Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic, Total Flavonoid, and Antioxidant Activity of Acanthaceae Family Plant Extracts
2.2. Antibacterial Activity of Plant Extracts from the Acanthaceae Family against Some Oral Pathogenic Bacteria by Agar Well Diffusion Method
2.3. Antibacterial Activity of Plant Extracts from the Acanthaceae Family as Determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.4. Antibacterial Activity of Plant Extracts from the Acanthaceae Family against Some Oral Pathogenic Bacteria by Time Kill Assay
2.5. Antibacterial Activity of Plant Extracts from the Acanthaceae Family on Biofilm Formation of Oral Pathogenic Bacteria
2.6. Antibacterial Activity of Plant Extracts from the Acanthaceae Family against Some Oral Pathogenic Bacteria by Adhesion and Invasion Assay
2.7. Effect of Plant Extracts from the Acanthaceae Family on Gene Expression of S. mutans
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Reagents and Chemicals
4.3. Medicinal Plant Extraction
4.4. Determination of Total Phenolic and Flavonoid Content
4.5. Determination of Antioxidant Activities
4.6. Microorganisms
4.7. Agar Well Diffusion Method
4.8. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.9. Time–Kill Assay
4.10. Anti-Biofilm Formation Assay
4.11. Cell Culture
4.12. Cell Toxicity Test
4.13. Antibacterial Adhesion Assay
4.14. Antibacterial Invasion Assay
4.15. Effect of the Plant Extracts from the Acanthaceae Family on Gene Expression of S. mutans
4.15.1. RNA Extraction and cDNA Synthesis
4.15.2. Real-Time Quantitative PCR Amplification
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sabbah, W.; Folayan, M.O.; El Tantawi, M. The link between oral and general health. Int. J. Dent. 2019, 2019, 7862923. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W. Microbiological links between periodontitis and systemic diseases: A brief review. Oral. Biol. Res. 2023, 47, 81–94. [Google Scholar] [CrossRef]
- Ben Taheur, F.; Kouidhi, B.; Fdhila, K.; Elabed, H.; Ben Slama, R.; Mahdouani, K.; Bakhrouf, A.; Chaieb, K. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb. Pathog. 2016, 97, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, P.; Barik, A.; Sahoo, N.; Rajhans, G.; Raut, S. Alleviation of dental caries by use of isolated potential probiotic and its characterization. Biotechnol. Appl. Biochem. 2023, 70, 1518–1529. [Google Scholar] [CrossRef]
- Awan, A.J.; Ahmed, C.B.; Uzair, M.; Aslam, M.S.; Farooq, U.; Ishfaq, K. Family Acanthaceae and genus Aphelandra: Ethnopharmacological and phytochemical review. Int. J. Pharm. Pharm. Sci. 2014, 10, 44–55. [Google Scholar]
- Kamarudin, M.N.A.; Sarker, M.d.M.R.; Kadir, H.A.; Ming, L.C. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. J. Ethnopharmacol. 2017, 206, 245–266. [Google Scholar] [CrossRef]
- Khoo, L.W.; Audrey Kow, S.; Lee, M.T.; Tan, C.P.; Shaari, K.; Tham, C.L.; Abas, F. A Comprehensive review on phytochemistry and pharmacological activities of Clinacanthus nutans (Burm.f.) Lindau. Evid. Based Complement. Altern. Med. 2018, 2018, e9276260. [Google Scholar] [CrossRef]
- Nanna, U.; Chiruntanat, N.; Jaijoy, K.; Rojsanga, P.; Sireeratawong, S. Effect of Thunbergia laurifolia Lindl. extract on anti-inflammatory, analgesic and antipyretic activity. J. Med. Assoc. Thai 2017, 100 (Suppl. S5), S98–S106. [Google Scholar]
- Chaiyana, W.; Chansakaow, S.; Intasai, N.; Kiattisin, K.; Lee, K.-H.; Lin, W.-C.; Lue, S.-C.; Leelapornpisid, P. Chemical constituents, antioxidant, anti-MMPs, and anti-hyaluronidase activities of Thunbergia Laurifolia Lindl. leaf extracts for skin aging and skin damage prevention. Molecules 2020, 25, 1923. [Google Scholar] [CrossRef]
- Olatunji, O.J.; Olatunde, O.O.; Jayeoye, T.J.; Singh, S.; Nalinbenjapun, S.; Sripetthong, S.; Chunglok, W.; Ovatlarnporn, C. New insights on Acanthus ebracteatus Vahl: UPLC-ESI-QTOF-MS profile, antioxidant, antimicrobial and anticancer activities. Molecules 2022, 27, 1981. [Google Scholar] [CrossRef]
- Chaiyasit, S.; Niamsa, N.; Puangpronp, D. Antimicrobial activity of Acanthus ebracteatus Vahl. aqueous extract: The potential for skin infection treatment. Int. J. Biol. Chem. 2009, 3, 95–98. [Google Scholar] [CrossRef]
- Alviano, W.S.; Alviano, D.S.; Diniz, C.G.; Antoniolli, A.R.; Alviano, C.S.; Farias, L.M.; Carvalho, M.A.R.; Souza, M.M.G.; Bolognese, A.M. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine. Arch. Oral. Biol. 2008, 53, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M.; Ming, L.C.; Pagano, E.; Capasso, R. Andrographis paniculata (Burm. f.) Wall. Ex Nees: An updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life 2021, 11, 348. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Chaikul, P.; Kongkow, M.; Iempridee, T.; Lourith, N. Anti-aging of phenolic-rich Acanthus ebracteatus Vahl. extracts. Chem. Biol. Technol. Agric. 2023, 10, 32. [Google Scholar] [CrossRef]
- Matos, P.; Batista, M.T.; Figueirinha, A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). J. Ethnopharmacol. 2022, 293, 115271. [Google Scholar] [CrossRef]
- Ilori, N.T.O.; Liew, C.X.-Q.; Fang, C.-M. The anti-inflammatory properties of Acanthus ebracteatus, Barleria lupulina and Clinacanthus nutans: A systematic review. Mol. Biol. Rep. 2020, 47, 9883–9894. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Pundith, H.; Thongyim, S.; Kaewkod, T.; Chitov, T.; Bovonsombut, S.; Tragoolpua, Y. Antibiotic-antiapoptotic dual function of Clinacanthus nutans (Burm. f.) Lindau leaf extracts against bovine mastitis. Antibiotics 2020, 9, 429. [Google Scholar] [CrossRef]
- Thongyim, S.; Wright, T.A.; Sattayawat, P.; Kaewkod, T.; Baillie, G.S.; Tragoolpua, Y.; Jangsutthivorawat, S.; Panya, A. Clinacanthus nutans extract lowers periodontal inflammation under high-glucose conditions via inhibiting NF-κB signaling pathway. Front. Pharmacol. 2024, 15, 1410419. [Google Scholar] [CrossRef]
- Woottisin, N.; Kongkiatpaiboon, S.; Sukprasert, S.; Sathirakul, K. Development and validation of stability indicating HPLC method for determination of caffeic acid, vitexin and rosmarinic acid in Thunbergia laurifolia leaf extract. Pharmacogn. J. 2020, 12, 611–618. [Google Scholar] [CrossRef]
- Ruangpayungsak, N.; Sithisarn, P.; Rojsanga, P. High performance liquid chromatography fingerprinting and chemometric analysis of antioxidant quality of Thunbergia laurifolia leaves. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 713–721. [Google Scholar] [CrossRef]
- Songserm, P.; Klanrit, P.; Klanrit, P.; Phetcharaburanin, J.; Thanonkeo, P.; Apiraksakorn, J.; Phomphrai, K.; Klanrit, P. Antioxidant and anticancer potential of bioactive compounds from Rhinacanthus nasutus cell suspension culture. Plants 2022, 11, 1994. [Google Scholar] [CrossRef]
- Chatatikun, M.; Chiabchalard, A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complement. Altern. Med. 2017, 17, 487. [Google Scholar] [CrossRef] [PubMed]
- Hahn, F.E.; Sarre, S.G. Mechanism of action of gentamicin. J. Infect. Dis. 1969, 119, 364–369. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef]
- Miceli, N.; Trovato, A.; Marino, A.; Bellinghieri, V.; Melchini, A.; Dugo, P.; Cacciola, F.; Donato, P.; Mondello, L.; Güvenç, A.; et al. Phenolic composition and biological activities of Juniperus drupacea Labill. berries from Turkey. Food Chem. Toxicol. 2011, 49, 2600–2608. [Google Scholar] [CrossRef]
- Resende, F.A.; Nogueira, L.G.; Bauab, T.M.; Vilegas, W.; Varanda, E.A. Antibacterial potential of flavonoids with different hydroxylation patterns. Eclet. Quim. 2016, 40, 173–179. [Google Scholar] [CrossRef]
- Jiang, L. Comparison of Disk Diffusion, Agar Dilution, and Broth Microdiultion for Antimicrobial Susceptibility Testing of Five Chitosans. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2011. [Google Scholar]
- Osés, S.M.; Pascual-Maté, A.; de la Fuente, D.; de Pablo, A.; Fernández-Muiño, M.A.; Sancho, M.T. Comparison of methods to determine antibacterial activity of honeys against Staphylococcus aureus. NJAS Wagening. J. Life Sci. 2016, 78, 29–33. [Google Scholar] [CrossRef]
- Techaoei, S. Time-kill kinetics and antimicrobial activities of Thai medical plant extracts against fish pathogenic bacteria. J. Adv. Pharm. Technol. Res. 2022, 13, 25. [Google Scholar] [CrossRef]
- Silva, E.; Teixeira, J.A.; Pereira, M.O.; Rocha, C.M.R.; Sousa, A.M. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine 2023, 119, 154973. [Google Scholar] [CrossRef]
- Roeslan, M.O.; Ayudhya, T.D.N.; Yingyongnarongkul, B.; Koontongkaew, S. Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomed. Pharmacother. 2019, 113, 108724. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, M.; Liu, B.; Zhao, H.; Zhang, Y.; Ji, X.; Zhao, N.; Zhang, C.; He, X.; Yi, J.; et al. Effect of andrographolide and its analogs on bacterial infection: A review. Pharmacology 2019, 105, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Mulks, M.H. Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Vet. Microbiol. 2005, 108, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kamaruzzaman, W.M.I.W.M.; Fekeri, M.F.M.; Nasir, N.A.M.; Hamidi, N.A.S.M.; Baharom, M.Z.; Adnan, A.; Shaifudin, M.S.; Abdullah, W.R.W.; Wan Nik, W.M.N.; Suhailin, F.H.; et al. Anticorrosive and microbial inhibition performance of a coating loaded with Andrographis paniculata on stainless steel in seawater. Molecules 2021, 26, 3379. [Google Scholar] [CrossRef]
- Shamim, A.; Ali, A.; Iqbal, Z.; Mirza, M.A.; Aqil, M.; Kawish, S.M.; Siddiqui, A.; Kumar, V.; Naseef, P.P.; Alshadidi, A.A.F.; et al. Natural medicine a promising candidate in combating microbial biofilm. Antibiotics 2023, 12, 299. [Google Scholar] [CrossRef]
- Summer, K.; Browne, J.; Hollanders, M.; Benkendorff, K. Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO). Biofilm 2022, 4, 100081. [Google Scholar] [CrossRef]
- Tang, P.; Foubister, V.; Pucciarelli, M.G.; Finlay, B.B. Methods to study bacterial invasion. J. Microbiol. Methods 1993, 18, 227–240. [Google Scholar] [CrossRef]
- Limsong, J.; Benjavongkulchai, E.; Kuvatanasuchati, J. Inhibitory effect of some herbal extracts on adherence of Streptococcus mutans. J. Ethnopharmacol. 2004, 92, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hamid, M. A New promising target for plant extracts: Inhibition of bacterial quorum sensing. J. Mol. Biol. Biotechnol. 2016, 1, 1–3. [Google Scholar]
- Zhang, Q.; Ma, Q.; Wang, Y.; Wu, H.; Zou, J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int. J. Oral. Sci. 2021, 13, 30. [Google Scholar] [CrossRef]
- Matsumura, M.; Izumi, T.; Matsumoto, M.; Tsuji, M.; Fujiwara, T.; Ooshima, T. The role of glucan-binding proteins in the cariogenicity of Streptococcus mutans. Microbiol. Immunol. 2003, 47, 213–215. [Google Scholar] [CrossRef]
- Kooltheat, N.; Kamuthachad, L.; Anthapanya, M.; Samakchan, N.; Sranujit, R.P.; Potup, P.; Ferrante, A.; Usuwanthim, K. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans. Nutrition 2016, 32, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mohd Salleh, R.; Faraniza, R.N. Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. Int. Food Res. J. 2013, 20, 1691–1696. [Google Scholar]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.L.; Vieira, M.d.C.; Pereira, Z.V. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Elfalleh, W.; Nasri, N.; Marzougui, N.; Thabti, I.; M’rabet, A.; Yahya, Y.; Lachiheb, B.; Guasmi, F.; Ferchichi, A. Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S2), 197–210. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Mah, T.-F. Establishing the minimal bactericidal concentration of an antimicrobial agent for planktonic cells (MBC-P) and biofilm cells (MBC-B). J. Vis. Exp. 2014, 83, e50854. [Google Scholar] [CrossRef]
- Montero, M.M.; Domene Ochoa, S.; López-Causapé, C.; Luque, S.; Sorlí, L.; Campillo, N.; López Montesinos, I.; Padilla, E.; Prim, N.; Angulo-Brunet, A.; et al. Time-kill evaluation of antibiotic combinations containing ceftazidime-avibactam against extensively drug-resistant Pseudomonas aeruginosa and their potential role against ceftazidime-avibactam-resistant isolates. Microbiol. Spectr. 2021, 9, e0058521. [Google Scholar] [CrossRef]
- Naghili, H.; Tajik, H.; Mardani, K.; Razavi Rouhani, S.M.; Ehsani, A.; Zare, P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet. Res. Forum 2013, 4, 179–183. [Google Scholar]
- O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011, 47, e2437. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Duary, R.K.; Rajput, Y.S.; Batish, V.K.; Grover, S. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian. J. Med. Res. 2011, 134, 664–671. [Google Scholar] [CrossRef] [PubMed]
Plant Extracts | Total Phenolic Content (mg GAE/g Extract) | Total Flavonoid Content (mg QE/g Extract) |
---|---|---|
C. nutans | 1.86 ± 0.31 a | 14.12 ± 0.52 b |
T. laurifolia | 9.87 ± 0.33 b | 3.29 ± 0.24 a |
A. ebracteatus | 22.55 ± 0.48 c | 4.07 ± 0.49 a |
Plant Extracts | DPPH | ABTS | ||
---|---|---|---|---|
IC50 (mg/mL) | Antioxidant Activity (mg GAE/g Extract) | IC50 (mg/mL) | Antioxidant Activity (mg TEAC/g Extract) | |
C. nutans | 0.84 ± 0.02 b | 6.75 ± 0.14 a | 6.10 ± 0.39 c | 28.67 ± 1.46 a |
T. laurifolia | 0.62 ± 0.06 ab | 9.17 ± 0.84 a | 4.41 ± 0.19 b | 42.47 ± 2.22 b |
A. ebracteatus | 0.24 ± 0.06 a | 24.41 ± 6.19 b | 3.05 ± 0.31 a | 57.47 ± 4.91 c |
Plant Extracts | Inhibition Zone Diameter (mm) | |||
---|---|---|---|---|
K. pneumoniae | S. aureus | S. mutans | S. pyogenes | |
C. nutans | 0 a | 0 a | 0 a | 17.7 ± 1.5 c |
T. laurifolia | 0 a | 14.7 ± 0.6 b | 16.3 ± 1.5 c | 17.3 ± 1.2 c |
A. ebracteatus | 0 a | 0 a | 0 a | 0 a |
Gentamicin (1 mg/mL) | 24.3 ± 0.6 d | 27.3 ± 0.6 d | 24.7 ± 1.2 d | 26.0 ± 1.0 d |
DMSO 99.9% | 0 a | 0 a | 0 a | 0 a |
Plant Extracts | Concentration of Plant Extract (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
K. pneumoniae | S. aureus | S. mutans | S. pyogenes | |||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
C. nutans | 62.5 | 62.5 | 62.5 | 62.5 | 15.63 | 15.63 | 125 | 125 |
T. laurifolia | 62.5 | 62.5 | 15.63 | 15.63 | 15.63 | 15.63 | 7.81 | 7.81 |
A. ebracteatus | 62.5 | 62.5 | 31.25 | 31.25 | 62.5 | 62.5 | 250 | 250 |
Gentamicin (1 mg/mL) | 0.031 | 0.031 | 0.0156 | 0.0156 | 0.063 | 0.125 | 0.0039 | 0.0156 |
Plant Extracts | % Inhibition of Biofilm Formation | |||
---|---|---|---|---|
K. pneumoniae | S. aureus | S. mutans | S. pyogenes | |
C. nutans | 88.89 ± 4.32 cd | 92.49 ± 5.10 d | 37.95 ± 3.68 a | 95.12 ± 2.94 d |
T. laurifolia | 75.40 ± 8.56 c | 84.79 ± 7.67 c | 73.38 ± 8.34 c | 34.22 ± 8.92 a |
A. ebracteatus | 63.63 ± 5.40 b | 42.51 ± 8.69 a | 95.45 ± 5.23 d | 96.84 ± 2.69 d |
Plant Extracts | % Inhibition of Bacterial Adhesion and Invasion | |
---|---|---|
Bacterial Adhesion | Bacterial Invasion | |
C. nutans | 42.03 ± 9.31 ab | 80.40 ± 6.91 c |
T. laurifolia | 48.97 ± 0.44 b | 70.83 ± 7.98 c |
A. ebracteatus | 22.47 ± 2.44 a | 80.97 ± 3.02 c |
Genes | Sense Primer Sequence 5′-3′ | Antisense Primer Sequence 5′-3′ |
---|---|---|
gtfB | GCACCCCGACCAATCAAACT | GCCTGCACGACAGGATTAGA |
gtfC | CGCACCCCGACTAATCAAAC | GTGGAGCCAGTTCAGCTGTT |
gtfD | GGCAAAACGTGGACAGCTT | GTTCCAAGCCCTTGCTGGT |
gbp | CTGGAGAAGCTCAGTCAGTGC | GAAGCTATTGGTTGGAGCAGC |
16s rRNA | CATGTGTAGCGGTGAAATGCG | CTCATCGTTTACGGCGTGGAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriyaprom, S.; Ngamsaard, P.; Intachaisri, V.; Cheepchirasuk, N.; Panya, A.; Kaewkod, T.; Tragoolpua, Y. Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family. Plants 2024, 13, 2622. https://doi.org/10.3390/plants13182622
Suriyaprom S, Ngamsaard P, Intachaisri V, Cheepchirasuk N, Panya A, Kaewkod T, Tragoolpua Y. Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family. Plants. 2024; 13(18):2622. https://doi.org/10.3390/plants13182622
Chicago/Turabian StyleSuriyaprom, Sureeporn, Pornpimon Ngamsaard, Varachaya Intachaisri, Nitsanat Cheepchirasuk, Aussara Panya, Thida Kaewkod, and Yingmanee Tragoolpua. 2024. "Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family" Plants 13, no. 18: 2622. https://doi.org/10.3390/plants13182622
APA StyleSuriyaprom, S., Ngamsaard, P., Intachaisri, V., Cheepchirasuk, N., Panya, A., Kaewkod, T., & Tragoolpua, Y. (2024). Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family. Plants, 13(18), 2622. https://doi.org/10.3390/plants13182622