Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress (Nasturtium officinale R. Br.) as a Model Plant
Abstract
:1. Introduction
2. Results
2.1. Effect of Mercury and Humic Acid Treatment on the Elemental Content of Watercress
2.2. Effect of Lead and Humic Acid Treatment on the Elemental Content of Watercress
2.3. Effect of Mercury, Lead and Humic Acid Treatments on the Water Quality
3. Discussion
4. Materials and Methods
- Experiment design
- Control (no heavy metals or humic acid were added to these systems);
- Pb (50 mg kg−1) (25 mL of a 48% Pb(NO3)2 solution);
- Pb (50 mg kg−1) (25 mL of a 48% Pb(NO3)2 solution) + H (humic acid) (1000 mg kg−1) (150 mL);
- Hg (50 mg kg−1) (25 mL of a 0.01 mol l−1 Hg(NO3)2 solution);
- Hg (50 mg kg−1) (25 mL of solution) + H (humic acid) (1000 mg kg−1) (150 mL).
- Measurements
- Element measurements
- Macro and microelements
- Statistical analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022; Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Europe Aquaponics Market Size, Share & Industry Trends Analysis Report by Facility Type, by Equipment, by Component, by Produce (Fish, Fruits & Vegetables and Others), by Application, by Growing Mechanism, by Country and Growth Forecast, 2023–2030. KBV-15743 Research Report. 2023. 112p. Available online: https://www.kbvresearch.com/europe-aquaponics-market/ (accessed on 10 June 2024).
- Global Aquaponics Market Size, Share & Industry Trends Analysis Report by Facility Type, by Equipment, by Component, by Produce (Fish, Fruits & Vegetables and Others), by Application, By Growing Mechanism, by Regional Outlook and Forecast, 2023–2030. KBV-15741 Research Report. 2023. 341p. Available online: https://www.kbvresearch.com/aquaponics-market/ (accessed on 10 June 2024).
- Laidlaw, J.; Magee, L. Towards urban food sovereignty: The trials and tribulations of community-based aquaponics enterprises in Milwaukee and Melbourne. Local Environ. 2014, 21, 573–590. [Google Scholar] [CrossRef]
- Villarroel, M.; Junge, R.; Komives, T.; König, B.; Plaza, I.; Bittsánszky, A.; Joly, A. Survey of Aquaponics in Europe. Water 2016, 8, 468. [Google Scholar] [CrossRef]
- Fernández-Cabanás, V.M.; Delgado, A.; Lobillo-Eguíbar, J.R.; Pérez-Urrestarazu, L. Early production of strawberry in aquaponic systems using commercial hydroponic bands. Aquac. Eng. 2022, 97, 102242. [Google Scholar] [CrossRef]
- Gilles, S.; Ismiño, R.; Sánchez, H.; David, F.; Núñez, J.; Dugué, R.; Darias, M.J.; Römer, U. An integrated closed system for fish-plankton aquaculture in Amazonian fresh water. Animal 2014, 8, 1319–1328. [Google Scholar] [CrossRef]
- Li, G.; Tao, L.; Li, X.L.; Peng, L.; Song, C.F.; Dai, L.L.; Xie, L. Design and performance of a novel rice hydroponic biofilter in a pond-scale aquaponic recirculating system. Ecol. Eng. 2018, 125, 1–10. [Google Scholar] [CrossRef]
- Balláné Kovács, A.; Kremper, R.; Kincses, I.; Leviczky, Á. Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of Spinach (Spinacia oleracea L.). Acta Agrar. Debreceniensis 2016, 70, 23–28. [Google Scholar] [CrossRef]
- Irhayyim, T.; Fehér, M.; Lelesz, J.; Bercsényi, M.; Bársony, P. Nutrient removal efficiency and growth of watercress (Nasturtium officinale) under different harvesting regimes in integrated recirculating aquaponic systems for rearing common carp (Cyprinus carpio L.). Water 2020, 12, 1419. [Google Scholar] [CrossRef]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C. Watercress. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 1st ed.; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 197–219. [Google Scholar]
- Pignata, G.; Ertani, A.; Casale, M.; Niñirola, D.; Egea-Gilabert, C.; Fernández, J.A.; Nicola, S. Understanding the Postharvest Phytochemical Composition Fates of Packaged Watercress (Nasturtium officinale R. Br.) Grown in a Floating System and Treated with Bacillus subtilis as PGPR. Plants 2022, 11, 589. [Google Scholar] [CrossRef]
- Hecht, S.S.; Chung, F.L.; Richie, J.P., Jr.; Akerkar, S.A.; Borukhova, A.; Skowronski, L.; Carmella, S.G. Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored By Am. Soc. Prev. Oncol. 1995, 4, 877–884. [Google Scholar]
- Gill, C.I.; Haldar, S.; Boyd, L.A.; Bennett, R.; Whiteford, J.; Butler, M.; Rowland, I.R. Watercress supplementation in diet reduces lymphocyte DNA damage and alters blood antioxidant status in healthy adults. Am. J. Clin. Nutr. 2007, 85, 504–510. [Google Scholar] [CrossRef]
- Duman, F.; Ozturk, F. Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J. Environ. Sci. 2010, 22, 526–532. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Blicharska, E.; Dziurka, M.; Komsta, Ł.; Ekiert, H. Bioaccumulation of selected macro-and microelements and their impact on antioxidant properties and accumulation of glucosinolates and phenolic acids in in vitro cultures of Nasturtium officinale (watercress) microshoots. Food Chem. 2019, 300, 125184. [Google Scholar] [CrossRef]
- Khan, A.G. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ. Int. 2001, 26, 417–423. [Google Scholar] [CrossRef]
- Du, T.; Wang, J.; Zhang, L.; Wang, S.; Yang, C.; Xie, L.; Sun, J.; Zhang, W.; Wang, J. Missing-linker engineering of Eu (III)-doped UiO-MOF for enhanced detection of heavy metal ions. Chem. Eng. J. 2022, 431, 134050. [Google Scholar] [CrossRef]
- Manzoor, J.; Sharma, M.; Wani, K.A. Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 2018, 41, 1744–1763. [Google Scholar] [CrossRef]
- ALSalman, M.R.M.; Dawood, T.N. Lead, Cadmium and Mercury Concentrations in the Tap, River and Well Water with Different Treatment from Regions along Tigris River. Res Mil. 2023, 13, 2949–2957. [Google Scholar]
- Franke, C.; Studinger, G.; Berger, G.; Böhling, S.; Bruckmann, U.; Cohors-Fresenborg, D.; Jöhncke, U. The assessment of bioaccumulation. Chemosphere 1994, 29, 1501–1514. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Yao, X. Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 51, pp. 1–24. [Google Scholar]
- Hu, Y.; Wang, D.; Wei, L.; Zhang, X.; Song, B. Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicol. Environ. Saf. 2014, 110, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Gutleb, A.C.; Kranz, A.; Nechay, G.; Toman, A. Heavy metal concentrations in livers and kidneys of the otter (Lutra lutra) from Central Europe. Bull. Environ. Contam. Toxicol. 1998, 60, 273–279. [Google Scholar] [CrossRef]
- Dorea, J.G. Fish meal in animal feed and human exposure to persistent bioaccumulative and toxic substances. J. Food Prot. 2006, 69, 2777–2785. [Google Scholar] [CrossRef]
- Hashemi, M.; Rajabi, S.; Eghbalian, M.; Suliburska, J.; Nasab, H. Demographic and anthropometric characteristics and their effect on the concentration of heavy metals (arsenic, lead, chromium, zinc) in children and adolescents. Heliyon 2023, 9, e13621. [Google Scholar] [CrossRef]
- Lisiak-Zielińska, M.; Borowiak, K.; Budka, A.; Kanclerz, J.; Janicka, E.; Kaczor, A.; Zyromski, A.; Biniak-Pieróg, M.; Podawca, K.; Mleczek, M.; et al. How polluted are cities in central Europe?-Heavy metal contamination in Taraxacum officinale and soils collected from different land use areas of three representative cities. Chemosphere 2021, 266, 129113. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Trevizam, A.R.; Muraoka, T.; Marcante, N.C.; Canniatti-Brazaca, S.G. Heavy metals in vegetables and potential risk for human health. Sci. Agric. 2012, 69, 54–60. [Google Scholar] [CrossRef]
- Allen, P. Distribution of mercury in the soft tissues of the blue tilapia Oreochromis aureus (Steindachner) after acute exposure to mercury (II) chloride. Bull. Environ. Contam. Toxicol. 1994, 53, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Voegborlo, R.B.; El-Methnani, A.M.; Abedin, M.Z. Mercury, cadmium and lead content of canned tuna fish. Food Chem. 1999, 67, 341–345. [Google Scholar] [CrossRef]
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Kummer, U.; Pacyna, J.; Pacyna, E.; Friedrich, R. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos. Environ. 2009, 43, 640–647. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Gao, S.; Zhang, Z.; Huang, L. Effect of humic acid on phytoremediation of heavy metal contaminated sediment. J. Hazard. Mater. Adv. 2023, 9, 100235. [Google Scholar] [CrossRef]
- Aşik, B.B.; Turan, M.A.; Çelik, H.; Katkat, A.V. Effects of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. Salihli) under conditions of salinity. Asian J. Crop Sci. 2009, 1, 87–95. [Google Scholar] [CrossRef]
- Aydin, A.; Kant, C.; Turan, M. Humic acid application al-leviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 2012, 7, 1073–1086. [Google Scholar]
- Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour. Technol. 2002, 84, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Tattini, M.; Bertoni, P.; Landi, A.; Traversim, M.L. Effect of humic acids on growth anq biomass partitioning of containergrown olive plants. Acta Hortic. 1991, 294, 75–80. [Google Scholar] [CrossRef]
- Valdrighi, M.M.; Pera, A.; Agnolucci, M.; Frassinetti, S.; Lunardi, D.; Vallini, G. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: A comparative study. Agric. Ecosyst. Environ. 1996, 58, 133–144. [Google Scholar] [CrossRef]
- Birolo, M.; Bordignon, F.; Trocino, A.; Fasolato, L.; Pascual, A.; Godoy, S.; Nicoletto, C.; Maucieria, C.; Xiccato, G. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture 2020, 529, 735653. [Google Scholar] [CrossRef]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011, 21, 6–13. [Google Scholar] [CrossRef]
- Bordignon, F.; Gasco, L.; Birolo, M.; Trocino, A.; Caimi, C.; Ballarin, C.; Bortoletti, M.; Nicoletto, C.; Maucieri, C.; Xiccato, G. Performance and fillet traits of rainbow trout (Oncorhynchus mykiss) fed different levels of Hermetia illucens meal in a low-tech aquaponic system. Aquaculture 2022, 546, 737279. [Google Scholar] [CrossRef]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Gianquinto, G. Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef]
- Goddek, S.; Körner, O. A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments. Agric. Syst. 2019, 171, 143–154. [Google Scholar] [CrossRef]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The State of the World Fisheries and Aquaculture 2012 FAO Fisheries and Aquaculture Department; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2012; p. 209. [Google Scholar]
- Broadley, M.R.; Willey, N.J.; Wilkins, J.C.; Baker, A.J.M.; Mead, A.; White, P.J. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol. 2001, 152, 9–27. [Google Scholar] [CrossRef]
- Kovács, A.B.; Kincses, I.; Vágó, I.; Loch, J.; Filep, T. Effect of Application of Nitrogen and Different Nitrogen-Sulfur Ratios on the Quality and Quantity of Mustard Seed. Commun. Soil Sci. Plant Anal. 2009, 40, 453–461. [Google Scholar] [CrossRef]
- Joint Decree No. 17 of 1999 of Ministry of Agriculture and Rural Development and of the Ministry of Health on Sanitary Requirements of Food Processing and Marketing (FAOLEX No: LEX-FAOC016796). Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC016796/ (accessed on 9 June 2024).
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress)—A review. Fitoterapia 2018, 129, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Kara, Y. Bioaccumulation of cu, Zn and Ni from the wastewater by treated Nasturtium officinale. Int. J. Environ. Sci. Technol. 2005, 2, 63–67. [Google Scholar] [CrossRef]
- Duman, F.; Leblebici, Z.; Aksoy, A. Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. Br.) exposed to cadmium, cobalt and chromium. Chem. Speciat. Bioavailab. 2009, 21, 257–265. [Google Scholar] [CrossRef]
- Ozturk, F.; Duman, F.; Leblebici, Z.; Temizgul, R. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ. Exp. Bot. 2010, 69, 167–174. [Google Scholar] [CrossRef]
- Aydin, D.; Coskun, O.F. Comparison of edta-enhanced phytoextraction strategies with Nasturtium officinale (Watercress) on an artificially arsenic contaminated water. Pak. J. Bot. 2013, 45, 1423–1429. [Google Scholar]
- Lin, L.; Luo, L.; Liao, M.; Zhang, X.; Yang, D. Cadmium Accumulation Characteristic of Emerged Plant Nasturtium officinale R.Br. Resour Env. Yangtze Basin 2015, 4, 50–60. [Google Scholar]
- Huang, K.; Lin, L.; Chen, F.; Liao, M.; Wang, J.; Tang, Y.; Lai, Y.; Liang, D.; Xia, H.; Wang, X.; et al. Effects of live Myriophyllum aquaticum and its straw on cadmium accumulation in Nasturtium officinale. Environ. Sci. Pollut. Res. 2017, 24, 22503–22509. [Google Scholar] [CrossRef]
- Cordeiro, C.; Favas, P.J.C.; Pratas, J.; Sarkar, S.K.; Venkatachalam, P. Uranium accumulation in aquatic macrophytes in an uraniferous region: Relevance to natural attenuation. Chemosphere 2016, 156, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Lin, L.; Wang, J.; Xia, H.; Liang, D.; Wang, X.; Liao, M.; Wang, L.; Liu, L.; Chen, C.; et al. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale. Environ. Monit. Assess 2017, 189, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sinulingga, N.; Nurtjahja, K.; Karim, A. Fitoremediasi logam merkuri (Hg) pada media air oleh kangkung air (Ipomoea aquatica Forsk.) Phytoremediation of mercury (Hg) in water medium by warescress (Ipomoea aquatica Forsk.). BioLink 2015, 2, 75–81. [Google Scholar]
- Commission Regulation (EU). 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union. L 2023, 119, 103–157. [Google Scholar]
- Khan, N.; Khan, J.; Ullah, R.; Ali, K.; Jones, D.A.; Khan, M.E.H. Heavy Metals Contaminants in Watercress (Nasturtium officinale R. BR.): Toxicity and Risk Assessment for Humans along the Swat River Basin, Khyber Pakhtunkhwa, Pakistan. Sustainability 2022, 14, 4690. [Google Scholar] [CrossRef]
- Al Jassir, M.S.; Shaker, A.; Khaliq, M.A. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh City, Saudi Arabia. Bull. Environ. Contam. Toxicol. 2005, 75, 1020–1027. [Google Scholar] [CrossRef]
- Martín-León, V.; Rubio, C.; Rodríguez-Hernández, Á.; Zumbado, M.; Acosta-Dacal, A.; Henríquez-Hernández, L.A.; Boada, L.D.; Travieso-Aja, M.d.M.; Luzardo, O.P. Evaluation of Essential, Toxic and Potentially Toxic Elements in Leafy Vegetables Grown in the Canary Islands. Toxics 2023, 11, 442. [Google Scholar] [CrossRef]
- Sahu, G.K.; Upadhyay, S.; Sahoo, B.B. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol. Mol. Biol. Plants 2012, 18, 21–31. [Google Scholar] [CrossRef]
- Vaughan, D.; Malcolm, R.E. Influence of humic substances ongrowth and physiological processes. In Soil Organic Matter and Biological Activity; Vaughan, D., Malcolm, R.E., Eds.; Martinus Nijhoff: Dordrecht, The Netherlands, 1985; pp. 37–75. [Google Scholar]
- Vaughan, D.; Malcolm, R.E.; Ord, B.G. Influence of humic substanceson biochemical processes in plants. In Soil Organic Matter and Biological Activity; Vaughan., D., Malcolm, R.E., Eds.; Martinus Nijhoff: Dordrecht, The Netherlands, 1985; pp. 78–108. [Google Scholar]
- Vaughan, D. Effect of humic substances on metabolic processes. In Humic Substances: Effects on Soil and Plants; Burns, R.G., Dell’Agnola, G., Miele, S., Nardi, S., Savioni, G., Schnitzer, M., Sequi, P., Vaughan, D., Visser, S.A., Eds.; Ramo Editoriale degli Agricoltori: Rome, Italy, 1986; pp. 54–77. [Google Scholar]
- Visser, S.A. Effects of humic substances on plant growth. In Humic Substances: Effects on Soil and Plants; Burns, R.G., Dell’Agnola, G., Miele, S., Nardi, S., Savioni, G., Schnitzer, M., Sequi, P., Vaughan, D., Visser, S.A., Eds.; Ramo Editoriale degli Agricoltori: Rome, Italy, 1986; pp. 89–135. [Google Scholar]
- Berbara, R.L.L.; Garcia, A.C. Humic substances and plant defensemetabolism. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Ahmad, P., Wani, M.R., Eds.; Springer Science-Business Media: New York, NY, USA, 2014; pp. 297–319. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Olk, D.C.; Dinnes, D.L.; Scoresby, J.R.; Callaway, C.R.; Darlington, J.W. Humic products in agriculture: Potential benefits and research challenges—A review. J. Soils Sediments 2018, 18, 2881–2891. [Google Scholar] [CrossRef]
- Baldotto, M.A.; Baldotto, L.E.B. Initial performance of corn in response to treatment of seeds with humic acids isolated from bokashi. Rev. Ceres. 2016, 63, 62–67. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, L.; Zhou, S.; Xie, F. Effects of mercury binding by humic acid and humic acid resistance on mercury stress in rice plants under high Hg/humic acid concentration ratios. Environ. Sci. Pollut. Res. 2020, 27, 18650–18660. [Google Scholar] [CrossRef]
- Moreno, F.; Anderson, C.W.N.; Stewart, R.B.; Robinson, B.H.; Ghomshei, M.; Meech, J. Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol. 2005, 166, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Zhang, S.; Tian, Y.; Guo, W.; Wang, J. The influence of humic acids on the accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils. J. Soil Sci. Plant Nutr. 2013, 13, 43–53. [Google Scholar]
- Kasozi, N.; Tandlich, R.; Fick, M.; Kaiser, H.; Wilhelmi, B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Chen, Y.; Clapp, C.E.; Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Bulut, F.; Akinci, S. The effect of salinity on growth and nutrient composition in broad bean (Vicia faba L.) seedlings. Fresenius Environ. Bull. 2010, 19, 2901–2910. [Google Scholar]
- Sönmez, F.; Alp, Ş.; Yasar, O. The effects of humic acid application on the nutrient contents and heavy metals in organs of marigold (Tagetes erecta L.). Fresenius Environ. Bull. 2017, 26, 5340–5348. [Google Scholar]
- Khaled, H.; Fawy, H. Effect of Different Levels of Humic Acids on the Nutrient Content, Plant Growth, and Soil Properties under Conditions of Salinity. Soil Water Res. 2011, 6, 21–29. [Google Scholar] [CrossRef]
- MSZ EN 13805:2015 Élelmiszerek; Nyomelemek Meghatározása. Nyomás Alatti Feltárás. (Foodstuffs—Determination of Trace Elements—Pressure Digestion). Hungarian Standards Institution: Budapest, Hungary, 11 January 2015. (In Hungarian)
- MSZ EN 13806:2002 Élelmiszerek; Nyomelemek Meghatározása. Higany Meghatározása Nyomás Alatti Feltárás Utáni Hideggőz-Atomabszorpciós Spektrometriával (CVAAS) (Foodstuffs. Determination of Trace Elements. Determination of Mercury by Cold-Vapour ATOMIC absorption Spectrometry (CVAAS) after PRESSURE digestion). Hungarian Standards Institution: Budapest, Hungary, 1 December 2002. (In Hungarian)
- MSZ EN 15510:2017 Takarmány; Mintavételi és Elemzési Módszerek. A Kalcium-, Nátrium-, FOSZFOR-, magnézium-, Kálium-, VAS-, cink-, Réz-, Mangán-, Kobalt-, Molibdén- és Ólomtartalom Meghatározása ICP-AES-sel. (Animal FEEDING stuffs: Methods of Sampling and Analysis—Determination of CALCIUM, Sodium, Phosphorus, Magnesium, potassium, Iron, Zinc, Copper, Manganese, COBALT, molybdenum and Lead by ICP-AES). Hungarian Standards Institution: Budapest, Hungary, 6 February 2017. (In Hungarian)
Element | Control | Hg | Hg + Humic Acid |
---|---|---|---|
Na (mg kg−1) | 730.23 a | 499.02 a | 475.56 a |
K (mg kg−1) | 1109.79 a | 838.84 b | 1114.22 a |
Mn (µg kg−1) | 4209.09 b | 2657.73 c | 6423.92 a |
Cu (µg kg−1) | 3767.02 a | 2486.87 a | 2747.92 a |
Zn (µg kg−1) | 5363.51 b | 4869.32 b | 13,984.50 a |
Element | Control | Pb | Pb + Humic Acid |
---|---|---|---|
Na (mg kg−1) | 730.23 a | 494.13 b | 524.77 b |
K (mg kg−1) | 1109.79 a | 1129.36 a | 1172.42 a |
Mn (µg kg−1) | 4209.09 b | 3375.10 b | 6454.31 a |
Cu (µg kg−1) | 3767.02 a | 3281.22 a | 2211.38 a |
Zn (µg kg−1) | 5363.51 a | 5609.34 a | 5287.56 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelesz, J.É.; Csajbók, J.; Molnár, P.I.; Virág, I.C.; Kutasy, E.T. Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress (Nasturtium officinale R. Br.) as a Model Plant. Plants 2024, 13, 2386. https://doi.org/10.3390/plants13172386
Lelesz JÉ, Csajbók J, Molnár PI, Virág IC, Kutasy ET. Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress (Nasturtium officinale R. Br.) as a Model Plant. Plants. 2024; 13(17):2386. https://doi.org/10.3390/plants13172386
Chicago/Turabian StyleLelesz, Judit Éva, József Csajbók, Péter István Molnár, István Csaba Virág, and Erika Tünde Kutasy. 2024. "Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress (Nasturtium officinale R. Br.) as a Model Plant" Plants 13, no. 17: 2386. https://doi.org/10.3390/plants13172386
APA StyleLelesz, J. É., Csajbók, J., Molnár, P. I., Virág, I. C., & Kutasy, E. T. (2024). Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress (Nasturtium officinale R. Br.) as a Model Plant. Plants, 13(17), 2386. https://doi.org/10.3390/plants13172386