brassica napus L. after co-application of biochar and phosphorus fertilizer in acidic soil. J. Plant Nutr. Soil Sci. 2024, 187, 260–273. [Google Scholar] [CrossRef]
- Piao, J.L.; Che, W.K.; Li, X.; Li, X.B.; Zhang, C.B.; Wang, Q.S.; Jin, F.; Hua, S. Application of peanut shell biochar increases rice yield in saline-alkali paddy fields by regulating leaf ion concentrations and photosynthesis rate. Plant Soil 2022, 483, 589–606. [Google Scholar] [CrossRef]
- Juan, M.; Rivero, R.M.; Romero, L.; Ruiz, J.M. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ. Exp. Bot. 2005, 54, 193–201. [Google Scholar] [CrossRef]
- Cotsaftis, O.; Plett, D.; Johnson, A.A.; Walia, H.; Wilson, C.; Ismail, A.M.; Baumann, U. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol. Plant 2011, 4, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, M.R. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int. J. Bot. 2011, 7, 73–81. [Google Scholar] [CrossRef]
- Li, X.; Yao, T.X.; Huang, X.X.; Li, X.B.; Li, P.Y.; Du, S.; Wang, W.; Miao, S.H.; Wang, D.; Jin, F.; et al. Biochar increases rice yield by improving root morphological and root physiological functions in heavily saline-sodic paddy soil of northeast China. BioResources 2022, 17, 1421–1456. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhong, X.; Liao, J.P.; Ji, P.; Yang, J.S.; Cao, Z.R.; Duan, X.M.; Xiong, J.R.; Wang, Y.; Xu, C.; et al. Exogenous abscisic acid improves grain flling capacity under heat stress by enhancing antioxidative defense capability in rice. BMC Plant Biol. 2023, 23, 619. [Google Scholar] [CrossRef] [PubMed]
- Asch, F.; Wopereis, M.C. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crops Res. 2001, 70, 127–137. [Google Scholar] [CrossRef]
- Chen, T.; Shabala, S.; Niu, Y.; Chen, Z.H.; Shabala, L.; Meinke, H.; Venkataraman, G.; Pareek, A.; Xu, J.; Zhou, M. Molecular mechanisms of salinity tolerance in rice. Crop J. 2021, 9, 506–520. [Google Scholar] [CrossRef]
- Peng, Y.Q.; Chen, Y.K.; Yuan, Y.M.; Liu, B.H.; Yu, P.; Song, S.H.; Yi, Y.K.; Teng, Z.N.; Yi, Z.X.; Zhang, J.H.; et al. Post-anthesis saline-alkali stress inhibits grain filling by promoting ethylene production and signal transduction. Food Energy Sec. 2022, 11, e384. [Google Scholar] [CrossRef]
- Hagemann, N.; Spokas, K.; Schmidt, H.P.; Kagi, R.; Bohler, M.A.; Bucheli, T.D. Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef]
- Wang, S.B.; Gao, P.L.; Zhang, Q.W.; Shi, Y.L.; Guo, X.L.; Lv, Q.X.; Wu, W.; Zhang, X.; Li, M.Z.; Meng, Q.M. Biochar improves soil quality and wheat yield in saline-alkali soils beyond organic fertilizer in a 3-year field trial. Environ. Sci. Pollut. Res. 2023, 30, 19097–19110. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Bhaduri, D.; Meena, H.N.; Kalariya, K. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 2016, 103, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.K.; Xu, X.M.; Wu, L.A.; Dai, G.J.; Zheng, W.J.; Xu, Z.J. Efect of biochar on rice starch properties and starch-related gene expression and enzyme activities. Sci. Rep. 2020, 10, 16917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Wang, H.Y.; Zhao, C.J.; Yang, K.J.; Li, Z.T.; Yin, K.D. Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth. Agronomy 2020, 12, 2859. [Google Scholar] [CrossRef]
- Cui, L.Q.; Liu, Y.M.; Yan, J.L.; Hina, K.; Hussain, Q.; Qiu, T.J.; Zhu, J.Y. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. Ecol. Eng. 2022, 179, 106594. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, S.H.; Song, Y.; Wang, X.D.; Jin, F. Biochar Application Reduces Saline-Alkali Stress by Improving Soil Functions and Regulating the Diversity and Abundance of Soil Bacterial Community in Highly Saline-Alkali Paddy Field. Sustainability 2024, 16, 1001. [Google Scholar] [CrossRef]
- Li, X.B.; Che, W.K.; Piao, J.L.; Li, X.; Jin, F.; Yao, T.X.; Li, P.Y.; Wang, W.; Tan, T.; Shao, X.W. Peanut Shell Biochar’s Effect on Soil Physicochemical Properties and Salt Concentration in Highly Saline-Sodic Paddy Fields in Northeast China. BioResources 2022, 17, 5936–5957. [Google Scholar] [CrossRef]
- USDA. Diagnosis and Improvement of Saline and Alkali Soils; USDA, U.S. Government Printing Office: Washington, DC, USA, 1954; Volume 18, p. 160. [CrossRef]
- Bastías, E.I.; González-Moro, M.B.; González-Murua, C. Zea mays L. amylacea from the Lluta Valley (Arica-Chile) to lerates salinity stress when high levels of boron are available. Plant Soil 2004, 267, 73–84. [Google Scholar] [CrossRef]
- Kochert, G. Carbohydrate determination by the phenol-sulfuric acid method. In Handbook of Phycological Methods; Cambridge University Press: Cambridge, UK, 1978; Volume 2, pp. 95–97. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Stewart, R.C.; Bewley, J.D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980, 65, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Jiao, H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agr. Food Chem. 2000, 48, 5677–5684. [Google Scholar] [CrossRef] [PubMed]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Omran, R.G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol. 1980, 65, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol. 1980, 21, 1295–1307. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Rathjen, J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiol. Biochem. 2018, 129, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Chang, S.C.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 190, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.Y.; Zhang, Z.Y.; Zhai, Y.M.; Lu, P.R.; Zhu, C.L. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 8, 457. [Google Scholar] [CrossRef]
- Yao, T.X.; Zhang, W.T.; Gulaqa, A.; Cui, Y.F.; Zhou, Y.M.; Weng, W.A.; Wang, X.; Jin, F. Effects of peanut shell biochar on soil nutrients, soil enzyme activity, and rice yield in heavily saline-sodic paddy field. J. Soil. Sci. Plant Nutr. 2021, 21, 655–664. [Google Scholar] [CrossRef]
- Amini, S.; Ghadiri, H.; Chen, C.R.; Marschner, P. Saltaffected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.Y.; Xia, Y.; Zhang, Y.P.; Wang, H.F.; Luo, X.X.; Xing, B.S. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.H.; Jiang, H.F.; Lan, Y.C.; Wang, H.Y.; Xu, L.Q.; Yin, D.W.; Zheng, G.P.; Lv, Y.D. Optimization of nitrogen fertilizer management for improving rice grain yield and nutrient accumulation and mobilization in saline-alkaline soils. Crop Sci. 2020, 60, 2621–2632. [Google Scholar] [CrossRef]
- Ranganayakulu, G.; Veeranagamallaiah, G.; Sudhakar, C. Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. Afr. J. Plant Sci. 2013, 7, 586–592. [Google Scholar] [CrossRef]
- Zhu, W.H.; Li, C.L.; Zhou, S.; Duan, Y.; Zhang, J.J.; Jin, F. Soil organic carbon characteristics affected by peanut shell biochar in saline-sodic paddy field. Plant Soil Environ. 2022, 68, 108–114. [Google Scholar] [CrossRef]
- Rangani, J.; Parida, A.K.; Panda, A.; Kumari, A. Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme Halophyte Salvadora persica L. Front. Plant Sci. 2016, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Anee, T.I.; Parvin, K.; Nahar, K.; Mahmud, J.A.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Hafez, Y.; Attia, K.; Alamery, S.; Ghazy, A.; Al-Doss, A.; Ibrahim, E.; Rashwan, E.; El-Maghraby, L.; Awad, A.; Abdelaal, K. Beneficial Effects of Biochar and Chitosan onAntioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy 2020, 10, 630. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Ikram, M.; Imtiaz, M.; Mehmood, S.; Tu, S.X.; Chen, D.Y. Chitosan Modified Biochar Increases Soybean (Glycinemax L.) Resistance to Salt-Stress by Augmenting Root Morphology, Antioxidant Defense Mechanisms and the Expression of Stress-Responsive Genes. Plants 2020, 9, 1173. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, L.; Moghaddam, M.; Lakzian, A. Amelioration of soil properties, growth and leaf mineral elements of summer savory under salt stress and biochar application in alkaline soil. Sci. Hortic. 2020, 267, 109319. [Google Scholar] [CrossRef]
- Wang, X.L.; Riaz, M.; Xia, X.Y.; Babar, X.; El-Desouki, Z.; Li, Y.X.; Wang, J.Y.; Jang, C.C. Alleviation of cotton growth suppression caused by salinity through biochar is strongly linked to the microbial metabolic potential in saline-alkali soil. Sci. Total Environ. 2024, 922, 171404. [Google Scholar] [CrossRef] [PubMed]
- Chaganti, V.N.; Crohn, D.M.; Šimunek, J. Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agric. Water Manag. 2015, 158, 255–265. [Google Scholar] [CrossRef]
- Salar, F.A.; Shahram, T. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017, 137, 64–70. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Balwant, S.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Song, X.D.; Zhou, G.S.; Ma, B.L.; Wu, W.; Ahmad, I.; Zhu, G.L.; Yan, W.K.; Jiao, X.R. Nitrogen application improved photosynthetic productivity, chlorophyllfluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef]
- Brugnoli, E.; Lauteri, M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C-non-halophytes. Plant Physiol. 1991, 95, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [Google Scholar] [CrossRef]
- Ahmad, S.; Cui, W.; Kamran, M.; Ahmad, I.; Meng, X.P.; Wu, X.R.; Su, W.N.; Javed, T.; El-Serehy, H.A.; Jia, Z.K.; et al. Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. J. Plant Growth Regul. 2021, 40, 1270–1283. [Google Scholar] [CrossRef]
- Feng, N.J.; Yu, M.L.; Li, Y.; Jin, D.; Zheng, D.F. Prohexadionecalcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol. Environ. Saf. 2021, 220, 112369. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wang, X.D.; Zhang, L.; Zheng, Y.J.; Lium, X.L.; Zhang, Y.T. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Front. Plant Sci. 2023, 14, 1163451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cai, Y.; Li, X.; Yang, L.Y.; Zhang, Y.C. High-nitrogen fertilizer alleviated adverse effects of drought stress on the growth and photosynthetic characteristics of Hosta ‘Guacamole’. BMC Plant Biol. 2024, 24, 299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Chen, T.; Yu, S.C.; Zhou, C.L.; Teng, A.G.; Lei, L.; Li, F.Q. Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency. Plants 2024, 13, 1241. [Google Scholar] [CrossRef] [PubMed]
- Panda, B.B.; Badoghar, A.K.; Das, K.; Panigrahi, R.; Kariali, E.; Das, S.R.; Dash, S.K.; Shaw, B.P.; Mohapatra, P.K. Compact panicle architecture is detrimental for growth as well as sucrose synthase activity of developing rice kernels. Funct. Plant Biol. 2015, 42, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.X.; Wu, C.F. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Liu, K.; Wang, P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J. Exp. Bot. 2006, 57, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Q.; Li, H.X.; Feng, L.; Chen, M.X.; Meng, S.; Ye, N.H.; Zhang, J. Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. J. Exp. Bot. 2019, 70, 1597–1611. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.G.; Wu, G.Z.; Li, Q.Q.; Xu, Y.W.; Xue, M.M.; Chen, X.Y.; Wei, H.Y.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; et al. Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism. J. Int. Agric. 2024, 23, 1507–1522. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Liu, K.; Zhou, X.X.; Wang, W.L.; Zhang, W.Y.; Zhang, H.; Gu, J.F.; Yang, J.C.; Liu, L.J. Optimizing Nitrogen Regime Improves Dry Matter and Nitrogen Accumulation during Grain Filling to Increase Rice Yield. Agronomy 2023, 13, 1983. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.Z.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J. Soil properties and the growth of wheat (Tri aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agric. Ecosyst. Environ. 2020, 303, 107124. [Google Scholar] [CrossRef]
Soil Properties (0–20 cm Soil Layers) | Value |
---|---|
Sand content (%) | 23.13 ± 1.11 |
Silt content (%) | 38.14 ± 1.31 |
Clay content (%) | 37.60 ± 2.09 |
Bulk density (g cm−3) | 1.61 ± 0.13 |
ECe (μs m−1) | 24.08 ± 0.71 |
pH | 10.10 ± 0.24 |
SARe (mmolc L−1)1/2 | 368.11 ± 4.03 |
ESP (%) | 55.11 ± 2.17 |
CEC (cmol kg−1) | 10.99 ± 0.34 |
Organic matter (%) | 0.64 ± 0.04 |
Total N (g kg−1) | 0.27 ± 1.11 |
Alkali-hydrolysable N (mg kg−1) | 16.30 ± 1.11 |
Available P (mg kg−1) | 9.13 ± 0.68 |
Available K (mg kg−1) | 107.25 ± 5.68 |
pH and Elemental Component | Biochar |
---|---|
pH | 7.94 ± 0.32 |
CEC (cmol kg−1) | 78.69 ± 11.32 |
EC (dS m−1) | 7.88 ± 0.59 |
SA (m2 g−1) | 7.41 ± 0.12 |
C (mg g−1) | 540.64 ± 26.58 |
N (mg g−1) | 15.93 ± 1.01 |
S (mg g−1) | 6.85 ± 0.34 |
P (mg g−1) | 0.74 ± 0.03 |
Mg (mg g−1) | 0.25 ± 0.00 |
K (mg g−1) | 12.53 ± 0.51 |
Ca (mg g−1) | 2.01 ± 0.02 |
Na (mg g−1) | 1.17 ± 0.21 |
N Applied Level | Biochar Applied Rates | LAI | Heading Stage to Filling Stage | |||
---|---|---|---|---|---|---|
Heading Stage | Filling Stage | Photosynthetic Potential (m−2 d) | Leaf Area Decreasing (LAI d−1) | NAR (g m−2 d−1) | ||
N0 | B0 | 0.35 ± 0.01 b | 0.29 ± 0.01 d | 0.32 ± 0.00 e | 0.0135 ± 0.0003 a | 0.11 ± 0.05 b |
B1 | 0.40 ± 0.01 b | 0.30 ± 0.02 d | 0.35 ± 0.01 d | 0.0134 ± 0.0002 a | 0.15 ± 0.03 b | |
B2 | 0.51 ± 0.02 b | 0.40 ± 0.02 c | 0.45 ± 0.02 c | 0.0113 ± 0.0013 b | 0.25 ± 0.03 a | |
B3 | 0.86 ± 0.03 a | 0.70 ± 0.04 b | 0.78 ± 0.03 b | 0.0115 ± 0.0013 b | 0.27 ± 0.03 a | |
B4 | 1.04 ± 0.23 a | 0.99 ± 0.02 a | 1.02 ± 0.12 a | 0.0117 ± 0.0001 b | 0.35 ± 0.12 a | |
N225 | B0 | 2.65 ± 0.21 b | 2.16 ± 0.12 c | 2.41 ± 0.14 d | 0.0279 ± 0.0063 a | 0.27 ± 0.09 b |
B1 | 2.80 ± 0.11 ab | 2.51 ± 0.16 b | 2.66 ± 0.04 c | 0.0242 ± 0.0034 a | 0.30 ± 0.08 b | |
B2 | 3.02 ± 0.17 a | 2.87 ± 0.17 a | 2.95 ± 0.08 ab | 0.0217 ± 0.0022 ab | 0.43 ± 0.03 a | |
B3 | 3.08 ± 0.10 a | 2.91 ± 0.17 a | 2.99 ± 0.12 a | 0.0166 ± 0.0040 b | 0.47 ± 0.04 a | |
B4 | 2.97 ± 0.07 a | 2.69 ± 0.07 ab | 2.80 ± 0.07 b | 0.0167 ± 0.0039 b | 0.44 ± 0.07 a | |
ANOVA N applied level (N) Biochar (B) N × B | ||||||
** | ** | ** | ** | ** | ||
** | ** | ** | ** | ** | ||
* | ** | ** | NS | NS |
N Applied Level | Biochar Applied Rates | Gmean (mg (100 Grain d)−1) | Tmax G (d) | Wmax (mg (100 Grain)−1) | |||
---|---|---|---|---|---|---|---|
Superior | Inferior | Superior | Inferior | Superior | Inferior | ||
N0 | B0 | 82.05 ± 0.22 d | 57.96 ± 0.18 e | 9.80 ± 0.06 e | 16.64 ± 0.18 c | 933.58 ± 2.83 c | 807.46 ± 4.73 d |
B1 | 88.69 ± 0.59 bc | 59.95 ± 0.17 d | 10.45 ± 0.10 d | 17.54 ± 0.38 b | 1023.42 ± 11.46 b | 856.58 ± 14.17 c | |
B2 | 88.53 ± 1.03 c | 61.02 ± 0.68 c | 10.74 ± 0.04 c | 18.20 ± 0.24 a | 1028.07 ± 10.99 b | 894.40 ± 2.92 b | |
B3 | 90.14 ± 0.94 ab | 63.60 ± 0.60 b | 10.99 ± 0.17 b | 18.45 ± 0.16 a | 1054.96 ± 11.26 a | 941.46 ± 11.76 a | |
B4 | 90.39 ± 1.02 a | 64.58 ± 0.53 a | 11.19 ± 0.03 a | 18.53 ± 0.12 a | 1067.62 ± 12.08 a | 957.64 ± 14.41 a | |
N225 | B0 | 89.81 ± 2.46 b | 64.84 ± 0.30 b | 13.10 ± 0.17 d | 19.38 ± 0.04 e | 1073.31 ± 23.23 d | 953.51 ± 4.36 d |
B1 | 93.99 ± 0.57 a | 65.28 ± 0.15 b | 14.08 ± 0.19 c | 20.03 ± 0.15 d | 1140.08 ± 9.54 c | 972.75 ± 8.54 c | |
B2 | 94.99 ± 0.74 a | 65.83 ± 1.30 b | 14.83 ± 0.22 b | 20.82 ± 0.21 c | 1172.80 ± 15.11 b | 1011.00 ± 15.68 b | |
B3 | 95.58 ± 1.14 a | 67.76 ± 1.07 a | 15.62 ± 0.15 a | 22.08 ± 0.21 a | 1213.33 ± 17.47 a | 1088.96 ± 5.74 a | |
B4 | 93.12 ± 1.38 a | 65.65 ± 0.13 b | 15.22 ± 0.33 ab | 21.12 ± 0.14 b | 1155.97 ± 15.34 bc | 1014.59 ± 7.44 b | |
ANOVA N applied level (N) Biochar (B) N × B | |||||||
** | ** | ** | ** | ** | ** | ||
* | ** | ** | ** | ** | ** | ||
** | ** | ** | ** | ** | ** |
N Applied Level | Biochar Applied Rates | Panicle Number (104 hm−2) | Spikelets per Panicle | Seed Setting Rate (%) | 1000-Grain Weight (g) | Yield (t hm−2) |
---|---|---|---|---|---|---|
N0 | B0 | 145.07 ± 7.83 c | 59.80 ± 1.52 d | 87.58 ± 2.38 b | 27.14 ± 1.05 a | 3.00 ± 0.20 d |
B1 | 162.13 ± 9.90 b | 63.80 ± 1.21 c | 89.83 ± 3.30 ab | 27.95 ± 0.63 a | 3.40 ± 0.10 c | |
B2 | 174.93 ± 12.42 ab | 68.40 ± 5.52 bc | 91.02 ± 2.30 ab | 28.84 ± 2.94 a | 4.00 ± 0.03 b | |
B3 | 192.00 ± 12.90 ab | 74.87 ± 6.33 ab | 91.93 ± 1.37 a | 29.31 ± 2.59 a | 4.67 ± 0.21 a | |
B4 | 195.60 ± 11.03 a | 75.33 ± 4.17 a | 92.00 ± 1.21 a | 29.72 ± 1.86 a | 4.97 ± 0.15 a | |
N225 | B0 | 187.73 ± 10.90 c | 85.03 ± 3.45 c | 92.50 ± 1.39 a | 25.43 ± 0.99 a | 5.40 ± 0.40 d |
B1 | 251.73 ± 10.45 b | 94.07 ± 2.18 b | 92.77 ± 4.08 a | 25.77 ± 0.14 a | 5.97 ± 0.06 c | |
B2 | 296.53 ± 16.13 a | 99.57 ± 5.34 ab | 93.63 ± 2.68 a | 26.04 ± 0.70 a | 6.23 ± 0.16 b | |
B3 | 300.80 ± 23.13 a | 104.83 ± 10.29 a | 94.88 ± 1.06 a | 26.13 ± 0.72 a | 6.63 ± 0.03 a | |
B4 | 256.00 ± 21.35 b | 102.03 ± 9.58 ab | 93.41 ± 2.61 a | 25.50 ± 1.28 a | 6.47 ± 0.05 b | |
ANOVA N applied level (N) Biochar (B) N × B | ||||||
** | ** | ** | ** | ** | ||
** | ** | * | ** | ** | ||
** | ** | NS | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, W.; Li, X.; Piao, J.; Zhang, Y.; Miao, S.; Wang, H.; Xie, L.; Jin, F. Biochar Improves Yield by Reducing Saline–Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline–Alkaline Paddy Fields. Plants 2024, 13, 2237. https://doi.org/10.3390/plants13162237
Che W, Li X, Piao J, Zhang Y, Miao S, Wang H, Xie L, Jin F. Biochar Improves Yield by Reducing Saline–Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline–Alkaline Paddy Fields. Plants. 2024; 13(16):2237. https://doi.org/10.3390/plants13162237
Chicago/Turabian StyleChe, Weikang, Xuebin Li, Junlong Piao, Yue Zhang, Shihao Miao, Hongyue Wang, Liming Xie, and Feng Jin. 2024. "Biochar Improves Yield by Reducing Saline–Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline–Alkaline Paddy Fields" Plants 13, no. 16: 2237. https://doi.org/10.3390/plants13162237
APA StyleChe, W., Li, X., Piao, J., Zhang, Y., Miao, S., Wang, H., Xie, L., & Jin, F. (2024). Biochar Improves Yield by Reducing Saline–Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline–Alkaline Paddy Fields. Plants, 13(16), 2237. https://doi.org/10.3390/plants13162237