Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Evaluation of the Nested Association Mapping Population for Variation in Studied Traits
2.3. Genotyping, Population Structure, and Genome-Wide Association Studies
3. Results
3.1. Phenotypic Variation of 290 RIL NAM Population for Studied Traits
3.2. SNP Genotyping and Population Structure of the NAM Population
3.3. Identification of Marker–Trait Associations for Studied Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Braun, H.J.; Atlin, G.; Payne, T.; Reynolds, M.P. Climate Change and Crop Production; CABI Publishers: Wallingford, UK, 2010; pp. 115–138. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#home (accessed on 25 February 2024).
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Xin, W.; Wei, Y.; Zhang, J.; Guo, L. Wheat breeding in northern China: Achievements and technical advances. Crop J. 2019, 7, 718–729. [Google Scholar] [CrossRef]
- Hyles, J.; Bloomfield, M.T.; Hunt, J.R.; Trethowan, R.M.; Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity 2020, 125, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Dowla, M.N.U.; Edwards, I.; O’Hara, G.; Islam, S.; Ma, W. Developing wheat for improved yield and adaptation under a changing climate: Optimization of a few key genes. Engineering 2018, 4, 514–522. [Google Scholar] [CrossRef]
- Curtis, B.C.; Rajaram, S.; Gómez Macpherson, H. (Eds.) Bread Wheat: Improvement and Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; 554p. [Google Scholar]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef]
- Bonnin, I.; Rousset, M.; Madur, D.; Sourdille, P.; Dupuits, C.; Brunel, D.; Goldringer, I. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 2008, 116, 383–394. [Google Scholar] [CrossRef]
- Trevaskis, B. The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct. Plant Biol. 2010, 37, 479–487. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Sylvester-Bradley, R.; Worland, A.J.; Snape, J.W. Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica 2004, 135, 63–73. [Google Scholar] [CrossRef]
- Beales, J.; Turner, A.; Griffiths, S.; Snape, J.W.; Laurie, D.A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 115, 721–733. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, V.; Chaudhary, S.; Tyagi, A.; Mishra, P.; Priyadarshini, A.; Singh, A. Genetics of flowering time in bread wheat Triticum aestivum: Complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat. J. Genet. 2012, 91, 33–47. [Google Scholar] [CrossRef]
- Griffiths, S.; Simmonds, J.; Leverington, M.; Wang, Y.; Fish, L.; Sayers, L.; Alibert, L.; Orford, S.; Wingen, L.; Herry, L.; et al. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor. Appl. Genet. 2012, 119, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Zikhali, M.; Griffiths, S. The effect of Earliness per se (Eps) genes on flowering time in bread wheat. In Advances in Wheat Genetics: From Genome to Field; Springer: Tokyo, Japan, 2015; pp. 339–345. [Google Scholar]
- Zikhali, M.; Wingen, L.U.; Griffiths, S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J. Exp. Bot. 2016, 67, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Richards, D.E.; Hartley, N.M.; Murphy, G.P.; Devos, K.M.; Flintham, J.E.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P. The genes of the Green Revolution. Trends Genet. 2003, 19, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.H.; Rebetzke, G.J.; Azanza, F.; Richards, R.A.; Spielmeyer, W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 2005, 111, 423–430. [Google Scholar] [CrossRef]
- van Eeuwijk, F.A.; Bink, M.C.; Chenu, K.; Chapman, S.C. Detection and use of QTL for complex traits in multiple environments. Curr. Opin. Plant Biol. 2010, 13, 193–205. [Google Scholar] [CrossRef]
- Collard, B.C.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Yang, Z.; Xu, C. Genetic mapping of quantitative trait loci in crops. Crop J. 2017, 5, 175–184. [Google Scholar] [CrossRef]
- Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015, 128, 353–363. [Google Scholar] [CrossRef]
- Gao, F.; Wen, W.; Liu, J.; Rasheed, A.; Yin, G.; Xia, X.; Wu, X.; He, Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross zhou 8425B/Chinese spring. Front. Plant Sci. 2015, 6, 1099. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Li, R.; Deng, Z.; Zhang, K.; Liu, B.; Tian, J. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop J. 2016, 4, 220–228. [Google Scholar] [CrossRef]
- Jin, J.; Liu, D.; Qi, Y.; Ma, J.; Zhen, W. Major QTL for seven yield-related traits in common wheat (Triticum aestivum L.). Front. Genet. 2020, 11, 1012. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, C.; Wang, D.; St Amand, P.; Bernardo, A.; Li, W.; He, F.; Li, L.; Wang, L.; Yuan, X.; et al. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant 2020, 13, 1311–1327. [Google Scholar] [CrossRef] [PubMed]
- Isham, K.; Wang, R.; Zhao, W.; Wheeler, J.; Klassen, N.; Akhunov, E.; Chen, J. QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. Theor. Appl. Genet. 2021, 134, 2079–2095. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.S.; Mo, Y.J.; Kim, K.M.; Kim, K.H.; Chun, J.B.; Park, C.S.; Cho, S.W. Mapping quantitative trait loci for yield potential traits in wheat recombinant inbred lines. Agronomy 2021, 11, 22. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Wang, J.; Yang, Z.; Tang, Y.; Su, Y.; Zhang, J.; Qiu, X.; Pu, X.; Pan, Z.; et al. High-resolution detection of quantitative trait loci for seven important yield-related traits in wheat (Triticum aestivum L.) using a high-density SLAF-seq genetic map. BMC Genom. Data 2022, 23, 37. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E.S. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef]
- Poland, J.A.; Bradbury, P.J.; Buckler, E.S.; Nelson, R.J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl. Acad. Sci. USA 2011, 108, 6893–6898. [Google Scholar] [CrossRef]
- Yu, J.; Holland, J.B.; McMullen, M.D.; Buckler, E.S. Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics 2008, 178, 539–551. [Google Scholar] [CrossRef]
- McMullen, M.D.; Kresovich, S.; Villeda, H.S.; Bradbury, P.; Li, H.; Sun, Q.; Flint-Garcia, S.; Thornsberry, J.; Acharya, C.; Bottoms, C.; et al. Genetic properties of the maize nested association mapping population. Science 2009, 325, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.F.; Ladejobi, O.; Amer, S.; Bentley, A.R.; Biernaskie, J.; Boden, S.A.; Clark, M.; Acqua, M.D.; Dixon, L.E.; Filippi, C.V.; et al. Multiparent populations in crops: A toolbox integrating genomics and genetic mapping with breeding. Heredity 2020, 125, 396–416. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.J.; Bansept-Basler, P.; Barber, T.; Bentley, A.R.; Cockram, J.; Gosman, N.; Greenland, A.J.; Horsnell, R.; Howells, R.; O’Sullivan, D.M.; et al. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: Creation, properties, and validation. G3 2014, 4, 1603–1610. [Google Scholar] [CrossRef]
- Maurer, A.; Draba, V.; Jiang, Y.; Schnaithmann, F.; Sharma, R.; Schumann, E.; Killian, B.; Reif, J.; Pillen, K. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom. 2015, 16, 290. [Google Scholar] [CrossRef]
- Nice, L.M.; Steffenson, B.J.; Brown-Guedira, G.L.; Akhunov, E.D.; Liu, C.; Kono, T.; Morrell, P.L.; Blake, T.; Horsley, R.; Smith, K.; et al. Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 2016, 203, 1453–1467. [Google Scholar] [CrossRef]
- Kidane, Y.G.; Gesesse, C.A.; Hailemariam, B.N.; Desta, E.A.; Mengistu, D.K.; Fadda, C.; Enrico Pè, M.; Dell’Acqua, M. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnol. J. 2019, 17, 1380–1393. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, C.A.; Moreno, M.; Wang, Z.; Heffelfinger, C.; Arbelaez, L.J.; Aguirre, J.A.; Franco, N.; Romero, L.; Labadie, K.; Zhao, H.; et al. Genetic architecture of a rice nested association mapping population. G3 2017, 7, 1913–1926. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, S.; Olatoye, M.O.; Marla, S.R.; Perumal, R.; Tesso, T. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 2017, 206, 573–585. [Google Scholar] [CrossRef]
- Xavier, A.; Xu, S.; Muir, W.M.; Rainey, K.M. NAM: Association studies in multiple populations. Bioinformatics 2015, 31, 3862–3864. [Google Scholar] [CrossRef]
- Sallam, A.H.; Manan, F.; Bajgain, P.; Martin, M.; Szinyei, T.; Conley, E.; Brown-Guedira, G.; Muehlbauer, G.J.; Anderson, J.A.; Steffenson, B.J. Genetic architecture of agronomic and quality traits in a nested association mapping population of spring wheat. Plant Genome 2020, 13, e20051. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, G.; Jiang, P.; Zhao, Y.; Zhang, G.; Ma, X.; Yao, J.; Xue, L.; Su, P.; Bao, Y. QTL detection for bread wheat processing quality in a nested association mapping population of semi-wild and domesticated wheat varieties. BMC Plant Biol. 2022, 22, 129. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Mihalyov, P.D.; Lewien, M.J.; Pumphrey, M.O.; Carter, A.H. Genomic selection and genome-wide association studies for grain protein content stability in a nested association mapping population of wheat. Agronomy 2021, 11, 2528. [Google Scholar] [CrossRef]
- Chidzanga, C.; Mullan, D.; Roy, S.; Baumann, U.; Garcia, M. Nested association mapping-based GWAS for grain yield and related traits in wheat grown under diverse Australian environments. Theor. Appl. Genet. 2022, 135, 4437–4456. [Google Scholar] [CrossRef] [PubMed]
- Christopher, M.; Paccapelo, V.; Kelly, A.; Macdonald, B.; Hickey, L.; Richard, C.; Verbyla, A.; Chenu, K.; Borrell, A.; Amin, A.; et al. QTL identified for stay-green in a multi-reference nested association mapping population of wheat exhibit context dependent expression and parent-specific alleles. Field Crops Res. 2021, 270, 108181. [Google Scholar] [CrossRef]
- Ren, D.; Fang, X.; Jiang, P.; Zhang, G.; Hu, J.; Wang, X.; Meng, Q.; Cui, W.; Lan, S.; Ma, X.; et al. Genetic architecture of nitrogen-deficiency tolerance in wheat seedlings based on a nested association mapping (NAM) population. Front. Plant Sci. 2018, 9, 845. [Google Scholar] [CrossRef]
- Chidzanga, C.; Fleury, D.; Baumann, U.; Mullan, D.; Watanabe, S.; Kalambettu, P.; Pontre, R.; Edwards, J.; Forrest, K.; Wong, D.; et al. Development of an australian bread wheat nested association mapping population, a new genetic diversity resource for breeding under dry and hot climates. Int. J. Mol. Sci. 2021, 22, 4348. [Google Scholar] [CrossRef]
- Schnaithmann, F.; Kopahnke, D.; Pillen, K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor. Appl. Genet. 2014, 127, 1513–1525. [Google Scholar] [CrossRef]
- Bajgain, P.; Rouse, M.N.; Tsilo, T.J.; Macharia, G.K.; Bhavani, S.; Jin, Y.; Anderson, J.A. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS ONE 2016, 11, e0155760. [Google Scholar] [CrossRef]
- Mackay, T.F. The genetic architecture of quantitative traits. Annu. Rev. Genet. 2001, 35, 303–339. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Wingen, L.U.; West, C.; Leverington-Waite, M.; Collier, S.; Orford, S.; Goram, R.; Yang, C.; King, J.; Allen, A.; Burridge, A.; et al. Wheat landrace genome diversity. Genetics 2017, 205, 1657–1676. [Google Scholar] [CrossRef]
- Wingen, L.U.; Orford, S.; Goram, R.; Leverington-Waite, M.; Bilham, L.; Patsiou, T.S.; Ambrose, M.; Dicks, J.; Griffiths, S. Establishing the AE Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor. Appl. Genet. 2014, 127, 1831–1842. [Google Scholar] [CrossRef]
- Dospekhov, B. Methods of Field Experience; Kolos: Moscow, Russia, 1985. [Google Scholar]
- Allen, A.M.; Barker, G.L.; Berry, S.T.; Coghill, J.A.; Gwilliam, R.; Kirby, S.; Robinson, P.; Brenchley, R.C.; D’Amore, R.; McKenzie, N.; et al. Transcript-specific. single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 2011, 9, 1086–1099. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y. Buckler ES. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Core, M.; Buckler, E.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A memory-efficient. visualization-enhanced. and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Ensembl Plants. Available online: https://plants.ensembl.org/Triticum_aestivum/Info/Index (accessed on 15 February 2024).
- RStudio Team. RStudio: Integrated Development for R; RStudio Inc.: Boston, MA, USA, 2015; Available online: http://www.maizegenetics.net/GAPIT (accessed on 20 January 2024).
- Genievskaya, Y.; Turuspekov, Y.; Rsaliyev, A.; Abugalieva, S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan. PeerJ 2020, 8, e9820. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.P.; Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 2016, 31, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Zwer, P.K.; Ram, P.C. Marker assisted breeding: A novel strategy for enhancing productivity in wheat. J. Plant Biochem. Physiol. 2017, 5, 1000185. [Google Scholar]
- Aisawi, K.A.B.; Reynolds, M.P.; Singh, R.P.; Foulkes, M.J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 2015, 55, 1749–1764. [Google Scholar] [CrossRef]
- Martinez, A.F.; Lister, C.; Freeman, S.; Ma, J.; Berry, S.; Wingen, L.; Griffiths, S. Resolving a QTL complex for height, heading, and grain yield on chromosome 3A in bread wheat. J. Exp. Bot. 2021, 72, 2965–2978. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdermir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Deppe, J.P.; Rabbat, R.; Hörtensteiner, S.; Keller, B.; Martinoia, E.; Lopéz-Marqués, R.L. The wheat ABC transporter Lr34 modifies the lipid environment at the plasma membrane. J. Biol. Chem. 2018, 293, 18667–18679. [Google Scholar] [CrossRef]
- Yan, L.; Helguera, M.; Kato, K.; Fukuyama, S.; Sherman, J.; Dubcovsky, J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 2004, 109, 1677–1686. [Google Scholar] [CrossRef]
- Shaw, L.M.; Turner, A.S.; Laurie, D.A.; Snape, J.W. Association mapping of flowering time genes in elite European winter wheat varieties. Theor. Appl. Genet. 2012, 125, 721–735. [Google Scholar]
- Amalova, A.; Yermekbayev, K.; Griffiths, S.; Abugalieva, S.; Babkenov, A.; Fedorenko, E.; Abugalieva, A.; Turuspekov, Y. Identification of quantitative trait loci of agronomic traits in bread wheat using a Pamyati Azieva× Paragon mapping population harvested in three regions of Kazakhstan. PeerJ 2022, 10, e14324. [Google Scholar] [CrossRef] [PubMed]
- Amalova, A.; Abugalieva, S.; Chudinov, V.; Sereda, G.; Tokhetova, L.; Abdikhalyk, A.; Turuspekov, Y. QTL mapping of agronomic traits in wheat using the UK Avalon× Cadenza reference mapping population grown in Kazakhstan. PeerJ 2021, 9, e10733. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, S.; Heidari, B.; Pakniyat, H.; McIntyre, C.L. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 2017, 60, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, X.; Zhang, G.; Jiang, P.; Chen, W.; Hao, Y.; Ma, X.; Xu, S.; Lia, J.; Kong, L.; et al. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor. Appl. Genet. 2020, 133, 917–933. [Google Scholar] [CrossRef] [PubMed]
- El-Feki, W.M.; Byrne, P.F.; Reid, S.D.; Haley, S.D. Mapping quantitative trait loci for agronomic traits in winter wheat under different soil moisture levels. Agronomy 2018, 8, 133. [Google Scholar] [CrossRef]
- Mason, R.E.; Hays, D.B.; Mondal, S.; Ibrahim, A.M.; Basnet, B.R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica 2013, 194, 243–259. [Google Scholar] [CrossRef]
- Sherman, J.D.; Martin, J.M.; Blake, N.K.; Lanning, S.P.; Talbert, L.E. Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar. Crop Sci. 2014, 54, 1–13. [Google Scholar] [CrossRef]
- Zhai, H.; Feng, Z.; Li, J.; Liu, X.; Xiao, S.; Ni, Z.; Sun, Q. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front. Plant Sci. 2016, 7, 1617. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, N.; Wu, Y.; Sun, H.; Liu, C.; Fan, X.; Yan, X.; Li, J.; Cui, F. QTL for spike-layer uniformity and their influence on yield-related traits in wheat. BMC Genet. 2019, 20, 23. [Google Scholar] [CrossRef]
- Carter, A.H.; Garland-Campbell, K.; Kidwell, K.K. Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Sci. 2011, 51, 84–95. [Google Scholar] [CrossRef]
- Assanga, S.O.; Fuentealba, M.; Zhang, G.; Tan, C.; Dhakal, S.; Rudd, J.C.; Ibrahim, A.M.H.; Xue, Q.; Haley, S.; Chen, J.; et al. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE 2017, 12, e0189669. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Lu, L.; Jia, L.; Kabir, M.R.; Zhang, J.; Lan, T.; Zhao, Y.; Xi, M.; Hu, Z.; Yao, Y.; et al. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 529. [Google Scholar] [CrossRef] [PubMed]
- Gahlaut, V.; Jaiswal, V.; Tyagi, B.S.; Singh, G.; Sareen, S.; Balyan, H.S.; Cupta, P.K. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE 2017, 12, e0182857. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B.; Saeidi, G.; Sayed, T.B.; Suenaga, K. QTLs involved in plant height, peduncle length and heading date of wheat (Triticum aestivum L.). J. Agric. Sci. Technol. 2012, 14, 1093–1104. [Google Scholar]
- International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar]
- Jain, M.; Nijhawan, A.; Arora, R.; Agarwal, P.; Ray, S.; Sharma, P.; Kapoor, S.; Tyagi, A.K.; Khurana, J.P. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 2007, 143, 1467–1483. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, D.Y.; Kang, S.Y.; Kim, D.S.; Kim, J.B.; Seo, Y.W. Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development. Mol. Biol. Rep. 2012, 39, 9681–9696. [Google Scholar] [CrossRef]
- Wang, L.; Shen, R.; Chen, L.T.; Liu, Y.G. Characterization of a novel DUF1618 gene family in rice. J. Integr. Plant Biol. 2014, 56, 151–158. [Google Scholar] [CrossRef]
- Wei, K.; Li, Y. Functional genomics of the protein kinase superfamily from wheat. Mol. Breed. 2019, 39, 141. [Google Scholar] [CrossRef]
- Han, G.; Qiao, Z.; Li, Y.; Yang, Z.; Wang, C.; Zhang, Y.; Liu, L.; Wang, B. RING zinc finger proteins in plant abiotic stress tolerance. Front. Plant Sci. 2022, 13, 1055. [Google Scholar] [CrossRef]
- Vaitkevičiūtė, G.; Chawade, A.; Lillemo, M.; Liatukas, Ž.; Aleliūnas, A.; Armonienė, R. Genome-Wide Association Analysis of Freezing Tolerance and Winter Hardiness in Winter Wheat of Nordic Origin. Plants 2023, 12, 4014. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Sharma, A.; Verma, P.C.; Upadhyay, S.K. EF-hand domain-containing proteins in Triticum aestivum: Insight into their roles in stress response and signalling. S. Afr. J. Bot. 2022, 149, 663–681. [Google Scholar] [CrossRef]
- He, G.H.; Xu, J.Y.; Wang, Y.X.; Liu, J.M.; Li, P.S.; Chen, M.; Ma, Y.Z.; Xu, Z.S. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016, 16, 116. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Origin (Countries) | Mapping Population | Number of RIL |
---|---|---|---|
Watkins34 | India (Asia) | Paragon × Watkins34 | 8 |
Watkins141 | China (Asia) | Paragon × Watkins141 | 10 |
Watkins216 | Morocco (North Africa) | Paragon × Watkins216 | 10 |
Watkins223 | Burma (Asia) | Paragon × Watkins223 | 11 |
Watkins254 | Morocco (North Africa) | Paragon × Watkins254 | 13 |
Watkins264 | Canary Islands (Western Europe) | Paragon × Watkins264 | 13 |
Watkins273 | Spain (Western Europe) | Paragon × Watkins273 | 14 |
Watkins291 | Cyprus (Western Europe) | Paragon × Watkins291 | 14 |
Watkins292 | Cyprus (Western Europe) | Paragon × Watkins292 | 11 |
Watkins299 | Türkiye (Middle East) | Paragon × Watkins299 | 11 |
Watkins349 | Bulgaria (Eastern Europe) | Paragon × Watkins349 | 12 |
Watkins396 | Portugal (Western Europe) | Paragon × Watkins396 | 10 |
Watkins397 | Portugal (Western Europe) | Paragon × Watkins397 | 13 |
Watkins398 | Palestine (Middle East) | Paragon × Watkins398 | 9 |
Watkins420 | India (Asia) | Paragon × Watkins420 | 12 |
Watkins546 | Spain (Western Europe) | Paragon × Watkins546 | 13 |
Watkins566 | Greece (Western Europe) | Paragon × Watkins566 | 12 |
Watkins685 | Spain (Western Europe) | Paragon × Watkins685 | 12 |
Watkins811 | Tunisia (North Africa) | Paragon × Watkins811 | 13 |
BAJ | Paragon × BAJ | 15 | |
CIMCOG 47 | Mexico | Paragon × CIMCOG 47 | 16 |
CIMCOG 49 | Mexico | Paragon × CIMCOG 49 | 16 |
Wylakatchem | Australia | Paragon × Wylakatchem | 15 |
PFAU | Mexico | Paragon × PFAU | 7 |
Site/Region | KRIAPI (Almaty Region, Southeast Kazakhstan) | SPCGF (Akmola Region, Northern Kazakhstan) | |||||
---|---|---|---|---|---|---|---|
Latitude/Longitude | 43°21′/76°53′ | 51°40′/71°00′ | |||||
Soil type | Light chestnut (humus 2.0–2.5%) | Southern carbonate chernozem (humus 3.6%) | |||||
Conditions | Rainfed | Rainfed | |||||
Year | 2019 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 |
Annual rainfall, mm | 299 | 279 | 183 | 250 | 426 | 112 | 117 |
Mean temperature, °C | 19.8 | 19.8 | 21.8 | 22.2 | 19.2 | 18.0 | 18.4 |
Max temperature, °C | 27.0 | 24.2 | 27.4 | 26.5 | 20.7 | 20.4 | 21.1 |
Min temperature, °C | 12.9 | 14.2 | 12.4 | 16.7 | 17.6 | 14.7 | 15.7 |
NAM Population/Region | HD, days | SMD, days | PH, cm | PL, cm | YM2_g/m2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
KRIAPI | SPCGF | KRIAPI | SPCGF | KRIAPI | SPCGF | KRIAPI | SPCGF | KRIAPI | SPCGF | |
Paragon × Watkins34 | 53.4 ± 0.65 | 37.7 ± 1.00 | 34.5 ± 0.58 | 43.9 ± 0.54 | 76.3 ± 1.20 | 42.3 ± 0.99 | 30.8 ± 1.23 | 18.1 ± 0.50 | 421.5 ± 30.49 | 188.0 ± 16.28 |
Paragon × Watkins141 | 62.7± 0.76 | 47.2 ± 1.33 | 31.6 ± 0.46 | 42.5 ± 0.78 | 86.2 ± 1.26 | 54.0 ± 1.96 | 30.4 ± 0.80 | 21.0 ± 0.99 | 299.9 ± 17.67 | 271.7 ± 17.70 |
Paragon × Watkins216 | 59.2 ± 0.48 | 43.7 ± 1.18 | 32.6 ± 0.26 | 42.5 ± 0.62 | 86.2 ± 1.21 | 52.9 ± 1.25 | 33.0 ± 0.91 | 22.1 ± 0.71 | 262.0 ± 12.93 | 206.3 ± 9.66 |
Paragon × Watkins223 | 55.1 ± 0.77 | 37.7 ± 0.80 | 34.4 ± 0.39 | 43.8 ± 0.61 | 83.1 ± 1.20 | 45.6 ± 0.93 | 32.4 ± 0.84 | 19.6 ± 0.73 | 449.4 ± 33.14 | 223.9 ± 12.56 |
Paragon × Watkins254 | 61.5 ± 0.83 | 44.7 ± 1.13 | 31.6 ± 0.53 | 43.0 ± 0.30 | 81.1 ± 2.26 | 53.1 ± 1.80 | 30.2 ± 1.46 | 22.3 ± 0.99 | 332.8 ± 26.15 | 234.0 ± 11.45 |
Paragon × Watkins264 | 57.4 ± 0.53 | 42.1 ± 0.86 | 33.4 ± 0.35 | 43.3 ± 0.23 | 87.7 ± 1.84 | 52.6 ± 1.00 | 36.8 ± 0.89 | 23.2 ± 0.73 | 389.7 ± 20.47 | 264.6 ± 23.04 |
Paragon × Watkins273 | 57.0± 0.67 | 42.9± 1.20 | 33.4 ± 0.24 | 44.4 ± 0.47 | 86.7 ± 1.80 | 51.1 ± 1.34 | 34.4 ± 0.91 | 22.1 ± 0.60 | 305.4 ± 28.33 | 228.6 ± 26.03 |
Paragon × Watkins291 | 59.0 ± 0.82 | 42.0 ± 0.81 | 32.1 ± 0.42 | 42.9 ± 0.18 | 84.5 ± 1.96 | 50.6 ± 1.42 | 29.8 ± 0.74 | 20.7 ± 0.74 | 392.1 ± 22.60 | 237.9 ± 13.54 |
Paragon × Watkins292 | 59.0 ± 0.83 | 45.2 ± 1.42 | 31.6 ± 0.36 | 42.0 ± 0.75 | 81.4 ± 1.20 | 49.2 ± 1.73 | 31.0 ± 1.24 | 19.8 ± 1.09 | 375.1 ± 15.81 | 177.2 ± 17.76 |
Paragon × Watkins299 | 57.8 ± 0.56 | 39.6 ± 0.83 | 32.6 ± 0.44 | 44.2 ± 0.24 | 82.1 ± 1.43 | 46.0 ± 1.26 | 33.3 ± 0.76 | 20.2 ± 0.63 | 423.6 ± 34.68 | 240.3 ± 12.00 |
Paragon × Watkins349 | 61.0 ± 0.51 | 42.0 ± 0.59 | 32.5 ± 0.32 | 43.4 ± 0.15 | 87.0 ± 1.85 | 53.5 ± 1.27 | 32.7 ± 0.48 | 24.0 ± 0.61 | 439.1 ± 27.96 | 288.8 ± 20.49 |
Paragon × Watkins396 | 63.2 ± 1.01 | 44.7 ± 0.96 | 31.4 ± 0.56 | 43.3 ± 0.27 | 79.2 ± 1.98 | 55.1 ± 1.54 | 31.3 ± 1.17 | 24.2 ± 0.88 | 331.6 ± 26.65 | 310.2 ± 19.02 |
Paragon × Watkins397 | 59.0 ± 0.83 | 41.8 ± 0.83 | 32.8 ± 0.52 | 43.7 ± 0.21 | 90.1 ± 1.55 | 52.7 ± 1.29 | 35.1 ± 0.99 | 23.5 ± 0.42 | 387.8 ± 23.74 | 247.4 ± 17.50 |
Paragon × Watkins398 | 58.2 ± 0.47 | 42.7 ± 1.04 | 33.3 ± 0.27 | 42.5 ± 0.49 | 79.7 ± 1.75 | 49.5 ± 1.67 | 31.4 ± 1.60 | 21.1 ± 0.71 | 391.3 ± 24.11 | 241.8 ± 16.33 |
Paragon × Watkins420 | 59.5 ± 0.73 | 43.9 ± 1.94 | 32.9 ± 0.53 | 43.4 ± 0.61 | 80.8 ± 1.30 | 52.0 ± 1.49 | 30.8 ± 1.14 | 22.5 ± 0.77 | 392.9 ± 28.24 | 289.8 ± 14.00 |
Paragon × Watkins546 | 59.7 ± 0.87 | 42.3 ± 1.00 | 34.2 ± 0.46 | 42.5 ± 0.56 | 87.7 ± 1.75 | 55.4 ± 0.78 | 33.5 ± 0.96 | 24.6 ± 0.71 | 433.2 ± 20.52 | 293.9 ± 12.24 |
Paragon × Watkins566 | 60.4 ± 0.49 | 45.5 ± 1.01 | 32.9 ± 0.32 | 42.7 ± 0.54 | 89.2 ± 2.09 | 53.9 ± 0.69 | 31.5 ± 0.73 | 22.4 ± 0.67 | 359.5 ± 13.15 | 252.5 ± 15.94 |
Paragon × Watkins685 | 57.8 ± 0.52 | 43.5 ± 1.23 | 31.9 ± 0.38 | 41.8 ± 0.74 | 80.8 ± 1.50 | 50.2 ± 0.86 | 31.8 ± 0.44 | 22.3 ± 0.60 | 347.0 ± 9.45 | 202.3 ± 21.86 |
Paragon × Watkins811 | 56.4 ± 0.34 | 43.6 ± 0.88 | 32.0 ± 0.18 | 43.0 ± 0.21 | 85.6 ± 2.27 | 49.7 ± 1.28 | 33.6 ± 1.38 | 21.5 ± 0.79 | 407.5 ± 19.53 | 245.4 ± 13.51 |
Paragon × BAJ | 56.0 ± 0.59 | 41.4 ± 0.71 | 32.2 ± 0.25 | 43.0 ± 0.20 | 60.5 ± 1.37 | 41.1 ± 1.00 | 21.7 ± 0.43 | 14.5 ± 0.50 | 361.5 ± 18.76 | 290.1 ± 21.00 |
Paragon × CIMCOG 47 | 54.7 ± 0.34 | 40.1 ± 0.47 | 32.7 ± 0.23 | 42.9 ± 0.29 | 61.6 ± 1.53 | 40.9 ± 1.05 | 25.0 ± 0.77 | 17.0 ± 0.56 | 403.3 ± 19.31 | 297.6 ± 14.18 |
Paragon × CIMCOG 49 | 55.9 ± 0.55 | 40.4 ± 0.53 | 32.9 ± 0.37 | 44.0 ± 0.21 | 65.4 ± 1.66 | 45.7 ± 1.15 | 26.1 ± 0.83 | 18.9 ± 0.74 | 376.8 ± 24.98 | 237.7 ± 19.08 |
Paragon × PFAU | 52.8 ± 0.69 | 38.1 ± 0.82 | 33.5 ± 0.49 | 44.3 ± 0.42 | 59.3 ± 2.61 | 38.3 ± 2.01 | 21.8 ± 1.48 | 15.2 ± 1.32 | 208.5 ± 20.90 | 269.9 ± 28.27 |
Paragon × Wylakatchem | 56.5 ± 0.45 | 40.0 ± 0.39 | 32.4 ± 0.26 | 43.2 ± 0.18 | 64.1 ± 1.91 | 41.8 ± 0.84 | 25.4 ± 0.96 | 17.1 ± 0.68 | 328.5 ± 23.61 | 298.7 ± 13.23 |
Traits | Factor | Df | Sum Sq | Mean Sq | F-Value | hb2 |
---|---|---|---|---|---|---|
HD, days | Genotype (G) | 279 | 30,899 | 111 | 14.59 *** | 29.8% |
Environment (E) | 2 | 47,631 | 23,815 | 3138.26 *** | ||
G:E | 558 | 18,932 | 34 | 4.47 *** | ||
Residuals | 840 | 6375 | 8 | |||
SMD, days | Genotype (G) | 279 | 3380 | 12 | 1.97 *** | 2.2% |
Environment (E) | 2 | 136,499 | 68,250 | 11,093.20 *** | ||
G:E | 558 | 5366 | 10 | 1.56 *** | ||
Residuals | 840 | 5168 | 6 | |||
PH, cm | Genotype (G) | 279 | 114,177 | 409 | 11.96 *** | 13.9% |
Environment (E) | 2 | 624,924 | 312,462 | 9128.80 *** | ||
G:E | 558 | 52,838 | 95 | 2.77 *** | ||
Residuals | 840 | 28,752 | 34 | |||
PL, cm | Genotype (G) | 279 | 27,909 | 100 | 5.09 *** | 10.0% |
Environment (E) | 2 | 213,112 | 106,556 | 5421.09 *** | ||
G:E | 558 | 20,949 | 38 | 1.91 *** | ||
Residuals | 840 | 16,511 | 20 | |||
YM2, g/m2 | Genotype (G) | 279 | 8,638,103 | 30,961 | 5.79 *** | 14.9% |
Environment (E) | 2 | 30,095,833 | 15,047,916 | 2815.83 *** | ||
G:E | 558 | 14,653,053 | 26,260 | 4.91 *** | ||
Residuals | 840 | 4,488,995 | 5344 |
KRIAPI | SPCGF | ||||||||
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
SMD | PH | PL | YM2 | SMD | PH | PL | YM2 | ||
HD | −0.44 *** | 0.15 * | −0.12 * | 0.02 ns | HD | −0.06 ns | 0.39 *** | 0.16 ** | −0.30 *** |
SMD | 0.31 *** | 0.28 *** | 0.21 *** | SMD | 0.02 ns | 0.01 ns | −0.03 ns | ||
PH | 0.75 *** | 0.32 *** | PH | 0.68 *** | −0.09 ns | ||||
PL | 0.22 *** | PL | 0.01 ns | ||||||
2021 | |||||||||
SMD | PH | PL | YM2 | SMD | PH | PL | YM2 | ||
HD | −0.70 *** | 0.12 * | 0.02 ns | −0.46 *** | HD | −0.59 *** | 0.48 *** | 0.21 *** | 0.05 ns |
SMD | 0.03 ns | 0.11 ns | 0.23 *** | SMD | −0.22 *** | −0.05 ns | −0.10 ns | ||
PH | 0.80 *** | 0.30 *** | PH | 0.76 *** | 0.29 *** | ||||
PL | 0.26 *** | PL | 0.24 *** | ||||||
2022 | |||||||||
SMD | PH | PL | YM2 | SMD | PH | PL | YM2 | ||
HD | −0.60 *** | 0.35 *** | −0.02 ns | −0.31 *** | HD | −0.79 *** | 0.22 *** | 0.13 * | 0.13 * |
SMD | −0.21 *** | −0.01 ns | 0.24 *** | SMD | −0.19 ** | −0.13 * | −0.13 * | ||
PH | 0.60 *** | 0.02 ns | PH | 0.72 *** | 0.23 *** | ||||
PL | 0.27 *** | PL | 0.12 * | ||||||
mean | |||||||||
SMD | PH | PL | YM2 | SMD | PH | PL | YM2 | ||
HD | −0.59 *** | 0.33 *** | −0.06 ns | −0.09 ns | HD | −0.79 *** | 0.22 *** | 0.13 *** | 0.13 ns |
SMD | 0.10 ns | 0.32 *** | 0.23 *** | SMD | −0.19 * | −0.13 ns | −0.13 ns | ||
PH | 0.76 *** | 0.25 *** | PH | 0.72 *** | 0.23 ns | ||||
PL | 0.27 *** | PL | 0.12 ns |
Trait | Identified QTL | KRIAPI | SPCGF | Both Regions |
---|---|---|---|---|
Heading date (HD, days) | 26 | 8 | 5 | 13 |
Seed maturation date (SMD, days) | 22 | 8 | 2 | 12 |
Plant height (PH, cm) | 14 | 7 | 2 | 5 |
Peduncle length (PL, cm) | 12 | 5 | 2 | 5 |
Total | 74 | 28 | 11 | 35 |
QTLs | SNP | Chr. | Pos., bp | p-Value | Regions |
---|---|---|---|---|---|
QHD.ta.NAM.ipbb-1A.1 | AX-94561041 | 1A | 41,901,010 | 6.36 × 10−4 | both |
QHD.ta.NAM.ipbb-1A.2 | AX-94768074 | 1A | 474,699,818 | 4.45 × 10−5 | KPIAPI |
QHD.ta.NAM.ipbb-1B | AX-94592638 | 1B | 678,266,710 | 2.33 × 10−5 | KPIAPI |
QHD.ta.NAM.ipbb-2A.1 | AX-95255993 | 2A | 31,811,157 | 5.39 × 10−4 | SPCGF |
QHD.ta.NAM.ipbb-2A.2 | AX-95098442 | 2A | 43,299,265 | 3.05 × 10−4 | both |
QHD.ta.NAM.ipbb-2A.3 | AX-94665800 | 2A | 603,549,569 | 2.54 × 10−4 | both |
QHD.ta.NAM.ipbb-2A.4 | AX-94504542 | 2A | 729,298,590 | 4.50 × 10−4 | KPIAPI |
QHD.ta.NAM.ipbb-2B.1 | AX-94681430 | 2B | 18,941,804 | 1.05 × 10−9 | SPCGF |
QHD.ta.NAM.ipbb-2B.2 | AX-94393895 | 2B | 788,664,980 | 1.32 × 10−4 | both |
QHD.ta.NAM.ipbb-3A | AX-94701190 | 3A | 719,763,842 | 1.38 × 10−6 | both |
QHD.ta.NAM.ipbb-3B | AX-95249280 | 3B | 571,763,709 | 7.37 × 10−4 | KPIAPI |
QHD.ta.NAM.ipbb-3D | AX-94713011 | 3D | 484,808,321 | 6.69 × 10−4 | both |
QHD.ta.NAM.ipbb-4A | AX-95633345 | 4A | 707,039,327 | 1.82 × 10−4 | KPIAPI |
QHD.ta.NAM.ipbb-5A.1 | AX-94603117 | 5A | 476,763,775 | 1.19 × 10−4 | both |
QHD.ta.NAM.ipbb-5A.2 | AX-94654737 | 5A | 588,761,524 | 3.56 × 10−20 | both |
QHD.ta.NAM.ipbb-5A.3 | AX-94725943 | 5A | 673,709,691 | 4.11 × 10−5 | both |
QHD.ta.NAM.ipbb-5B.1 | AX-95256298 | 5B | 460,267,677 | 3.01 × 10−4 | SPCGF |
QHD.ta.NAM.ipbb-5B.2 | AX-94386712 | 5B | 591,836,342 | 7.67 × 10−6 | both |
QHD.ta.NAM.ipbb-5D | AX-95122517 | 5D | 462,988,586 | 3.04 × 10−6 | KPIAPI |
QHD.ta.NAM.ipbb-6A | AX-94943644 | 6A | 140,607,311 | 9.31 × 10−4 | SPCGF |
QHD.ta.NAM.ipbb-6B | AX-94570953 | 6B | 658,818,818 | 1.23 × 10−5 | both |
QHD.ta.NAM.ipbb-6D | AX-94562028 | 6D | 468,842,171 | 9.40 × 10−5 | SPCGF |
QHD.ta.NAM.ipbb-7A | AX-94755544 | 7A | 127,676,409 | 1.90 × 10−4 | KPIAPI |
QHD.ta.NAM.ipbb-7B.1 | AX-94810990 | 7B | 9,702,461 | 7.28 × 10−6 | both |
QHD.ta.NAM.ipbb-7B.2 | AX-94684729 | 7B | 676,144,642 | 2.37 × 10−4 | both |
QHD.ta.NAM.ipbb-UNK | AX-95256830 | UNK | 30,120 | 4.45 × 10−4 | KPIAPI |
QSMD.ta.NAM.ipbb-1A.1 | AX-94500759 | 1A | 128,626,137 | 1.00 × 10−6 | KPIAPI |
QSMD.ta.NAM.ipbb-1A.2 | AX-94964616 | 1A | 517,415,353 | 2.36 × 10−7 | both |
QSMD.ta.NAM.ipbb-1B.1 | AX-95208428 | 1B | 478,053,661 | 1.07 × 10−4 | both |
QSMD.ta.NAM.ipbb-1B.2 | AX-94610095 | 1B | 587,823,781 | 1.17 × 10−4 | both |
QSMD.ta.NAM.ipbb-1D | AX-94636030 | 1D | 53,381,669 | 2.10 × 10−4 | both |
QSMD.ta.NAM.ipbb-2A | AX-95099971 | 2A | 94,003,182 | 1.07 × 10−7 | KPIAPI |
QSMD.ta.NAM.ipbb-3A.1 | AX-94605747 | 3A | 54,939,425 | 4.85 × 10−4 | SPCGF |
QSMD.ta.NAM.ipbb-3A.2 | AX-94866541 | 3A | 568,383,306 | 1.65 × 10−5 | both |
QSMD.ta.NAM.ipbb-3B.1 | AX-94808751 | 3B | 431,589,634 | 5.62 × 10−5 | SPCGF |
QSMD.ta.NAM.ipbb-3B.2 | AX-94483125 | 3B | 781,461,038 | 4.12 × 10−5 | both |
QSMD.ta.NAM.ipbb-4A | AX-94542577 | 4A | 614,111,171 | 1.93 × 10−4 | both |
QSMD.ta.NAM.ipbb-5A.1 | AX-95235821 | 5A | 8,237,880 | 5.80 × 10−7 | KPIAPI |
QSMD.ta.NAM.ipbb-5A.2 | AX-94690257 | 5A | 706,429,847 | 1.44 × 10−6 | KPIAPI |
QSMD.ta.NAM.ipbb-5B.1 | AX-94817648 | 5B | 25,666,462 | 8.85 × 10−5 | KPIAPI |
QSMD.ta.NAM.ipbb-5B.2 | AX-94890794 | 5B | 566,685,969 | 3.23 × 10−5 | both |
QSMD.ta.NAM.ipbb-6B | AX-94609735 | 6B | −1 | 3.04 × 10−4 | both |
QSMD.ta.NAM.ipbb-7B | AX-94510416 | 7B | 707,698,825 | 1.49 × 10−11 | both |
QSMD.ta.NAM.ipbb-7D.1 | AX-94696494 | 7D | −1 | 1.37 × 10−5 | both |
QSMD.ta.NAM.ipbb-7D.2 | AX-94747939 | 7D | 58,869,306 | 5.28 × 10−5 | KPIAPI |
QSMD.ta.NAM.ipbb-UNK.1 | AX-94597695 | UNK | 9,920 | 3.04 × 10−4 | KPIAPI |
QSMD.ta.NAM.ipbb-UNK.2 | AX-94779279 | UNK | 19,750 | 4.70 × 10−8 | KPIAPI |
QSMD.ta.NAM.ipbb-UNK.3 | AX-95254671 | UNK | 30,050 | 3.59 × 10−13 | both |
QPH.ta.NAM.ipbb-1A | AX-95104178 | 1A | 340,249,943 | 6.52 × 10−5 | KPIAPI |
QPH.ta.NAM.ipbb-2B.1 | AX-94818538 | 2B | −1 | 3.14 × 10−4 | SPCGF |
QPH.ta.NAM.ipbb-2B.2 | AX-95150897 | 2B | 115,839,405 | 3.19 × 10−4 | SPCGF |
QPH.ta.NAM.ipbb-2D | AX-94705599 | 2D | 577,454,929 | 3.20 × 10−5 | KPIAPI |
QPH.ta.NAM.ipbb-3A | AX-95083017 | 3A | 699,419,434 | 4.80 × 10−4 | KPIAPI |
QPH.ta.NAM.ipbb-3B | AX-95208494 | 3B | 661,827,596 | 4.15 × 10−4 | both |
QPH.ta.NAM.ipbb-4B | AX-95630372 | 4B | 169,935,701 | 3.50 × 10−4 | both |
QPH.ta.NAM.ipbb-5B.1 | AX-94541915 | 5B | −1 | 5.91 × 10−5 | KPIAPI |
QPH.ta.NAM.ipbb-5B.2 | AX-94392836 | 5B | 679,687,601 | 3.16 × 10−5 | both |
QPH.ta.NAM.ipbb-6A.1 | AX-94783460 | 6A | 127,189,675 | 1.38 × 10−4 | both |
QPH.ta.NAM.ipbb-6A.2 | AX-94575241 | 6A | 573,496,900 | 1.36 × 10−4 | KPIAPI |
QPH.ta.NAM.ipbb-7A | AX-94492491 | 7A | 581,848,865 | 1.84 × 10−5 | both |
QPH.ta.NAM.ipbb-7B | AX-94439304 | 7B | 334,455,703 | 2.15 × 10−4 | KPIAPI |
QPH.ta.NAM.ipbb-UNK | AX-94659909 | UNK | 31,410 | 1.18 × 10−4 | KPIAPI |
QPL.ta.NAM.ipbb-1B | AX-95022601 | 1B | 106,765,751 | 1.30 × 10−4 | KPIAPI |
QPL.ta.NAM.ipbb-2D | AX-94444526 | 2D | 30,405,035 | 9.41 × 10−5 | KPIAPI |
QPL.ta.NAM.ipbb-4A | AX-94945797 | 4A | 541,340,650 | 1.27 × 10−4 | both |
QPL.ta.NAM.ipbb-4B.1 | AX-95129444 | 4B | 480,923,965 | 2.04 × 10−4 | SPCGF |
QPL.ta.NAM.ipbb-4B.2 | AX-95630385 | 4B | 609,515,886 | 5.45 × 10−4 | both |
QPL.ta.NAM.ipbb-6B | AX-94793082 | 6B | 117,516,187 | 1.81 × 10−6 | KPIAPI |
QPL.ta.NAM.ipbb-7A.1 | AX-94634646 | 7A | 23,238,304 | 5.31 × 10−4 | KPIAPI |
QPL.ta.NAM.ipbb-7A.2 | AX-95179073 | 7A | 647,297,932 | 2.23 × 10−6 | both |
QPL.ta.NAM.ipbb-7B.1 | AX-94503821 | 7B | −1 | 4.60 × 10−4 | KPIAPI |
QPL.ta.NAM.ipbb-7B.2 | AX-94587603 | 7B | 61,077,481 | 2.04 × 10−5 | SPCGF |
QPL.ta.NAM.ipbb-7B.3 | AX-94545252 | 7B | 133,792,764 | 4.94 × 10−5 | both |
QPL.ta.NAM.ipbb-7B.4 | AX-94505633 | 7B | 401,550,322 | 5.32 × 10−4 | both |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amalova, A.; Babkenov, A.; Philp, C.; Griffiths, S.; Abugalieva, S.; Turuspekov, Y. Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population. Plants 2024, 13, 2623. https://doi.org/10.3390/plants13182623
Amalova A, Babkenov A, Philp C, Griffiths S, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population. Plants. 2024; 13(18):2623. https://doi.org/10.3390/plants13182623
Chicago/Turabian StyleAmalova, Akerke, Adylkhan Babkenov, Charlie Philp, Simon Griffiths, Saule Abugalieva, and Yerlan Turuspekov. 2024. "Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population" Plants 13, no. 18: 2623. https://doi.org/10.3390/plants13182623
APA StyleAmalova, A., Babkenov, A., Philp, C., Griffiths, S., Abugalieva, S., & Turuspekov, Y. (2024). Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population. Plants, 13(18), 2623. https://doi.org/10.3390/plants13182623