Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants
Abstract
:1. Introduction
2. The Application of Somatic Hybridization in Woody Plants
Category | Latin Name | Improvement in Agronomical Characteristics | References |
---|---|---|---|
Pear/cherry | Pyrus communis var. pyraster L. × Prunus avium × pseudocerasus | Enhanced traits such as chromosome number, morphological characteristics, and leaf isozyme profiles | [40] |
Persimmon | Diospyros glandulosa × D. kaki | Resolved the hybridization barrier in D. kaki | [41] |
Mango | Mangifera indica L. | Hybrids between cultivars | [46] |
Passiflora | Passiflora edulis f. flavicarpa Degener. × P. cincarnata L. | [42] | |
Passiflora edulis f. flavicarpa Degener. × P. amethystina Mikan | [43] | ||
Citrus | Citrus reshni Hort. Ex Tan × winter Haven citrumelo Citrus reshni Hort. Ex Tan × citrange Citurs sinensis L. Osbeck × (C. × paradisi × Poncirus. trifoliata) | Promote high fruit quality and good yields | [35] |
Citrus australasica F. Muell × Citrus sinensis Citrus australasica F. Muell × Citrus ‘Ju You’ | Perceive tolerance to Huanglongbing (HLB) | [33] | |
Citrus japonica Thunb × Citrus paradisi Macfad | Enhancing resistance to Citrus canker | [39] | |
Citrus deliciosa Ten × Poncirus trifoliata (L.) Raf | Improving natural chilling and light stress tolerances | [63] | |
Citrus latipes × W. Murcott | Improving resistance to greening disease and reducing seedlessness | [64] | |
Citrus reticulata × Citrus paradisi | Improving fruit characteristics | [65] | |
Citrus unshiu Marc. × Citru sinensis L. Osb. | CMS | [66] | |
Citrus sinensis L. Osbeck × Citrus limon L. Burm | Improving fruit oil quality | [67] | |
Citrus sinensi s × [Citrus reticulata × (Citrus paradisi × Citrus reticulata)] | Improving citrus scion | [68] | |
Citrus sinensis L. × Poncirus trifoliata L. | Addressing the threats posed by abiotic constraints | [69] | |
Citrus unshiu Marc. × [ Citrus reticulata Blanco × (Citrus reticulata Blanco × Citrus paradisi Macf)] | CMS | [70] | |
Citrus sinensis × Citrusdeliciosa | Improving the tolerance to Xanthomonas axonopodis pv. citri and Xylella fastidiosa | [71] | |
Citrus medica L. × C. limon (L.) Burm. F. | Improving acidity | [72] | |
Citrus unshiu × Citrus grandis | CMS | [37] | |
Citrus limonia L. Osbeck × Citrus aurantium L. | Improving blight and CTV resistance | [73] |
3. Protoplast Regeneration: A Key Step in Somatic Hybridization
4. Limitations of Somatic Hybridization in Woody Plants
5. Current Plant Regeneration Methods and Their Potential for Tree Breeding with Somatic Hybridization
6. Integrating Precise Gene Editing with Protoplast Fusion: A Promising Breeding Strategy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darkwa, K.; Olasanmi, B.; Asiedu, R.; Asfaw, A. Review of Empirical and Emerging Breeding Methods and Tools for Yam (Dioscorea spp.) Improvement: Status and Prospects. Plant Breed. 2020, 139, 474–497. [Google Scholar] [CrossRef]
- Lamichhane, S.; Thapa, S. Advances from Conventional to Modern Plant Breeding Methodologies. Plant Breed. Biotechnol. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Ahmar, S.; Gill, R.A.; Jung, K.-H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef]
- Goulet, B.E.; Roda, F.; Hopkins, R. Hybridization in Plants: Old Ideas, New Techniques [OPEN]. Plant Physiol. 2017, 173, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, J.; Lu, H.; Huang, Y.; Yan, H.; Liang, H.; Wang, C.; Wang, K. Engineering Synthetic Apomixis in Different Hybrid Rice Varieties Using the Fix Strategy. New Crops 2024, 1, 100003. [Google Scholar] [CrossRef]
- Xu, N.; Yu, Z.; Wang, X.; Lu, J.; Chen, H.; Sun, Q.; Fei, C.; Cui, X.; Xu, Z.; Xu, Q. Influence of Natural and Artificial Selection on the Yield Differences among Progeny Derived from Crossing between Subspecies in Cultivated Rice. New Crops 2024, 1, 100020. [Google Scholar] [CrossRef]
- Uma, S.; Lakshmi, S.; Saraswathi, M.S.; Akbar, A.; Mustaffa, M.M. Embryo Rescue and Plant Regeneration in Banana (Musa spp.). Plant Cell Tissue Organ Cult. 2011, 105, 105–111. [Google Scholar] [CrossRef]
- Cocking, E.C. A Method for the Isolation of Plant Protoplasts and Vacuoles. Nature 1960, 187, 962–963. [Google Scholar] [CrossRef]
- Takebe, I.; Labib, G.; Melchers, G. Regeneration of Whole Plants from Isolated Mesophyll Protoplasts of Tobacco. Naturwissenschaften 1971, 58, 318–320. [Google Scholar] [CrossRef]
- Grosser, J.W.; Ollitrault, P.; Olivares-Fuster, O. Somatic Hybridization in Citrus: An Effective Tool to Facilitate Variety Improvement. Vitr. Cell. Dev. Biol.-Plant 2000, 36, 434–449. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Wai, M.H.; Rizwan, H.M.; Qarluq, A.Q.; Xu, M.; Wang, L.; Cheng, Y.; Aslam, M.; Zheng, P.; Wang, X.; et al. Advances in Micropropagation, Somatic Embryogenesis, Somatic Hybridizations, Genetic Transformation and Cryopreservation for Passiflora Improvement. Plant Methods 2023, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Bates, G.W. Electrical Fusion for Optimal Formation of Protoplast Heterokaryons in Nicotiana. Planta 1985, 165, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Begna, T. Review on Somatic Hybridization and Its Role in Crop Improvement. J. Biol. Agric. Healthc. 2020, 10, 29–40. [Google Scholar] [CrossRef]
- Nahirñak, V.; Almasia, N.I.; González, M.N.; Massa, G.A.; Décima Oneto, C.A.; Feingold, S.E.; Hopp, H.E.; Vazquez Rovere, C. State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential. Front. Plant Sci. 2022, 12, 768233. [Google Scholar] [CrossRef]
- Borgato, L.; Conicella, C.; Pisani, F.; Furini, A. Production and Characterization of Arboreous and Fertile Solanum Melongena + Solanum Marginatum Somatic Hybrid Plants. Planta 2007, 226, 961–969. [Google Scholar] [CrossRef]
- Bashir, T.; Mishra, R.; Hasan, D.-M.; Mohanta, T.; Bae, H. Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants. Int. J. Mol. Sci. 2018, 19, 3758. [Google Scholar] [CrossRef] [PubMed]
- Flick, C.E.; Bravo, J.E.; Evans, D.A. Organelle Segregation Following Plant Protoplast Fusion. Trends Biotechnol. 1983, 1, 90–93. [Google Scholar] [CrossRef]
- Sigareva, M.A.; Earle, E.D. Direct Transfer of a Cold-Tolerant Ogura Male-Sterile Cytoplasm into Cabbage (Brassica Oleracea Ssp. Capitata) via Protoplast Fusion. Theor. Appl. Genet. 1997, 94, 213–220. [Google Scholar] [CrossRef]
- Anushma, P.L.; Dhanyasree, K.; Rafeekher, M. Wide Hybridization for Fruit Crop Improvement: A Review. Int. J. Chem. Stud. 2021, 9, 769–773. [Google Scholar] [CrossRef]
- Holmes, M. Somatic Hybridization: The Rise and Fall of a Mid-Twentieth-Century Biotechnology. Hist. Stud. Nat. Sci. 2018, 48, 1–23. [Google Scholar] [CrossRef]
- Shuro, A. Review Paper on the Role of Somatic Hybridization in Crop Improvement. Int. J. Res. 2018, 4, 2454–6224. [Google Scholar] [CrossRef]
- Khan, G.; Shukla, P.; Ravindra, M.; Gani, A.; Shabnam, Y.; Srinivasulu, S.; Sharma; Rohela, G. Somatic Hybridization as a Potential Tool for Mulberry Improvement: A Review. Ind. Horti. J. 2016, 6, 46–49. [Google Scholar]
- Cho, K.-S.; Lee, H.-O.; Lee, S.-C.; Park, H.-J.; Seo, J.-H.; Cho, J.-H.; Park, Y.-E.; Choi, J.-G.; Yang, T.-J. Mitochondrial Genome Recombination in Somatic Hybrids of Solanum Commersonii and S. Tuberosum. Sci. Rep. 2022, 12, 8659. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, P.-C.; Chang, W.-J.; Yu, K.; Lin, C.-S. Plastid Transformation: How Does It Work? Can It Be Applied to Crops? What Can It Offer? Int. J. Mol. Sci. 2020, 21, 4854. [Google Scholar] [CrossRef]
- Cai, X.; Duan, Y.; Fu, J.; Guo, W. Production and Molecular Characterization of Two New Citrus Somatic Hybrids for Scion Improvement. Acta Physiol. Plant 2010, 32, 215–221. [Google Scholar] [CrossRef]
- Guo, W.-W.; Xiao, S.-X.; Deng, X.-X. Somatic Cybrid Production via Protoplast Fusion for Citrus Improvement. Sci. Hortic. 2013, 163, 20–26. [Google Scholar] [CrossRef]
- Wang, W.; Xu, J.; Fang, H.; Li, Z.; Li, M. Advances and Challenges in Medicinal Plant Breeding. Plant Sci. 2020, 298, 110573. [Google Scholar] [CrossRef]
- Bhat, S.R.; Chitralekha, P.; Chandel, K.P.S. Regeneration of Plants from Long-Term Root Culture of Lime, Citrus aurantifolia (Christm.) Swing. Plant Cell Tissue Organ Cult. 1992, 29, 19–25. [Google Scholar] [CrossRef]
- Singh, S.; Rajam, M.V. Highly Efficient and Rapid Plant Regeneration in Citrus sinensis. J. Plant Biochem. Biotechnol. 2010, 19, 195–202. [Google Scholar] [CrossRef]
- Ohgawara, T.; Kobayashi, S.; Ohgawara, E.; Uchimiya, H.; Ishii, S. Somatic Hybrid Plants Obtained by Protoplast Fusion between Citrus sinensis and Poncirus trifoliata. Theor. Appl. Genet. 1985, 71, 1–4. [Google Scholar] [CrossRef]
- Guo, W.W.; Deng, X.X. Wide Somatic Hybrids of Citrus with Its Related Genera and Their Potential in Genetic Improvement. Euphytica 2001, 118, 175–183. [Google Scholar] [CrossRef]
- Ollitrault, P.; Germanà, M.A.; Froelicher, Y.; Cuenca, J.; Aleza, P.; Morillon, R.; Grosser, J.W.; Guo, W. Ploidy Manipulation for Citrus Breeding, Genetics, and Genomics. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2020; pp. 75–105. ISBN 978-3-030-15308-3. [Google Scholar]
- Dutt, M.; Mahmoud, L.M.; Chamusco, K.; Stanton, D.; Chase, C.D.; Nielsen, E.; Quirico, M.; Yu, Q.; Gmitter, F.G., Jr.; Grosser, J.W. Utilization of Somatic Fusion Techniques for the Development of HLB Tolerant Breeding Resources Employing the Australian Finger Lime (Citrus australasica). PLoS ONE 2021, 16, e0255842. [Google Scholar] [CrossRef] [PubMed]
- Abbate, L.; Panno, S.; Mercati, F.; Davino, S.; Fatta Del Bosco, S. Citrus Rootstock Breeding: Response of Four Allotetraploid Somatic Hybrids to Citrus Tristeza Virus Induced Infections. Eur. J. Plant Pathol. 2019, 153, 837–847. [Google Scholar] [CrossRef]
- Dambier, D.; Barantin, P.; Boulard, G.; Costantino, G.; Mournet, P.; Perdereau, A.; Morillon, R.; Ollitrault, P. Genomic Instability in Somatic Hybridization between Poncirus and Citrus Species Aiming to Create New Rootstocks. Agriculture 2022, 12, 134. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Killiny, N.; Holden, P.; Gmitter, F.G.; Grosser, J.W.; Dutt, M. Physiological and Biochemical Evaluation of Salt Stress Tolerance in a Citrus Tetraploid Somatic Hybrid. Horticulturae 2023, 9, 1215. [Google Scholar] [CrossRef]
- Guo, W.W.; Prasad, D.; Cheng, Y.J.; Serrano, P.; Deng, X.X.; Grosser, J.W. Targeted Cybridization in Citrus: Transfer of Satsuma Cytoplasm to Seedy Cultivars for Potential Seedlessness. Plant Cell Rep. 2004, 22, 752–758. [Google Scholar] [CrossRef]
- Jiang, N.; Feng, M.-Q.; Cheng, L.-C.; Kuang, L.-H.; Li, C.-C.; Yin, Z.-P.; Wang, R.; Xie, K.-D.; Guo, W.-W.; Wu, X.-M. Spatiotemporal Profiles of Gene Activity in Stamen Delineate Nucleo-Cytoplasmic Interaction in a Male-Sterile Somatic Cybrid Citrus. Hortic. Res. 2023, 10, uhad105. [Google Scholar] [CrossRef]
- Murata, M.M.; Omar, A.A.; Mou, Z.; Chase, C.D.; Grosser, J.W.; Graham, J.H. Novel Plastid-Nuclear Genome Combinations Enhance Resistance to Citrus Canker in Cybrid Grapefruit. Front. Plant Sci. 2019, 9, 1858. [Google Scholar] [CrossRef]
- Ochatt, S.J.; Patat-Ochatt, E.M. Protoplast Technology for the Breeding of Top-Fruit Trees (Prunus, Pyrus, Malus, Rubus) and Woody Ornamentals. Euphytica 1995, 85, 287–294. [Google Scholar] [CrossRef]
- Tamura, M.; Tao, R.; Sugiura, A. Production of Somatic Hybrids between Diospyros Glandulosa and D. Kaki by Protoplast Fusion. Plant Cell Tissue Organ Cult. 1998, 54, 85–91. [Google Scholar] [CrossRef]
- Otoni, W.C.; Blackhall, N.W.; d’Utra Vaz, F.B.; Casali, V.W.; Power, J.B.; Davey, M.R. Somatic Hybridization of the Passiflora Species, P. edulisf. Flavicarpa Degener. and P. incarnata L. J. Exp. Bot. 1995, 46, 777–785. [Google Scholar] [CrossRef]
- Barbosa, L.V.; Vieira, M.L.C. Meiotic Behavior of Passion Fruit Somatic Hybrids, Passiflora Edulis f. Flavicarpa Degener + P. Amethystina Mikan. Euphytica 1997, 98, 121–127. [Google Scholar] [CrossRef]
- Huancaruna-Perales, E.; Schieder, O.; Hanke, V. Investigation on Somatic Hybridization in Apple. In Proceedings of the Eucarpia Symposium on Fruit Breeding and Genetics, Dresden, Germany, 6–10 September 1999; Volume 538, pp. 651–654. [Google Scholar]
- Schum, A.; Hofmann, K.; Felten, R. Fundamentals for Integration of Somatic Hybridization in Rose Breeding. Acta Hortic. 2002, 572, 29–36. [Google Scholar] [CrossRef]
- Rezazadeh, R.; Williams, R.R.; Harrison, D.K. Factors Affecting Mango (Mangifera indica L.) Protoplast Isolation and Culture. Sci. Hortic. 2011, 130, 214–221. [Google Scholar] [CrossRef]
- Chanotra, S. Role of Biotechnology in Mulberry Improvement. J. Pharmacogn. Phytochem. 2019, 8, 1126–1129. [Google Scholar]
- Ahmad, I.; Maryam; Ercisli, S.; Anjum, M.A.; Ahmad, R. Progress in the Methods of Jujube Breeding. Erwerbs-Obstbau 2023, 65, 1217–1225. [Google Scholar] [CrossRef]
- Eeckhaut, T.; Lakshmanan, P.S.; Deryckere, D.; Van Bockstaele, E.; Van Huylenbroeck, J. Progress in Plant Protoplast Research. Planta 2013, 238, 991–1003. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Wang, Y. Protoplast Fusion for Crop Improvement and Breeding in China. Plant Cell Tissue Organ Cult. 2013, 112, 131–142. [Google Scholar] [CrossRef]
- Scintilla, S.; Salvagnin, U.; Giacomelli, L.; Zeilmaker, T.; Malnoy, M.A.; Rouppe van der Voort, J.; Moser, C. Regeneration of Non-Chimeric Plants from DNA-Free Edited Grapevine Protoplasts. Front. Plant Sci. 2022, 13, 1078931. [Google Scholar] [CrossRef]
- Yu, C.; Chen, Z.; Lu, L.; Lin, J. Somatic Embryogenesis and Plant Regeneration from Litchi Protoplasts Isolated from Embryogenic Suspensions. Plant Cell Tissue Organ Cult. 2000, 61, 51–58. [Google Scholar] [CrossRef]
- Sahouli, S.; Abdeddaim, K.K.; Werbrouck, S.P.O. Isolation, Chemical Fusion, and Culture Systems for Olive (Olea Europaea L.) Protoplasts. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 664–670. [Google Scholar] [CrossRef]
- Li, S.; Zhao, R.; Ye, T.; Guan, R.; Xu, L.; Ma, X.; Zhang, J.; Xiao, S.; Yuan, D. Isolation, Purification and PEG-Mediated Transient Expression of Mesophyll Protoplasts in Camellia Oleifera. Plant Methods 2022, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Miao, M.; Pratsinakis, E.D.; Zhang, H.; Wang, W.; Yuan, Y.; Lyu, M.; Iftikhar, J.; Yousef, A.F.; Madesis, P. Protoplast Isolation, Fusion, Culture and Transformation in the Woody Plant Jasminum spp. Agriculture 2021, 11, 699. [Google Scholar] [CrossRef]
- Casales, F.G.; Van der Watt, E.; Coetzer, G.M. Propagation of Pecan (Carya illinoensis): A Review. Afr. J. Biotechnol. 2018, 17, 586–605. [Google Scholar]
- Ortín-Párraga, F.; Burgos, L. Isolation and Culture of Mesophyll Protoplast from Apricot. J. Hortic. Sci. Biotechnol. 2003, 78, 624–628. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, M.R.; Wei, Z.M.; Sun, Y.R.; Chen, D.M.; Xu, Z.H.; Zhang, L.M.; Xu, N. Regeneration of Simon Poplar (Populus simonii) from Protoplast Culture. Plant Cell Rep. 1995, 14, 442–445. [Google Scholar] [CrossRef]
- Faye, M.; David, A. Isolation and Culture of Gymnosperm Root Protoplasts (Pinus pinaster). Physiol. Plant. 1983, 59, 359–362. [Google Scholar] [CrossRef]
- David, A. Conifer Protoplasts. In Cell and Tissue Culture in Forestry; Bonga, J.M., Durzan, D.J., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1987; Volume 24–26, pp. 2–15. ISBN 978-94-010-8497-0. [Google Scholar]
- Castelblanque, L.; García-Sogo, B.; Pineda, B.; Moreno, V. Efficient Plant Regeneration from Protoplasts of Kalanchoe Blossfeldiana via Organogenesis. Plant Cell Tissue Organ Cult. 2010, 100, 107–112. [Google Scholar] [CrossRef]
- Pais, M.S. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. Front. Plant Sci. 2019, 10, 240. [Google Scholar] [CrossRef]
- Oustric, J.; Morillon, R.; Ollitrault, P.; Herbette, S.; Luro, F.; Froelicher, Y.; Tur, I.; Dambier, D.; Giannettini, J.; Berti, L.; et al. Somatic Hybridization between Diploid Poncirus and Citrus Improves Natural Chilling and Light Stress Tolerances Compared with Equivalent Doubled-Diploid Genotypes. Trees 2018, 32, 883–895. [Google Scholar] [CrossRef]
- Altaf, S. Somatic Hybridization for Citus Scion and Rootstock Improvement against Greening Disease and for Seedlessness. Thesis, University of Agriculture, Faisalabad, Pakistan, 2016. [Google Scholar]
- Satpute, A.D.; Chen, C.; Gmitter, F.G.; Ling, P.; Yu, Q.; Grosser, M.R.; Grosser, J.W.; Chase, C.D. Cybridization of Grapefruit with ‘Dancy’ Mandarin Leads to Improved Fruit Characteristics. J. Am. Soc. Hortic. Sci. 2015, 140, 427–435. [Google Scholar] [CrossRef]
- Xiao, S.-X.; Biswas, M.K.; Li, M.-Y.; Deng, X.-X.; Xu, Q.; Guo, W.-W. Production and Molecular Characterization of Diploid and Tetraploid Somatic Cybrid Plants between Male Sterile Satsuma Mandarin and Seedy Sweet Orange Cultivars. Plant Cell Tissue Organ Cult. 2014, 116, 81–88. [Google Scholar] [CrossRef]
- Fatta Del Bosco, S.; Abbate, L.; Tusa, N.; Strano, T.; Renda, A.; Ruberto, G. Genetic Improvement of Citrus Fruits: The Essential Oil Profiles in a Citrus limon Backcross Progeny Derived from Somatic Hybridization. Food Res. Int. 2013, 50, 344–350. [Google Scholar] [CrossRef]
- Soriano, L.; de Assis Alves Mourão Filho, F.; Camargo, L.E.A.; Cristofani-Yaly, M.; Latado, R.R.; de Andrade Pacheco, C.; de Azevedo, F.A.; Mendes, B.M.J. Regeneration and Characterization of Somatic Hybrids Combining Sweet Orange and Mandarin/Mandarin Hybrid Cultivars for Citrus Scion Improvement. Plant Cell Tissue Organ Cult. 2012, 111, 385–392. [Google Scholar] [CrossRef]
- Dambier, D.; Benyahia, H.; Pensabene-Bellavia, G.; Aka Kaçar, Y.; Froelicher, Y.; Belfalah, Z.; Lhou, B.; Najat, H.; Printz, B.; Morillon, R.; et al. Somatic Hybridization for Citrus Rootstock Breeding: An Effective Tool to Solve Some Important Issues of the Mediterranean Citrus Industry. Plant Cell Rep. 2011, 30, 883–900. [Google Scholar] [CrossRef]
- Cai, X.; Fu, J.; Chen, C.; Guo, W. Cybrid/Hybrid Plants Regenerated from Somatic Fusions between Male Sterile Satsuma Mandarin and Seedy Tangelos. Sci. Hortic. 2009, 122, 323–327. [Google Scholar] [CrossRef]
- Pavan, A.; Calixto, M.C.; Cardoso, S.C.; Mendes, B.M.J.; Filho, A.B.; Lopes, J.R.S.; de Carvalho, C.R.; Filho, F.d.A.A.M. Evaluation of ‘Hamlin’ Sweet Orange + ‘Montenegrina’ Mandarin Somatic Hybrid for Tolerance to Xanthomonas axonopodis Pv. Citri and Xylella fastidiosa. Sci. Hortic. 2007, 113, 278–285. [Google Scholar] [CrossRef]
- Viloria, Z.; Grosser, J.W. Acid Citrus Fruit Improvement via Interploid Hybridization Using Allotetraploid Somatic Hybrid and Autotetraploid Breeding Parents. J. Am. Soc. Hortic. Sci. 2005, 130, 392–402. [Google Scholar] [CrossRef]
- Mendes, B.; Mourão Filho, F.; Farias, P.; Benedito, V. Citrus Somatic Hybridization with Potential for Improved Blight and CTV Resistance. Vitr. Cell. Dev. Biol.-Plant 2001, 37, 490–495. [Google Scholar] [CrossRef]
- Skoog, F.; Miller, C.O. Chemical Regulation of Growth and Organ Formation in Plant Tissues Cultured in Vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–130. [Google Scholar]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant Regeneration: Cellular Origins and Molecular Mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T. Plant Propagation Through Tissue Cultures. Annu. Rev. Plant Biol. 1974, 25, 135–166. [Google Scholar] [CrossRef]
- Pulianmackal, A.J.; Kareem, A.V.K.; Durgaprasad, K.; Trivedi, Z.B.; Prasad, K. Competence and Regulatory Interactions during Regeneration in Plants. Front. Plant Sci. 2014, 5, 142. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A. Advances in the Protoplast Culture of Woody Plants. In Micropropagation of Woody Plants; Ahuja, M.R., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 67–91. ISBN 978-94-015-8116-5. [Google Scholar]
- Ahuja, M.R. Protoplast Research in Woody Plants. Silvae Genet. 1984, 33, 32–37. [Google Scholar]
- Russell, J.A.; McCown, B.H. Culture and Regeneration of Populus Leaf Protoplasts Isolated from Non-Seedling Tissue. Plant Sci. 1986, 46, 133–142. [Google Scholar] [CrossRef]
- Grosser, J.W. Observations and Suggestions for Improving Somatic Hybridization by Plant Protoplast Isolation, Fusion, and Culture. HortScience 1994, 29, 1241–1243. [Google Scholar] [CrossRef]
- Long, Y.; Yang, Y.; Pan, G.; Shen, Y. New Insights into Tissue Culture Plant-Regeneration Mechanisms. Front. Plant Sci. 2022, 13, 926752. [Google Scholar] [CrossRef] [PubMed]
- Nassour, M.; Dorion, N. Plant Regeneration from Protoplasts of Micropropagated Pelargonium x Hortorum ‘Alain’: Effect of Some Environmental and Medium Factors on Protoplast System Efficiency. Plant Sci. 2002, 163, 169–176. [Google Scholar] [CrossRef]
- Reed, K.M.; Bargmann, B.O.R. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front. Genome Ed. 2021, 3, 734951. [Google Scholar] [CrossRef]
- Lopez-Arellano, M.; Dhir, S.; Albino, N.; Santiago, A.; Morris, T.; Dhir, S. Somatic Embryogenesis and Plantlet Regeneration from Protoplast Culture of Stevia rebaudiana. Br. Biotechnol. J. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Tahami, S.K.; Chamani, E. Efficient Protocol for Protoplast Isolation and Pla Nt Regeneration of Fritillaria imperialis L. J. Agric. Sci. Technol. 2018, 18, 467–482. [Google Scholar]
- Prakash, M.G.; Gurumurthi, K. Effects of Type of Explant and Age, Plant Growth Regulators and Medium Strength on Somatic Embryogenesis and Plant Regeneration in Eucalyptus Camaldulensis. Plant Cell Tissue Organ Cult. 2010, 100, 13–20. [Google Scholar] [CrossRef]
- Jie, E.-Y.; Kim, S.-W.; Jang, H.-R.; In, D.-S.; Liu, J.-R. Myo-Inositol Increases the Plating Efficiency of Protoplast Derived from Cotyledon of Cabbage (Brassica Oleracea Var. Capitata). J. Plant Biotechnol. 2011, 38, 69–76. [Google Scholar] [CrossRef]
- Konovalov, I.N.; Zujkova, I.V.; Zinov’ev, L.S. Effect of Gibberellic Acid on the Growth and Winterhardiness of Woody Plants. Bot. Zhurnal 1960, 45, 1721–1731. [Google Scholar]
- Wang, Y.; Yao, R.L. Increased Endogenous Indole-3-Acetic Acid:Abscisic Acid Ratio Is a Reliable Marker of Pinus massoniana Rejuvenation. Biotech. Histochem. 2019, 94, 546–553. [Google Scholar] [CrossRef]
- Saha, N.; Dutta Gupta, S. Promotion of Shoot Regeneration of Swertia chirata by Biosynthesized Silver Nanoparticles and Their Involvement in Ethylene Interceptions and Activation of Antioxidant Activity. Plant Cell Tissue Organ Cult. 2018, 134, 289–300. [Google Scholar] [CrossRef]
- Nacheva, L.R.; Ivanova, V. Silver Nitrate and Chlorhexidine Gluconate—Effective Surface Sterilization Agents in Disinfection Procedures at Initiation of Woody Shoot Tip and Embryo Culture. J. BioSci. Biotechnol. 2017, 6, 187–190. [Google Scholar]
- Pardaz, J.E.; Ojagh, S.; Kazemnia, H.D. Effect of Polyvinylpyrrolidone (PVP) on Meristem Establishment and In-Vitro Organogenesis of Iranian Pear (Pyrus glabra). Int. J. Agric. Biosci. 2015, 4, 206–208. [Google Scholar]
- Bilska, K.; Wojciechowska, N.; Alipour, S.; Kalemba, E.M. Ascorbic Acid—The Little-Known Antioxidant in Woody Plants. Antioxidants 2019, 8, 645. [Google Scholar] [CrossRef]
- Davey, M.R.; Anthony, P.; Power, J.B.; Lowe, K.C. Plant Protoplasts: Status and Biotechnological Perspectives. Biotechnol. Adv. 2005, 23, 131–171. [Google Scholar] [CrossRef]
- Deryckere, D.; Eeckhaut, T.; Van Huylenbroeck, J.; Van Bockstaele, E. Low Melting Point Agarose Beads as a Standard Method for Plantlet Regeneration from Protoplasts within the Cichorium genus. Plant Cell Rep. 2012, 31, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Vardi, A.; Spiegel-Roy, P.; Galun, E. Plant Regeneration from Citrus Protoplasts: Variability in Methodological Requirements among Cultivars and Species. Theor. Appl. Genet. 1982, 62, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Tomar, U.K.; Dantu, P.K. Protoplast Culture and Somatic Hybridization. In Cellular and Biochemical Science; IK International House Pvt. Ltd.: New Delhi, India, 2010; pp. 876–891. [Google Scholar]
- Grosser, J.W.; Calovic, M.; Louzada, E.S. Protoplast Fusion Technology—Somatic Hybridization and Cybridization. In Plant Cell Culture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 175–198. [Google Scholar]
- Kumari, N.; Gupta, A.; Pandey, B.C.; Kushwaha, R.; Yaseen, M. In Vitro Cultures: Challenges and Limitations. In Plants for Immunity and Conservation Strategies; Mishra, M.K., Kumari, N., Eds.; Springer Nature: Singapore, 2023; pp. 371–383. ISBN 978-981-9928-23-1. [Google Scholar]
- Lin, Y.-C.; Li, W.; Chen, H.; Li, Q.; Sun, Y.-H.; Shi, R.; Lin, C.-Y.; Wang, J.P.; Chen, H.-C.; Chuang, L.; et al. A Simple Improved-Throughput Xylem Protoplast System for Studying Wood Formation. Nat. Protoc. 2014, 9, 2194–2205. [Google Scholar] [CrossRef]
- Ollitrault, P.; Guo, W.W.; Grosser, J.W. Somatic Hybridization. In Citrus Genetics, Breeding and Biotechnology; CABI: Wallingford, UK, 2007; pp. 235–260. [Google Scholar] [CrossRef]
- Kuzminsky, E.; Meschini, R.; Terzoli, S.; Pavani, L.; Silvestri, C.; Choury, Z.; Scarascia-Mugnozza, G. Isolation of Mesophyll Protoplasts from Mediterranean Woody Plants for the Study of DNA Integrity under Abiotic Stress. Front. Plant Sci. 2016, 7, 1168. [Google Scholar] [CrossRef]
- Schum, A.; Hofmann, K.; Ghalib, N.; Tawfik, A. Factors Affecting Protoplast Isolation and Plant Regeneration in Rosa spp. Gartenbauwissenschaft 2001, 66, 115–122. [Google Scholar]
- González-Arnao, M.T.; Dolce, N.; González-Benito, M.E.; Castillo Martínez, C.R.; Cruz-Cruz, C.A. Approaches for In Vitro Conservation of Woody Plants Germplasm. In Biodiversity and Conservation of Woody Plants; Ahuja, M.R., Jain, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 355–419. ISBN 978-3-319-66426-2. [Google Scholar]
- Guan, Y.; Li, S.-G.; Fan, X.-F.; Su, Z.-H. Application of Somatic Embryogenesis in Woody Plants. Front. Plant Sci. 2016, 7, 938. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yu, Z.; Deng, J.; Gao, X.; Sun, Y.; Xia, G. Introgression of Bread Wheat Chromatin into Tall Wheatgrass via Somatic Hybridization. Planta 2009, 229, 323–330. [Google Scholar] [CrossRef]
- Song, Y.; Luo, W.; Wu, Y.; Li, X.; Albert, N.W.; Zhang, Y.; Chen, X.; Lin-Wang, K.; Deng, C.H.; Hu, Z.; et al. A Callus-Derived Regeneration and Agrobacterium-Mediated Gene Transformation Developed for Bilberry, Vaccinium Myrtillus. Plant Cell Tissue Organ Cult. 2023, 154, 177–187. [Google Scholar] [CrossRef]
- Hu, Q.; Andersen, S.; Dixelius, C.; Hansen, L. Production of Fertile Intergeneric Somatic Hybrids between Brassica Napus and Sinapis Arvensis for the Enrichment of the Rapeseed Gene Pool. Plant Cell Rep. 2002, 21, 147–152. [Google Scholar] [CrossRef]
- Harms, C.T. Somatic Incompatibility in the Development of Higher Plant Somatic Hybrids. Q. Rev. Biol. 1983, 58, 325–353. [Google Scholar] [CrossRef]
- Feng, Q.; Xiao, L.; He, Y.; Liu, M.; Wang, J.; Tian, S.; Zhang, X.; Yuan, L. Highly Efficient, Genotype-Independent Transformation and Gene Editing in Watermelon (Citrullus lanatus) Using a Chimeric ClGRF4-GIF1 Gene. J. Integr. Plant Biol. 2021, 63, 2038–2042. [Google Scholar] [CrossRef] [PubMed]
- Altpeter, F.; Springer, N.M.; Bartley, L.E.; Blechl, A.E.; Brutnell, T.P.; Citovsky, V.; Conrad, L.J.; Gelvin, S.B.; Jackson, D.P.; Kausch, A.P. Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 2016, 28, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Debernardi, J.M.; Dubcovsky, J.; Gallavotti, A. Recent Advances in Crop Transformation Technologies. Nat. Plants 2022, 8, 1343–1351. [Google Scholar] [CrossRef]
- Maher, M.F.; Nasti, R.A.; Vollbrecht, M.; Starker, C.G.; Clark, M.D.; Voytas, D.F. Plant Gene Editing through de Novo Induction of Meristems. Nat. Biotechnol. 2020, 38, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Martín-Valmaseda, M.; Devin, S.R.; Ortuño-Hernández, G.; Pérez-Caselles, C.; Mahdavi, S.M.E.; Bujdoso, G.; Salazar, J.A.; Martínez-Gómez, P.; Alburquerque, N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int. J. Mol. Sci. 2023, 24, 16656. [Google Scholar] [CrossRef]
- Liu, L.; Qu, J.; Wang, C.; Liu, M.; Zhang, C.; Zhang, X.; Guo, C.; Wu, C.; Yang, G.; Huang, J.; et al. An Efficient Genetic Transformation System Mediated by Rhizobium Rhizogenes in Fruit Trees Based on the Transgenic Hairy Root to Shoot Conversion. Plant Biotechnol. J. 2024, 22, 2093–2103. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lee, B.H.; Jung, J.-H.; Park, S.K.; Song, J.T.; Kim, J.H. GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR Specify Meristematic Cells of Gynoecia and Anthers. Plant Physiol. 2018, 176, 717–729. [Google Scholar] [CrossRef]
- Wang, K.E.; Shi, L.; Liang, X.; Zhao, P.; Wang, W.; Liu, J.; Chang, Y.; Hiei, Y.; Yanagihara, C.; Du, L. The Gene TaWOX5 Overcomes Genotype Dependency in Wheat Genetic Transformation. Nat. Plants 2022, 8, 110–117. [Google Scholar] [CrossRef]
- Feng, M.-Q.; Jiang, N.; Wang, P.-B.; Liu, Y.; Xia, Q.-M.; Jia, H.-H.; Shi, Q.-F.; Long, J.-M.; Xiao, G.-A.; Yin, Z.-P.; et al. miR171-Targeted SCARECROW-LIKE Genes CsSCL2 and CsSCL3 Regulate Somatic Embryogenesis in Citrus. Plant Physiol. 2023, 192, 2838–2854. [Google Scholar] [CrossRef]
- Kusaba, M. RNA Interference in Crop Plants. Curr. Opin. Biotechnol. 2004, 15, 139–143. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, Z.; Li, H.; Zhang, D.; Wang, W.; Xu, X.; Xie, Q.; Duan, Z.; Xia, X.; Guo, G. SMART CROPs. New Crops 2024, 1, 100007. [Google Scholar] [CrossRef]
- Bai, M.; Hu, X.; Lin, W.; Peng, C.; Kuang, H.; Zhong, X.; Li, Y.; Chen, B.; Wang, J.; Li, H. Development of PmCDA1-Based High-Efficiency Cytidine Base Editors (ChyCBEs) Incorporating a GmRad51 DNA-Binding Domain in Soybean. New Crops 2024, 1, 39–42. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014, 159, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Li, G.; Malzahn, A.A.; Cheng, Y.; Leyson, B.; Sretenovic, S.; Gurel, F.; Coleman, G.D.; Qi, Y. Boosting Plant Genome Editing with a Versatile CRISPR-Combo System. Nat. Plants 2022, 8, 513–525. [Google Scholar] [CrossRef]
- Anders, C.; Hoengenaert, L.; Boerjan, W. Accelerating Wood Domestication in Forest Trees through Genome Editing: Advances and Prospects. Curr. Opin. Plant Biol. 2023, 71, 102329. [Google Scholar] [CrossRef]
- Lee, K.; Wang, K. Strategies for Genotype-Flexible Plant Transformation. Curr. Opin. Biotechnol. 2023, 79, 102848. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Y.; Tang, S.; Chen, L.; Li, T.; Yuan, H.; Xu, Y.; Zhou, Y.; Zhang, S.; Wang, J.; et al. An Inducible CRISPR Activation Tool for Accelerating Plant Regeneration. Plant Comm. 2024, 5, 100823. [Google Scholar] [CrossRef]
- Zhang, F. Development of CRISPR-Cas Systems for Genome Editing and Beyond. Q. Rev. Biophys. 2019, 52, e6. [Google Scholar] [CrossRef]
- Mironova, V.; Xu, J. A Single-Cell View of Tissue Regeneration in Plants. Curr. Opin. Plant Biol. 2019, 52, 149–154. [Google Scholar] [CrossRef]
- Xu, M.; Du, Q.; Tian, C.; Wang, Y.; Jiao, Y. Stochastic Gene Expression Drives Mesophyll Protoplast Regeneration. Sci. Adv. 2021, 7, eabg8466. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Tian, H.; Ding, Z.; Kong, X. Crop Designs: The Ideal Root Architecture for Future Crop Breeding. New Crops 2024, 1, 100030. [Google Scholar] [CrossRef]
- Feng, W.; Gao, P.; Wang, X. AI Breeder: Genomic Predictions for Crop Breeding. New Crops 2024, 1, 100010. [Google Scholar] [CrossRef]
- Debernardi, J.M.; Tricoli, D.M.; Ercoli, M.F.; Hayta, S.; Ronald, P.; Palatnik, J.F.; Dubcovsky, J. A GRF–GIF Chimeric Protein Improves the Regeneration Efficiency of Transgenic Plants. Nat. Biotechnol. 2020, 38, 1274–1279. [Google Scholar] [CrossRef]
- Mukami, A.; Juma, B.S.; Mweu, C.; Ngugi, M.; Oduor, R.; Mbinda, W.M. Plant Regeneration from Leaf Mesophyll Derived Protoplasts of Cassava (Manihot Esculenta Crantz). PLoS ONE 2022, 17, e0278717. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, S.; Goyal, V. Evaluation of Designer Crops for Biosafety—A Scientist’s Perspective. Gene 2013, 515, 241–248. [Google Scholar] [CrossRef]
- Ahmad, A.; Jamil, A.; Munawar, N. GMOs or Non-GMOs? The CRISPR Conundrum. Front. Plant Sci. 2023, 14, 1232938. [Google Scholar] [CrossRef]
- Wolt, J.D.; Wang, K.; Sashital, D.; Lawrence-Dill, C.J. Achieving Plant CRISPR Targeting That Limits Off-Target Effects. Plant Genome 2016, 9, plantgenome2016.05.0047. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, X.; Zhu, J.; Jin, Y.; Xia, C.; Zheng, B.; Silvestri, C.; Cui, F. Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants. Plants 2024, 13, 2539. https://doi.org/10.3390/plants13182539
Liu S, Li X, Zhu J, Jin Y, Xia C, Zheng B, Silvestri C, Cui F. Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants. Plants. 2024; 13(18):2539. https://doi.org/10.3390/plants13182539
Chicago/Turabian StyleLiu, Shuping, Xiaojie Li, Jiani Zhu, Yihong Jin, Chuizheng Xia, Bingsong Zheng, Cristian Silvestri, and Fuqiang Cui. 2024. "Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants" Plants 13, no. 18: 2539. https://doi.org/10.3390/plants13182539
APA StyleLiu, S., Li, X., Zhu, J., Jin, Y., Xia, C., Zheng, B., Silvestri, C., & Cui, F. (2024). Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants. Plants, 13(18), 2539. https://doi.org/10.3390/plants13182539